Charge density on thin straight wire, revisited
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The question of the equilibrium linear charge density on a charged straight conducting “wire” of
finite length as its cross-sectional dimension becomes vanishingly small relative to the length is
revisited in our didactic presentation. We first consider the wire as the limit of a prolate spheroidal
conductor with semi-minor axi® and semi-major axic when a/c<<1. We then treat an
azimuthally symmetric straight conductor of length and variable radius(z) whose scale is
defined by a parameter. A procedure is developed to find the linear charge dens(i) as an
expansion in powers of A, whereA =In(4c%a?), beginning with a uniform line charge density.

We show, for this rather general wire, that in the limit->1 the linear charge density becomes
essentially uniform, but that the tiny nonuniformitpf order 1A) is sufficient to produce a
tangential electric fieldof orderA°) that cancels the zeroth-order field that naively seems to belie
equilibrium. We specialize to a right circular cylinder and obtain the linear charge density explicitly,
correct to order 1X? inclusive, and also the capacitance of a long isolated charged cylinder, a result
anticipated in the published literature 37 years ago. The results for the cylinder are compared with
published numerical computations. The second-order correction to the charge density is calculated
numerically for a sampling of other shapes to show that the details of the distribution for fifite 1/
vary with the shape, even though density becomes constant in theAlimit. We give a second
method of finding the charge distribution on the cylinder, one that approximates the charge density
by a finite polynomial irz? and requires the solution of a coupled set of linear algebraic equations.
Perhaps the most striking general observation is that the approach to uniformatic-a0 is
extremely slow. ©2000 American Association of Physics Teachers.

[. INTRODUCTION —0 implies thatQ or Ag must vanish. With no linear charge

density, there is no force! From this point of view, Griffiths

In recent years, the question, “Is the linear charge densit ; . . . S
on a finite length of a charged straight conducting wire of)‘l’Ind Li" were right in their doubts about a valid limit—like

infinitesimal cross section constant, or even well defined?’Ihe C‘f"t n L_evy|s Carroll's AI_|ce_s Adventures " Wor_1der-
has been addressed in this journal by Griffiths and Li, Ignd, in the limit ofa—>p, nothing |s_left but the grin. Thi¥
Good? and Andrews’ Although a variety of results are ob- fixed,a—0 argument is a red herring, however, as we show
tained for the equivalent of conductors of small transversdelow. Physicists never quite go to the limit.

dimension, the focus was on the limit of vanishing lateral Our paper is aimed at clarifying these issues by focusing
extent. All the authors agree that in that exact limit theon the situation for very larg®/a, not the limita=0, al-
charge density is uniform. There remains, however, a puzzlehough that limit, properly understood, is smooth. The dis-
stressed to the present author by Bruce D. Winstein. Figure dussion is frankly pedagogical, without much claim of origi-
displays a uniform line charge of lengtic Darallel to thez  nality. Some aspects are similar in approach to Andréws,
axis and centered abomt 0. Consider an element of charge others to the much earlidand actually definitivework of

dq at z The sum of the electric fields produced by the un-Vainshtein and colleagu&® and also Watermah.

shaded segments on either side produces no net force on theWe first treat the special case of the long straight “wire”
elementdq, but the shaded segment does. An elementarys the limit of a very elongated prolate spheroidal

calculation shows that the force is conductor—special because it hasuiaiform linear charge
2 density, whatever its aspect ratio. In the limit of great elon-
dF=dq E,=dq ——>, (1)  oation, the force(1) applies and is necessary to maintain
2megCc—2 charge equilibrium, not destroy it! We then examine a

where )\, is the uniform linear charge density. Cleartyg ~ “Wire” consisting of a straight azimuthally symmetric con-
cannot be in equilibrium! ductor of length 2 and possibly variable radiugz), which

How can the equilibrium charge distribution on such ais of the order of a transverse scale paramat&¥e consider
conductor be uniform if there are unbalanced forces? Ona/c<<1, or more correctly,A=2In(2c/a)>>1. In that
aspect of the problem that might argue for caution is physiimit the finishings at the ends of the cylinder and, indeed,
cal. The potential of an isolated finite wire with a fixed whether it is hollow or not, are not significant in determining
amount of charg® on it grows arbitrarily large as its trans- the charge density over the vast majority of the surface. We
verse dimensions decrease, increasingas(D/a), where  show that there are corrections to the uniform charge density
D(a) is a distance of the order of the lengttransverse of relative magnitudeD(1/A") times functions ofz/c, for
dimension of the wire. In the limita— O, the potential be- n=1,2,.... For most shapes, the additions to the charge den-
comes infinite unles—0. Conversely, for the practical sity peak toward the ends, as expected, and despite being of
situation of a wire placed at fixed potenti| the limita  order 1A and smaller, are such that they balance the
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I
: i L I But o dA=\ dz and because the factor @A is the recipro-
- ¢ 2z-¢ 0 z c cal of the one inr(p,z), the charge density per unit length in
Fig. 1. Line charge of uniform density. The charge of the shaded portiorF IS
exerts an unbalanced force to the rightdmat z Q
N2Z2)= 5= 4
(D=5 @

A-independent forcél) from the dominant uniform linear constant and independent of the ratio of minor to major axis!
density to produce electrostatic equilibrium. The appearanch the limit of a/c—0", the spheroid goes over automati-
of a factor of A in the numerator of the force from these cally to a uniform line of charge with ,=Q/2c.

additional charge densities, which are of relative ordér,1/  For a conductor the electric field at the surface is normal
is what resolves the puzzle of Fig. 1. The tiny nonuniformto it, with magnitude|E|=0/e,. The components of the
linear charge density produces/gindependent force be- electric field at the surface may therefore be computed from
cause some of those charges locally get closer and closer {ge  surface charge density and the angte E,

any observation point a&/c—0 (A—). , = (ol &p)sina andE, = (o €g) cosa. We need
The right circular cylinder is treated in detail by two meth-

ods (Secs. IV and VI. Examples are given of the charge Jc2—72
densities for shapes other than the spheroid and the cylinder, COSsa= ;
. X L . . \/CZ_(l_aZ/CZ)ZZ
showing that the details of the distribution for wires of small,
but not vanishing, radius depend on the shape. The slow ()
approach to uniformity with increasing is also illustrated sina= az
(Sec. V. cc?—(1-a%c?)z?’

