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The question of the equilibrium linear charge density on a charged straight conducting ‘‘wire’’ of
finite length as its cross-sectional dimension becomes vanishingly small relative to the length is
revisited in our didactic presentation. We first consider the wire as the limit of a prolate spheroidal
conductor with semi-minor axisa and semi-major axisc when a/c,,1. We then treat an
azimuthally symmetric straight conductor of length 2c and variable radiusr (z) whose scale is
defined by a parametera. A procedure is developed to find the linear charge densityl(z) as an
expansion in powers of 1/L, whereL[ ln(4c2/a2), beginning with a uniform line charge densityl0 .
We show, for this rather general wire, that in the limitL..1 the linear charge density becomes
essentially uniform, but that the tiny nonuniformity~of order 1/L! is sufficient to produce a
tangential electric field~of orderL0) that cancels the zeroth-order field that naively seems to belie
equilibrium. We specialize to a right circular cylinder and obtain the linear charge density explicitly,
correct to order 1/L2 inclusive, and also the capacitance of a long isolated charged cylinder, a result
anticipated in the published literature 37 years ago. The results for the cylinder are compared with
published numerical computations. The second-order correction to the charge density is calculated
numerically for a sampling of other shapes to show that the details of the distribution for finite 1/L
vary with the shape, even though density becomes constant in the limitL→`. We give a second
method of finding the charge distribution on the cylinder, one that approximates the charge density
by a finite polynomial inz2 and requires the solution of a coupled set of linear algebraic equations.
Perhaps the most striking general observation is that the approach to uniformity asa/c→0 is
extremely slow. ©2000 American Association of Physics Teachers.
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I. INTRODUCTION

In recent years, the question, ‘‘Is the linear charge den
on a finite length of a charged straight conducting wire
infinitesimal cross section constant, or even well defined
has been addressed in this journal by Griffiths and L1

Good,2 and Andrews.3 Although a variety of results are ob
tained for the equivalent of conductors of small transve
dimension, the focus was on the limit of vanishing late
extent. All the authors agree that in that exact limit t
charge density is uniform. There remains, however, a puz
stressed to the present author by Bruce D. Winstein. Figu
displays a uniform line charge of length 2c parallel to thez
axis and centered aboutz50. Consider an element of charg
dq at z. The sum of the electric fields produced by the u
shaded segments on either side produces no net force o
elementdq, but the shaded segment does. An elemen
calculation shows that the force is

dF5dq Ez5dq
l0

2pe0

z

c22z2 , ~1!

wherel0 is the uniform linear charge density. Clearly,dq
cannot be in equilibrium!

How can the equilibrium charge distribution on such
conductor be uniform if there are unbalanced forces? O
aspect of the problem that might argue for caution is phy
cal. The potential of an isolated finite wire with a fixe
amount of chargeQ on it grows arbitrarily large as its trans
verse dimensions decrease, increasing asQ ln(D/a), where
D(a) is a distance of the order of the length~transverse
dimension! of the wire. In the limita→0, the potential be-
comes infinite unlessQ→0. Conversely, for the practica
situation of a wire placed at fixed potentialV, the limit a
789 Am. J. Phys.68 ~9!, September 2000 http://ojps.aip.or
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→0 implies thatQ or l0 must vanish. With no linear charg
density, there is no force! From this point of view, Griffith
and Li1 were right in their doubts about a valid limit—like
the cat in Lewis Carroll’s Alice’s Adventures in Wonde
land, in the limit ofa→0, nothing is left but the grin. ThisV
fixed, a→0 argument is a red herring, however, as we sh
below. Physicists never quite go to the limit.