where we have used the equation of the ellipse to give ex-
Il. CHARGED CONDUCTING PROLATE SPHEROID pressions as functions afalone. Note that, to first order in
alc, cosa~1 and sinx ~ azc(c>—2)Y?% the normal to the
A wire as the limiting case of a conducting prolate spher-surface(PN in Fig. 2 is almost radial, with only a small
oid has been treated by others. We are brief and only stresomponent in the axial direction. In that limit, however, the
the issue of the longitudinal forod) as a necessary force, magnitude of the electric field is huge. Explicitly, the com-
not a puzzle. The spheroidal conductor has semi-major angonents of the electric field at the surface of the spheroid for
semi-minor axes¢ and (a,b) with b=a. The equilibrium arbitrarya/c are
surface charge density®is

E No z
Q 1 = 21 A2 o2
a(p.2)= 52 —, 2) 2meg [c°—(1—a“/c)z7]
" J&+i = ©)
a* ¢t NoC ct—z

P 21 _ A2/ 2527
whereQ is the total charge; the spheroid is centered at the 2meea [~ (1=a%/ch)Z’]

origin with thez axis as the major axis, ap=x?+y2. Itis  In the limit a%/c2< <1, these expressions reduce to
of interest to find the charge density per unit lendt®/dz.

Figure 2 shows the geometry. At the polthe element of _ Ao Z
area around the circumference of widtHz is dA Z 2mey [C2— 7]
=2mpdz/cos). From the equation of the ellipsed/a? (7)
+7%/c?=1) and tanx=—dp/dz we find E_ AoC _ N
P 2mega\cP—22 2mepp(2)”
N The axial component is independentafn the limit a?/c?

< <1 and agrees withlF/dqg from Eg. (1). It results from

the product of an infinite surface charge densityq(1/a)

and a vanishing sia(eca). The radial component of the
P electric field in the limit is just the naive result obtained by

p
o applying Gauss’s law around the “wire.” It grows without
limit as a/c—0+, except at the very endsvhere (6), not
z (7), must be used
The elongated prolate spheroid specifies one limiting form
\\‘/ of a finite “wire” of negligible cross section. It is special in

that its charge density per unit length is constant, indepen-
dent of the ratica/c. For such a uniform charge density, the

Fig. 2. Geometry of the prolate spheroid for computation of the linear@'gument of S?C- | Shows t.hat in Fhe limitafc— 0+ there
charge density. must be an axial electric fiel&, given by (1) or (7). Con-
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trary to the discussion there, however, we see here that the 0 1 [1-¢2
axial field is required to guarantee that the charge be in equi- ®(p,2)= 2 1+ K'”( i
librium on the spheroidal surface. T€o (&
Obviously the spheroidal wire is a very special case, but (11)
not the only one. As shown by Griffiths and tifor the  The integral in(9) is large, equal toA in leading order,
general ellipsoidal conductowith arbitrary values of the because of a peaking of the integrandz’at z, but with z/c-
principal axes (2,2b,2c), the linear charge density along a and p/r ({)-dependent terms in next order. Frgfrl) we see
principal axis is constant and given k), if the third axis is  that, beyond the leading order, the potential is not constant
the chosen one. In the limé<<b<<c, the ellipsoid ap- on the surface of the conductgr=r(¢).
proximates in a special way a flattened wire. We now turn to  We wish to find an addition;(z) to the constant linear
a more generalbut cylindrically symmetrit shape. charge density, such that its potential, when added(id),
will remove the{ dependence ai=r({) and give an equi-
potential conductor. Evidently, 1 /Ny will be of order 1A.

1
+ Kln(rz(é)/pz)}

[ll. GENERAL AZIMUTHALLY SYMMETRIC To this end, consider the potentid®)(p,z) produced by
CONDUCTING CYLINDER N (2):

_ . . . OW(p.7)= ¢ N(2')dZ 12
A. Linear charge density to order ¥A~ inclusive ' dmeq ) c\p?+(z —2)%

Consider our “wire” to be a long, thin, straight, azimuth- \ve add and subtract;(z) to the numerator and write
ally symmetric conductor of lengthc2and possibly variable

radiusr(z), whose scale is set by the radial parameter B Z)_)\l(z) fc dz'

Wlt.h alc<<1.In fact,ihe criterion for long anq.thm is more P 41e 7cm

stringent, namely, A=2 In(2c/a)>>1. Specifically, we

choose N 1 JC [N1(Z')—N41(2)]dZ
[r(2)]?=a%*(2), (8) dmeg )¢ \p?+ (2 —2)2

wheref(z) is a smooth positive function, of order unity and The first integral is proportional & given by (11). The
bounded above and below f¢z|<c, and vanishing atz|  second integral has an integrand that is unexceptional near
=c. Later, we specialize té(z)=(1—|z/c|)? andf(z2)=1  z’=z because the numerator vanishes there. In fact, in the
—|z/c|", with n a positive even integer. limit of A>>1, we may sep=0 in the denominator with

We approach the problem of finding the equilibrium linearthe introduction of errors only of the order pf/c?. We thus
charge density on the surface of the conductor through thggye

potential of a line chargézero cylinder radiusevaluated at
p=r(z) and beyond, as did Andrewd/Ne develop a system-
atic iterative scheme to find the charge density as a power
series in 1A, beginning with the lowest order approxima- , ,
tion, a line charge of constant density extending over the N 1 fc [A1(Z')—N1(2)]dz 13
range—c<z<c. Straightforward integration shows that the 4meg ) ¢ |z’ — 2]

electrostatic potential is

N (2)

®W(p,2)=—
0

DO (p,2)

The leading contribution to the first term {@3) is A [times
©) BRI dz' N1(2)/4meg], while the second integral and the remainder of
P (p,2)= dre f_ it (7 =22 the first term is, as observed by Andretvst lower order in
0 eNp (2 =2) A. Focusing on the leading order part®f®) [because it is
already down by one power of and so of the same order as
: (9)  the second and third terms {1)], we have the sum ob(®)
and®®, evaluated on the cylindgp=r(¢)] as

®O(r(z),2)+®Y(r(2),2)

Ao

41eg

z+c+\p?+(z+c)?

z—c+/p?+(z—c)?

We are interested in the potential near the wWipe=O(a)
<<¢,|z|<c]. Introducing the scaled variable=z/c, and

expanding the argument of the logarithm to first order in oA 1 (1= M2
(plc)?, we find the potential can be approximated by = Ame, 1+ £0) + g (14)
NoA 1 1 .
DO (p,z)= 1+ ZIn(1= 2+ —1In(a2/ p2 To assure constancy of the sum to ordek Iriclusive, the
(p.2) 4meq A (1=8) A (@’p%) first-order correction to the charge density must be

(p?c?)(1+ %) Ni(2 1 [(1-22
RaLE Ay (10) N (15

2A(1-2%) No A

provided the observation point is not too close to the endsthe complete linear charge density, correct to first order in
The last term can be neglected providéd-|{|]>>p/2c, a  1/A, is then

condition satisfied over most of the wire providad>>1. 5
Using (8) and omitting the last term if10), we have the AD(z)=\ 1—£In 1-¢ ) (16)
approximate but accurate expression 0 A '
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This expression is equivalent to the approximation assertegent vector and the axis in that plane, its tangent is tgn

by Andrews [his Eq.(3.2), in my notatior]
Ao
1+ iln( 1_£2> |
AT (D)

For use below, we note in passing the result for lgeding
order part of ®M(p,2):

No |
47T€0 n

N Andrewd Z) = (16)

1-¢°

P2 0

+O(1/A). (17)

With A 1(z) known, we can proceed to the next step in our

iteration scheme. With(15) substituted for\,(z)/\g, the
potential(13), correct to second order in A/ is explicitly

P %(p,2)+DM(p,2)
In(
el

N [1—%
1 (
1—Xln m

 Areg
1 r3(Q)
AT
where the integral, of order unity despite appearances, is
A

"o

2 1

1-22
+P|

f()

(18)

J’l dx \ N
_lm[ 1(X) =N 1(0)]

_fl dx I(l—gz)_l 1—x2)
=g T )™

The 1A term atp=r(¢), present in®®, has been elimi-
nated by\,, leaving a second-order variation i By the
same steps frorfil2) to (14) with a\,(z) instead ofr;, we
can infer that the first line in18) is the negative of the
charge density\,(z)/\q. The linear charge density, correct
to order 1A? inclusive, is therefore

1— gZ 2

0 ” 'H

(20

. (19

ol e o
1—K|nm+P In

MD:)\O{

The scheme of iteration is now clear. The second-order

charge densitya,(z) can be inserted int@l3) instead of
\1(2) to generateb(®)(p,z). The sum of potentials will then
be constant up to order Af, but will have zdependent
terms of order 143. These can be removed by identifying

=dr(2/dz=r'()/c, wherer'({)=dr/d{. Define the scale of
variation of r(z) to be O(b), with a<<b. Then r’
=0(ac/b) and tanB=0(a/b)<<1l. We therefore have
sinB~r'/c and cog8~1, with corrections of ordera?/b?).
The components of the zeroth-order electric field inzlaad
p directions at the surface are, frofh0) or (11),

0
E<o>:_‘9‘b(): \o L

z cidl 2menc\1—72)

o 99 o [ c @Y
P ap  2meqc\r(d))

The zeroth-order component of the electric field tangential to
the surface is

E=E cosp+E\” sinB

tan
2 2r’
= — —g > + —
47ec|1-¢ r

No dI (1—§2)
T dmecdz (0 )

The first-order potential is given in leading order (). It
has only az component of electric field. With cgg~1, the
tangential andz components of the first-order electric field
are equal and are

do N, d (1—42)
cdl  4mec dl M\ F(0) )

Comparison of(22) and(23) shows that the lowest order
and first-order tangential fields cancel, as they must if the
surface is an equipotential. The reader may think this point is
a bit of a straw man because the sum of the zeroth- and
first-order potentials, shown ifl8), is constant on the sur-
face to order 1A, and so must give vanishing tangential
electric field to that order. More interesting is the sum of the
z components of the electric field,

Ao

(22

(H— _
tan

1) _
EN=E

(23

No d n(f
Ameqc ag M)
Depending on the form df(¢{), there is a nonvanishiraxial
electric field of orderA®, but no tangential electric field.

Three points are to be made, as follows.

(1) If the surface is the spheroid of Sec. f((¢)=1— 2.

0 1_
EX+EMN=—

(24)

A3(2), and so on. In higher order, however, the integralsThen the electric field in the direction (24) is just (1).

equivalent tol become intractable in terms of known func-

Actually, by looking back a{15) and (17), the reader will

tions. Even(19) needs numerical computation, except forsee that\;=0 and so®=0. In this case there are no

special choices of(z).
Before evaluating(19) and (20) for specific shapes for

corrections to the constant linear charge density, as we al-
ready know from Sec. Il.

f(z), we address the conundrum posed in Sec. I. In Sec. Il (2) For any shape other than the spheroid, the linear
we saw how the puzzle was not actually a puzzle but a necharge density has nonvanishimgependent corrections that
cessity for the spheroidal shape. But what about othecan be written as an expansion in powers ok.1The ex-

shapes?

B. General resolution of the issue of the axial electric
field and charge equilibrium

Because of the shape of the conductor, defined(zy in

ample of the second-order linear charge density for the right
circular cylinder is considered explicitly in Secs. IV and VI.
The second-order charge densities for a family of shapes are
discussed briefly in Sec. V.

(3) For a general shape, the zeroth-order constant charge
density\ generates a potentid(®), which is constant on

(8), care must be taken to distinguish between the electrithe conductor to ordek plus corrections of ordek°. These
field in thez direction and the electric field tangential to the order A° terms give rise to the electric field® whose

surface in thep—z plane. If 8 is the angle between the tan-
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\1(2), which is of order 1A, generates a potentid®) of NoA IND, L, 5

order A°. The electric fielE is thus of the same orderas ~ P(p.2)= A +5 o In(a*/p%)+O(LA)|.
E© and is such as to combine with it to give a vanishing (27)
tangential component of field on the surface. Equilibrium of
the surface charge is assured, even in the limit that 1/
—0, as the charge density approaches uniformity. It is th
fact that a nonuniform linear charge density of ordef . : .
causes a potential of ordet*"! that resolves the puzzle for p>a corresponds to a conduct[ng cylindergat a with
posed in Sec. |. Physically, the increase by one in the powei%_.‘e expec_ted_ surface charge dengitgmputed from the ra-

of A is a result of the greater and greater peaking of th lal glectnc f|e_|d equal ‘2“25){21”3- I E?n be s_hown that
integrands in the expressions for the potential or the electrié® difference is of ordea®/c“A :(2)(_3 IA), with, how-
field asa/c— 0, the result of contributions from the nonuni- €Vver.{ dependence singular as{¥<) ™" near the ends.

form charge density in the immediate neighborhood of the A referee has pointed out that an alternative expression for

On the cylinder p=a) the potential is constant to order
e1/A2 inclusive. Note that, even thougk({) is, strictly
speaking, a line charge on the axjs<0), the potentia(27)

observation point_ )\(Z), yleldlng the same result dQG) to order 1A2, is
No 1 1+2\\? =2
NO)= 1+ A2 In 1= —? .
IV. RIGHT CIRCULAR CYLINDRICAL 1+ ZIn(1-¢2) 4
CONDUCTOR (1) A 8)

This result combines Andrews’ form of the first-order charge
density(16') with the second-order terr | oyjnger- EmMpiri-
For a right circular cylinder, the radial functioi{z)=1  cally, (26') is a better approximation to the charge density

A. Charge density to order ¥A? inclusive

for |z|<c. Then the integral (19) is than(26) in that it keeps the potential on the surfacea an
equipotential slightly closer to the ends of the cylinder. The
T 1 dx [In(1—¢2)—In(1—x2)] (25) differences disappear rapidly asincreases, of course. Our
oylinder™ | |x—¢] ' expansion in inverse powers d&f has advantages in analytic

] ] ] work, in the calculation of the capacitance of the cylinder,
We change variables to=x—{, break up the integration for example, see Sec. IV C.

into t<0 andt>0, write out the logs as the sum of four
terms and then recombine so that the arguments are linear

t, and finally rescalé to obtain B Practicalities, comparison with numerical calculations

of others
|Cy”nder:_2f1%|n(1_u) The range ofA values for practical situations can be
o u judged by considering the range of radii for the largest and
a+oii-0 du smallest diameter copper wires in the American Wire Gauge
_f —In(1+u) table: a=5.842mm (AWG No. 0000 to a=3.993
0 u X 1072 mm (AWG No. 40. For a wire 1 m inlength, the
(1-0/(1+0 du range isA =~ 10— 20. Finer or longer wires can be imagined,
—f —In(1+u). but A<25 is a likely upper limit for an isolated wirfif
0 u indeed anyone was interested in verifyi(®f)].
We now break up the second integral into interv@lsl) and Some numerical calculations exist for the charge density
(1,(1+ 9)/(1— 2)). Then in the second part we change vari-On a cylinder:° Sakar and Réogive a few values for the
ablesu— 1/u to find density forA = 13.82. Their numbers are compared w(i26)
in the top half of Fig. 3. Their averaging intervak =2/9 is
T flﬁln(l—vH fl Elnu sufficiently great that for their largest interval (#9<1)
cylinder oV 1-opiaep u we have used26) to find a weighted mean position for their

point. The agreement is satisfactory. Waterman and
Pederself are concerned with scattering of electromagnetic
waves by conducting cylinders, but in an appendix present

wherev =u?. The first integral can be found in the tables to
be —72/6. The second integral is elementary. The result is

2 1 14¢\12 an empirical parametrization of their numerical results for

= 5 2 In rg) . the charge density for a constant potential along the cylinder.
My version of their fit to a range of\~15—185 isA({)
This gives the linear charge density, correct to orde¥?l/ =\y(1—¢?)"?, wherey=1/(A— B) and 8~3.025. ForA
inclusive, =15, this empirical fit is compared wit(26) in the bottom
half of Fig. 3. The agreements for other values /ofare

[In(1-¢?)7? comparably good.
Griffiths and LT give a numerical fiftheir Eq.(3.7)] to the
1+4¢ smoothed charge density of their discrete distribution of 200
In(—) - — +o(1/A3)] (26)  point charges on a line. While not strictly comparable to
1-¢ 6 (26), the fit might naively be expected to corresponctta
and the potential near the wire to the same relative order=100—200 orA ~10.6—12. In fact, good agreement(@b)
(including ®?) is with their formula occurs fo\~17+1.

1 5 1
N =N\ 1—Xln(1—§ )+P

1 2 g2

+ —
2
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C=dmeg—11+ 1 Ay +O(1/A3)

12k b A The result(29) is not new. An expression equivalent to it
was published by Vainshtéin 1962. He chooses to define
OQ=A-2(1-1In2) to suppress formally the term inAl/in
(29). His form, equivalent tq29), is

2 ' ) ) 20[ 0.6137056 1.086 766 ]

11

Relative linear charge density

2c( 4-7%3 5
C=47Teoﬁ 1+ TJrO(l/Q )i - (30
Y s 0.0 0.5 7.0 Obviously, Vainshtein derived the charge density, too, but he
zlc does not state it explicitly.
(a) The problem of the capacitance of a right circular cylinder

has been treated in the literature by numerical methotfs.
Smythé! used an approximation techniquéescribed in
Ref. 8, pp. 209-211to find the capacitance fa’a=1,2,4,
8. He gives a convenient interpolation formul@/4meya
=2/w+0.5539 €/a)* "8 (The coefficients are from my fit
to his numerical values and differ slightly from hiddow
does our(Vainshtein’s formula for long cylinders compare
with Smythe’'s? Forc/a=4 (A=~4.16) the values are

13

1.2

Relative linear charge density

1y ; Clamea=2.328 [Eq. (29)], 2.222 (Smythe. For c/a=8
\ / (A=~5.545), they areCl4mepa=3.307 [Eq. (29)], 3.320
(Smythg. The fractional errors of(29) compared with

1oL — — - 4 Smythe’s values are 4.8% and 0.4% fda=4 and 8, re-

spectively. Vainshtein’'s versiof80) is marginally poorer. It
appears that29) accurately represents the capacitance of a
(b long right circular cylinder forc/a=10. Smythe’s interpola-

Fig. 3. Comparison of Eq26), normalized to unity az=0, with numerical  tion formula suffices for €<c/a<10.
calculations(a) Sakar and Ra(Ref. 9, A =13.82(solid triangles; solid dot
is mean position weighted according to the shapé26j). (b) Waterman

and Pederse(Ref. 10, A =15 (dashed curve is empirical fit to their nu-
merical results; see textNote the suppressed zero for the ordinates. V. SECOND-ORDER LINEAR CHARGE DENSITIES
FOR OTHER SHAPES

z/c

The second-order linear charge density for a right circular

Despite the peaking at the ends displayed in Fig. 3, the, . : . :
magnitude of the charge density variation is such that thgyllnder was expressible in terms of known functions. In

departure from uniformity is rather small. A measure of thegeneratl, Ia r:?tl?doin cho:ge olf(the ra(f:ilal E[)_roﬂ(g“)Hm (19 to
nonuniformity is the percentages of charge on the inner halfOMPUtel WIT NOt resuit in known fUNclions. MOWEver, as

. ked earlier, the integrand (h9) is quite smooth in its
of the cylinder (¢|<1/2) and the outer half (12|¢]<1). remart . o
For A=6 (c/a~10), the percentages are 43%nel and behavior ax— ¢ (with opposite limits from above and below

7 — . because of the denominalolit is only necessary to break the
27;/0 (ﬁgtgr)z.ryF(or?BZO (c/a~1.1x10), they are 48%in- integral up into two rangesH1<x<{) and ((<x<1), for
€ a oloutep. numerical integration.
C. Capacitance of conducting right circular cylinder Numerical computations of were done forf(¢)=(1

. . . . —|Z])?, andf(£)=1—1¢|", with n an even integer. The first
The capacitance of an isolated long right circular conductyice is a “double cone” conductor. shown at the top of

ing cylinder of radiusa and length 2 is found from(26) and : - :

. : . Fig. 4@, along with profiles for the second choice ()
(27). From (27) we see tha the potential of the cylinder is yigh n—2, 4, 6, 8, and 10. Note that in the limit>>2 the
V=NoA/Ame,. The total charg® is the twice the integral  pan6 of the “wire” approximates a right circular cylinder.

of (26) over the interval, &2z<c. The capacitance is there- o, A — 15 the curves of the second-order charge densities

fore for the double cone and=2,4,6,8 are shown, along with
2c (1A(Q) that of the right circular cylinder in Fig.(8). The trend from
C=dmeoy~ o TNy g (28)  h=2 (spheroid to n=8 shows the progression toward the
0 right circular cylinder. In contrast, the double cone conductor
The result of the integration is has a linear charge density that seems to tend toward zero at
2¢ 2 the ends. The known behavior of the surface charge density
C=4meg— 11+ —(1-1In2) near the tip of a conéRef. 13, p. 106 corresponds here to
A A the linear charge density(¢)<(1—¢)Y*. The behavior
2 shown in Fig. 4b) agrees qualitatively with this dependence,
+ A2 1+(1-In2)%— P +O(1/A3)] (290  but our results cannot be trusted too close to the ends of the
conductor. Atz=0 the double cone has a discontinuity in
or, numerically, slope. The behavior at such places can be deduced from two-
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Fig. 5. Behavior of the linear charge density vergls with increasingA

(A=15,30,60 for two different shapes(a) Right circular cylinder.(b)
Double cone.

bl
@

Double cone
linear charge density
o
»

Linear charge density

o IS 3
'
°
o

0.0 0.5 1.0
z/c

®) VI. THIN RIGHT CIRCULAR CONDUCTING
CYLINDER (2)
Fig. 4. (a) Shapes of conductors defined /a=1—|z/c| [double con . .
angdr(zgz)/a2=lr.]—|z/c|“. The transverseatﬁ:\)l) coordirlate| rEas been scgled An alte_matlve appr_oach_ to the proble_m_of the conduqtlng
by a factor ofc/6a to make the different shapes visibld®) Linear charge Cy“nde_r is an approximation scheme similar to_the various
densities for the shapes of pdsh for the double cone and=2,4,6,8 for numerical methods employed by others. We wish to deter-
A =15, along with that of a right circular cylinder. Note the suppressed zeromine the linear surface charge density on the actual cylinder
for the ordinate. such that the surface is an equipotential. Since the physical
situation is symmetric with respect to the plane 0, the
charge density\ (z) must be even ire. We expand it in a
dimensional electrostati¢®ef. 13, p. 78 The linear charge power series oN+1 terms inzZ, with N+1 initially un-
density should be singular dg| =¥ for |z|<a. For A known coefficients. Since the overall scale of the density is
=15, the exponent has absolute valug T0 #; the singu-  arbitrary, there are really onliN coefficients to be deter-
larity is too small in magnitude and extent to be discerniblemined. We write
in our numerical integration. In Fig. 5 we display the linear N
charge densities fSr the right circular qylmder and for the NQ)= 2 AL (31)
double cone forA =15, 30, and 60 to illustrate the trend k=0
toward uniformity with increasingA. The lesson to be
learned from Figs. 4 and 5 is that the detailed behavior of th
charge density is shape dependent, even for very thin wire . , .
Only in the limit /A =0, unattainable in practice, where it is azimuthal average of the Green functior|xt/x[. With
approached very slowly, do the differences among conduc20th the observation poiné=(a, 0, z=c{) and the source
tors absolutely disappear. Even then, the shape-deperdenPOint X’ =(acos ), asin2f, z'=c{’) on the surface, we
component of electric field24) is present! Each cat does find
have a grin that betrays its identity! < 1 >

The surface charge density i§z)=\(z)/27a. The poten-
§|al is azimuthally symmetric. We therefore need only the

_iJ‘ﬂ'/Z de (32)
~mclo (2alc)ZsiP o+ ({—{)2

Perturbations around a smooth shape can also be treated,
but this would take us too far away from our purpose.

[x=x'|
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In terms of the linear charge densit$1) and the averaged
Green function(32), the potential becomes

_ 1 2 (=2 1 ) ,
V@0, o0 )
1

X + . (33
[Ja“r(é—é’)z Ja2+(é+§’)2]
Here we have introduced the quantidy=2(a/c)sind and
exploited the symmetry ok({') to restrict thel’ range to
0, 1.

When ® is expanded in a Taylor series ifionly even
powers occur:

B 1,00 1,0
®(a,{)=P(0)+ 57 ¢ a—§2(0)+ L a
Here and below we suppress the explicit dependenca. on
The longitudinal electric fieldtimesc) is evidently
b 9*P 1,00
“ar T Ot et

4
(0)++.

CE,= (0)+---.

(34

If we now substitute the power seri€&l) for A ({') into (33)
and require that the fir$d terms in the expansiof84) vanish
(in order to approximate an equipotential on the sunface
obtain N coupled linear equations for thd unknowns,y,
:Ak/AO'

52 1 92! 1
— = . 3
I JaP+ (=) o 7 Va?+ 2 37
The N constraintg36) are (=1,2,3,..N)
N 2i
4 (w2 1 0% 1
oz—j de Afd B e 38
m Jo kzoko“ﬁ@J a2+ 12| (38

We define the coefficients in the set of algebraic equations as

(39

1
el

With y,=A /A, theN equations 0f38) can be written

4 w2 1 o 94
ﬁik:ﬂzn!fo ‘“fod“ P
(40)

N
kzl BikYk=—Bjo, 1=1,2,3,..N.

The coefficientss;, are evaluated in the Appendix. The re-
sults for smalla/c are

1
2j 1
p=1 P

First we look at the large\ limit. To leading order inA,

Implicit in the discussion so far is the idea that the ends ohe coupled equationg0) reduce to the uncoupled set,
the cylinder are unimportant. We must address that issue

before proceeding further. If the cylinder is capped by hemi-

spheres of radiug, or a similarly smooth joining, there will
be no singularity in the surface charge densityzat+c.

Even with flat plates or a hollow tube, the charge densityWe may consider the limit oN—c and find the charge

though singulanRef. 13, p. 78 at p=a, z=*c, is inte-
grable. The charges within a distance of ordeaf each end
are 6Q=0[2ma’c(0)]=0[ar(0)].}* The axial electric

field in the central region from the ends is thus estimated to

be

45Q¢ B
4megc(1—%)%

aNO0) 4
c4mey (1- 79

ol =

(35

The end contribution i©(a/c) compared tq1l) or (21), the
magnitudes of axial electric field involved in establishing
equilibrium on the long cylinder. FoA>>1, we clearly
havea/c=2e *?< <1. For exampleA = 10 corresponds to
alc~0.013; A=20, toa/c~10 %. We may safely neglect
end effects forA>>1 provided the observation point is not

too close to either end. We saw the same sort of restriction in

Sec. Ill.

1
ij=j—, j=1,2,3,..N.

density,
A=A, 1+K§1j— =Ag 1- 1 In(1-¢ )}, (42)

in agreement with the first-order correction (@6) found
above.

To go beyond the asymptotic limit, we may solve the
coupled equations by matrix methods. For snivathe alge-
bra is manageable by hand. For example, khe2 results
for the coefficients are

_ 2(3A-14)
Y1=(6A—25(A—3)+6

3(A-1) “3

Y2=(6A—25(A—3)+6

Now we implement our approximation scheme. We de-In Fig. 6 thisN=2 charge density, correct to ordgt inclu-

mand
2J(D
a_ng(o)zo for j=1,2,3,..N. (36)
In (33) we need
P 1 1_+ P { 1 1
al a2+(§i§,)2 __0"9”’ a2+(§i§’)2 !
so that
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sive, is compared wit26), normalized to unity az=0, for
A=20. We see that the agreement is good|{dr 0.7, but
the quartic fails to be singular enough for lardér Also
shown are the charge densities fée=5 andN=15, found
with the Pascal linear equation tools “ludcmp” and
“lubksb” (Ref. 15, pp. 683, 684on a Macintosh. Because
the results foN= 15 and(26) are virtually indistinguishable,
we plot points for the analytic form to show the agreement.
As expected intuitively, the higher the degidef the poly-
nomial, the better the representationftvalues near unity.
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tors of different shapes. Figure 4 illustrates how the charge
density along the conductor varies with shape for finite
while Fig. 5 shows the approach to uniformity with increas-
ing A for two different shapes. Even in the limit of infini-
tesimala/c, when the charge density is essentially uniform
in zand the conductor is virtually a line of charge, the shape
leaves its signature in the longitudinal electric fi¢hd}).

In Sec. VI a different approach to the right circular cylin-
der, involving a polynomial approximation mto the charge
density, is presented. WitN independent coefficients in the
expansion of\(¢) to order{?N, we demand that the fir$
terms in a Taylor series it of the tangential electric field at
p=a vanish. The vanishing of the corresponding derivatives
of the potential leads to a set df inhomogeneous coupled
linear algebraic equations for the coefficients in the charge
density. To leading order i, the equations become trivial,
the limit N— o can be taken; the series can be summed; the
Fig. 6. Comparison of second-order analytic charge der(@éy for the  first-order analytic result i26) is obtained. For arbitrary,
right circular cylinder, normalized to unity a=0, (solid point$ with N matrix inversion methods can be used, by hand for sidall
=2, 5, and 15 polynomial approximatiotisontinuous curvgsfor A=20.  or by computer for largeN. The results of the polynomial

Relative linear charge density

0.95

zle

Note the suppressed zero for the ordinate. approximation approach are compared with the analytic form
(26) in Fig. 6.

It is worth stressing two striking things that emerge here.

VI. SUMMARY AND CONCLUSIONS (1) The specific behavior of the linear charge density and

the fields on the wire depend on its “primordial” shape be-

We have revisited the problem of the charge density on dore the limita/c<<1 is taken. The prolate spheroid has a
“wire,” defined in Sec. Il as a very elongated prolate con- uniform linear charge density(z) for all aspect ratios and a
ducting spheroid and more generally in Sec. Ill, where thgongitudinal electric field that in the limit approach@s. For
issue of the “unbalanced” force is resolved. For a conductothe general azimuthally symmetric conductor, the linear
of length Z with variable radius (z) of ordera, we give an  charge density can be expressed as a series in inverse powers
iteration scheme to generate the linear charge density asaf A, with the tangential electric field vanishing and the
power series in 1, whereA=In(4c?/a?). The linear charge asymptotic axial electric field depending on the shape, as

density to second order in A/inclusive is shown to be given by (24) (which, of course, includes the prolate spher-
1 [(1-22 1 1- 72|12 oid as a special cas€eThe right circular cylinder has a non-

)\(5):?\0{ 1— —In(—) +— In(—) - ] uniform linear charge density, but no axial electric field be-
AV ) A f(¢) cause its surface is parallel to threaxis and the surface

(20) charge is in equilibrium there.

wherel is given by(19) and[r (¢)/a]?=f(¢). [See(8).] For (2) The second striking thing is the extreme slowness of
the special case of the right circular cylinddi({)=1) the the approach to uniformity of the linear charge density on the

integral | can be evaluated analytically. The linear chargeCYlinder as afunction of/a. Forc/a=10, 1/A =0.1669; for

density is then c/a=10%, 1/A=0.050, only a factor of 3.3 smaller. For
. . 1/A=0.01, we need/a=2.6x 107
_ _ - _ 2 _ 2\72 In passing we note that the technique of Sec(did also
M) )\0{1 A In(1=¢%+ A? [In(1=¢%] Sec. IV) can be applied to the long-wavelength limit of the

radar cross-section problehi®"%for which one requires
+O(1/A3)]. (26) the charge densit{for calculation of the electric dipole mo-

men) for a potential varying linearly along the length of the
cylinder. The relevant charge density is oddjrbut other-
wise the approaches are identical.

2 71_2

(1+§)
1=~ 6

We show that the first-order correctionXr§(), though very
small for largeA, produces an electric fielthngent to the
surfaceof the conductor that just cancels ttaagentialcom-
ponent of the zeroth-order “unbalanced” field) to give ACKNOWLEDGMENTS

equilibrium to the charge on the surface. | thank David J. Griffiths for first bringing the problem to
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In Sec. V we present results obtained by numerical intefor the observation of other ways of generating numerical
gration for the second-order charge density on long conducapproximations to the equilibrium charge density.
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APPENDIX We now turn to the case &< j. We putj=Kk+n, with
o ) ] n=1,2,.... Starting wit{A1) instead of(A4), we follow the
The coefficientss;, in Sec. VI are defined as same procedure of two integrations by parts to obtain the
general recursion relation,

4 e 1
Bik= f dﬁf dg’éz" 0| T (A1) (4k+2n—1)
w(2j)" T a2t 2 __
¢ Bren= = () (2k+ 2n—1)
wherea=(2a/c)sinf andj=1,2,...N while k=0,1,2,...N. K(2k—1
In anticipation of choosinga/c<<1, we consider the de- ( ) e 1Ko 1 (A11)
rivative in (A1) in the limit «@—0. Then (k+n)(2k+2n—1) ’
2 2 . Now consider the special cage=0. The integral(Al) re-
|,mi;_ N i;,(}) - % (A2)  duces toneglectingO(a®/c?)]
w098 | a2+ 2] 9\ 4 L
If we insert this limiting result into(A1), we see that ik ,Bno:mfo dafo dé’@{—m
>j the ¢ integrand is nonsingular. Thus, with the neglect of
terms of ordetO(a?/c?) and fork>j, we have 4 jw/z g2n—1 1
= 6 -
2 1 m(2n)! "t a2+ 2
Bixk=— J d9j dg 2k l_k—_j (k>j).  (A3)
T 1
=——— [-(2n-1!]=—=. A12
Next considek=j. We have w(2n)! 2[ (2n=1)] n (A12)

4 52 1 We now use the recursion relatioA11l) to evaluateB,, 1 1:
Bii =21 f f dZ & oy {—/—21 (A4) 1 1] 1
e * e Prera= iy zne ) |23 LT TR Ao
We integrate by parts twice, recognizing that the odd deriva- (A13)
tives of 1/(@?+ ¢%)Y? vanish at{=0 and the even deriva-
tives are finitgfor «# 0), while theqth derivative at =1 is
(—1)4(q)! plus O(a?/c?). Neglecting the corrections we

This result suggests that perhas, , ¢ is independent ok.
To test this idea we add and subtraat 10 By ,—1x—1 ON
the right-hand side ofA1l). The result is

then have
5 2 1) k(2k—1)
Bi=— 5~ 5= T Ai-1i-1- (A5) Preni® 5| = lkrmy(2kr2n—1) | Pren-te1 ™ )
b= (A14)
Repeated use of this recursion relation gives us Beginning atk=1 with (A12), we can iteratéA14) succes-
2 sively. The left-hand side is equal to zero for dayVe thus
Bij= —2> =+ (A6)  have established that fgr>Kk,
p=3 p
1 .
We now must evaluat@, ; : IBjk:_k_j - (k<j). (A15)
J' daf d 1 A7) In summary,(A3) and (A15) combine to give, fok#j,
:Bll_ g g \/m . 1
. . _ Bix=1 7 (A163)
Two integrations by parts yields ]
while for k=j, (A10) is
B11=—3+ _f dﬁf W= (A8) 2
Ve 52 Bij=A-2 5 (A16b)
p=1

The ¢ integration gives IF(1+\1+a?)/a]~In(2la)
=In[c/(asin#)]. Here we have neglected, as usual, correc-
tions of O(a?/c?). The final integral is

These expressions for the coefficients have corrections of
orderO(a®/c?), appropriately neglected fok>>1.

4 (w2
=—3+ — — i
Bu 3 T Jo de[ln(c/a) In(sin 0)] ID. J. Griffiths and Y. Li, “Charge density on a conducting needle,” Am.

J. Phys.64, 706—714(1996.
=—3+ 2[|n(c/a)+ In 2]:A— 2(1+ %) (Ag) %R. H. Good, “Comment on ‘Charge density on a conducting needle, "
Am. J. Phys65, 155—156(1997).
We substitute intgA6) to obtain the general result for the *Mark Andrews, “Equilibrium charge density on a conducting needle,”
diagonal element, Am. J. Phys65, 846—850(1997).
4P. L. Kapitsa, V. A. Fock, and L. A. Vainshtein, “Static boundary prob-
lems for a hollow cylinder of finite length,” Zh. Tekh. Fi29, 1177-1187
Bji=A—2 > . (A10) (1959 [Sov. Phys. Tech. Phyd, 1077—-10871960)].
= 5L. A. Vainshtein, “Static boundary problems for a hollow cylinder of
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J. D. Jackson(Classical ElectrodynamicéWiley, New York, 1998, 3rd
P. C. Waterman, “Matrix methods in potential theory and electromagnetic - y aiviley 4
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1968, 3rd ed., Sec. 5.02, pp. 123-124. rounding finite circular cylinder conductors,”” IEEE Trans. Antennas
°T. K. Sakar and S. M. Rao, “An iterative method of solving electrostatic Propag-33, 683—684(1985.
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VERSATILE THEORISTS

A hasty investigation of the angular distribution of the neutron beam, performed as soon gas the
accelerator started functioning, indicated a forward distribution, as expected, but with a minjmum
at deflection zero. This was reported in a colloquium attended by Oppenheimer, and he immedi-
ately gave a learned theoretical explanation of the phenomenon. | listened to it and then said that
it was better to check if by chance there was not a lead brick just in front of the target, projgcting

a shadow. Immediately after the colloquium somebody rushed to check my hypothesis. It was
correct.

Emilio Segre A Mind Always in Motion—The Autobiography of Emilio Se¢jumiversity of California Press, Berkeley,
1993, p. 229.
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muonic system in which the muon spends considerable timasing traditional numerical algorithms, so that a thorough
within the nucleus. The energy value is adjusted upward uneomparison of theory and experiment can be made.

til the right-hand boundary condition is satisfiexbe Fig. 1

The large difference between the seed value and the finalElectronic mail: frioux@csbsju.edu

energy value(—18.916 vs—10.413 MeV for the % statg

demonstrates the significance of the finite size of the nucleus

for muonic atoms.

The fine structure corrections outlined by Tiburzi and Hol-
stein [their Egs. (16)—(18)] can be easily added to the
MATHCAD worksheet(omitted here for the sake of brevity

IB. C. Tiburzi and B. R. Holstein, “Bound states of a uniform spherical
charge distribution-revisited!,” Am. J. Phy68, 640—648(2000.

J. Zablotney, “Energy levels of a charged particle in the field of spheri-
cally symmetric uniform charge distribution,” Am. J. Phy&3, 168-172
(1975.

3F. Rioux, “Direct numerical integration of the radial equation,” Am. J.
Phys.59, 474-475(1997).

Comment on “Charge density on a thin straight wire, revisited,”
by J. D. Jackson [Am. J. Phys. 68 (9), 789-799 (2000)]

O. E. de Alcantara Bonfim and David Griffiths®
Reed College, Portland, Oregon 97202

(Received 5 September 2000; accepted 12 Septembe) 2000

[DOI: 10.1119/1.1326076

Jackson’s papésupports an emerging conserfstst the

zero, by symmetry. To ensure continuity we choage

linear charge density on a conducting wire is uniform, in the= g;. What remains is a set i linear equations for th&

zero radius limit. This is easily proved for the special case o{ynknown charges.

an ellipsoid, but Jackson demonstrates that it holds regard- Griffiths and L? solved this system numerically fot up

less of shape. This conclusion is so counterintuitive that wgo 100, and persuaded themselves that the linear charge den-

decided to reexamine the original numerical studiessed

sity was approaching a nontrivial limiting form—fairly flat

on discrete charge distributions, that appeared to confirm thg, the center, but with spikes at the ends=(+1). They
more plausible hypothesis that the charge accumulates prefjere seduced by extraordinarily slow convergenceNas

erentially near the ends.
We placeN charges at equal spacing on the interval 0O
<x=1:

at X]_:l/N,
at X2:2/N,

a1
a2

0, at x,=n/N, @

qN at XN:]'

(and equal charges at the corresponding points—dn<x
<0), together with a single chargg, at x,=0. We then

adjust the charges so that the Coulomb force on each of them

exceptgy (which is subject to an extra confining fojcis
zero:

N n—1
=0 (n=1,2,.N—-1), (2
subject to the constraint
N
dot22, p=1 (3)

(the scaled total charge on the wir&his does not determine
the charge at the center—the force g is automatically
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Fig. 1. Linear charge density on a needle, as a function of position. The
calculation was done usingN2+1 point charges equally spaced on the
interval from —1 to +1, and requiring that the net force on each charge
(except the end twovanish. The total charge on the needle igd.Solid

line: N=16 384; dashed lind\=32. (b) Expanded view of the right end;
this time the dashed line N=1024.
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Fig. 2. Charge density at the center of the needle, as a functibh Bbts  Fig. 3. Charge density at the ends of the needlle £ 1), as a function of
represent the numerical resuzlts. The solid line is the best fit of the formN. Dots represent the numerical results. The solid line is the best fit of the
N(0)=P1+P3/InN+P3/(InN)* (for N ranging from 32 to 16 384which  form \(1)=[Q;+Q,/INN+Qs/(InN)4InN, which occurs for Q,

occurs forP;=0.500, P,= —0.152, andP;= —0.123. Evidently\(0) ap- =0.0719,Q,=0.912, andQ,=—0.874. Evidentlyr(=1) diverges asN
proaches the uniform density value of 0.5,Niincreases. increases.
—o0, @s we can see from Fig. 1, which extends the calcula- Q2 Qs )

MN1)=| Qi+ =+ —>_|InN,
tion out to N=16384: AsN increases, the charge density (D= QN (INN)?
approaches 1/2, except at the very ends, which occupy @, —0.0719.0,=0.912. andO.= — 0.874(solid line
decreasing portion of the length and contain a diminiShinQ\leve(rgt%ele;ss thé(gczzz “rébbit'ear;[’?’?i((x) are 01E decreas)iﬁg

fraction of the total charge. L . -
g significance adl—«, in the sense that they occupy a dimin-

In Fig. 2 we plot the charge density at the cente(Q) e . ;
=Nqp) as a function oN, to demonstrate thgainfully slow Issnrlglg]erij?rgg%r?fotl‘hti gottgallegﬁ;?gind contain a smaller and

approach to 0.5. Jackson shows that the natural expansion
parameter is\ ~ !, whereA =In(4c?/a?), with 2c the length ACKNOWLEDGMENT
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In Fig. 3 we p|0t the charge density at the ends of the wire density on a conducting needlejbid. 65 846-850(1997; Nicholas

. . Wheeler, “Construction and applications of the fractional calculgsfi-
(AM(1)=Ngqy), as a function ofN. It seems clear that this published.
quantity increases without limit—in fact, our data are well 3p. J. Griffiths and Ye Li, “Charge density on a conducting needle,” Am.

represented by the functional form J. Phys 64, 706—-714(1996.

PREPARATION?

Gibbs began his lectures on thermodynamics with the Carnot cycle, which he always got
wrong. After getting thoroughly mixed up he concluded the first lecture with an apology, and in
the second lecture he gave it letter perfect. It was in this way he introduced entropy, rather than in
the formal way in the “Heterogeneous Substances”.

E. B. Wilson, a student of J. Willard Gibbs, as quoted by Clifford Truesdell in J. Séxdito), New Perspectives in
ThermodynamicgSpringer, New York, 1986 p. 107.
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