Our paper is aimed at clarifying these issues by focus
on the situation for very largeD/a, not the limit a50, al-
though that limit, properly understood, is smooth. The d
cussion is frankly pedagogical, without much claim of orig
nality. Some aspects are similar in approach to Andrew3

others to the much earlier~and actually definitive! work of
Vainshtein and colleagues4–6 and also Waterman.7

We first treat the special case of the long straight ‘‘wire
as the limit of a very elongated prolate spheroid
conductor—special because it has auniform linear charge
density, whatever its aspect ratio. In the limit of great elo
gation, the force~1! applies and is necessary to mainta
charge equilibrium, not destroy it! We then examine
‘‘wire’’ consisting of a straight azimuthally symmetric con
ductor of length 2c and possibly variable radiusr (z), which
is of the order of a transverse scale parametera. We consider
a/c,,1, or more correctly,L[2 ln(2c/a)..1. In that
limit the finishings at the ends of the cylinder and, indee
whether it is hollow or not, are not significant in determinin
the charge density over the vast majority of the surface.
show that there are corrections to the uniform charge den
of relative magnitudeO(1/Ln) times functions ofz/c, for
n51,2,... . For most shapes, the additions to the charge d
sity peak toward the ends, as expected, and despite bein
order 1/L and smaller, are such that they balance
789g/ajp/ © 2000 American Association of Physics Teachers
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L-independent force~1! from the dominant uniform linea
density to produce electrostatic equilibrium. The appeara
of a factor of L in the numerator of the force from thes
additional charge densities, which are of relative order 1L,
is what resolves the puzzle of Fig. 1. The tiny nonunifo
linear charge density produces aL-independent force be
cause some of those charges locally get closer and clos
any observation point asa/c→0 (L→`).

The right circular cylinder is treated in detail by two met
ods ~Secs. IV and VI!. Examples are given of the charg
densities for shapes other than the spheroid and the cylin
showing that the details of the distribution for wires of sma
but not vanishing, radius depend on the shape. The s
approach to uniformity with increasingL is also illustrated
~Sec. V!.

II. CHARGED CONDUCTING PROLATE SPHEROID

A wire as the limiting case of a conducting prolate sph
oid has been treated by others. We are brief and only st
the issue of the longitudinal force~1! as a necessary force
not a puzzle. The spheroidal conductor has semi-major
semi-minor axes,c and ~a,b! with b5a. The equilibrium
surface charge density is8

s~r,z!5
Q

4pa2c

1

Ar2

a4 1
z2

c4

, ~2!

whereQ is the total charge; the spheroid is centered at
origin with thez axis as the major axis, andr25x21y2. It is
of interest to find the charge density per unit lengthdQ/dz.
Figure 2 shows the geometry. At the pointP the element of
area around the circumference of widthdz is dA
52pr dz/cos(a). From the equation of the ellipse (r2/a2

1z2/c251) and tana52dr/dz, we find

Fig. 1. Line charge of uniform density. The charge of the shaded por
exerts an unbalanced force to the right ondq at z.

Fig. 2. Geometry of the prolate spheroid for computation of the lin
charge density.
790 Am. J. Phys., Vol. 68, No. 9, September 2000
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dA52pa2Ar2

a4 1
z2

c4 dz. ~3!

But s dA5l dz and because the factor indA is the recipro-
cal of the one ins(r,z), the charge density per unit length i
z is

l~z!5
Q

2c
~4!

constant and independent of the ratio of minor to major ax
In the limit of a/c→01, the spheroid goes over automa
cally to a uniform line of charge withl05Q/2c.

For a conductor the electric field at the surface is norm
to it, with magnitudeuEu5s/e0 . The components of the
electric field at the surface may therefore be computed fr
the surface charge density and the anglea: Ez

5(s/e0)sina andEr5(s/e0)cosa. We need

cosa5
Ac22z2

Ac22~12a2/c2!z2
,

~5!

sina5
az

cAc22~12a2/c2!z2
,

where we have used the equation of the ellipse to give
pressions as functions ofz alone. Note that, to first order in
a/c, cosa '1 and sina ' az/c(c22z2)1/2; the normal to the
surface~PN in Fig. 2! is almost radial, with only a smal
component in the axial direction. In that limit, however, th
magnitude of the electric field is huge. Explicitly, the com
ponents of the electric field at the surface of the spheroid
arbitrarya/c are

Ez5
l0

2pe0

z

@c22~12a2/c2!z2#
,

~6!

Er5
l0c

2pe0a

Ac22z2

@c22~12a2/c2!z2#
.

In the limit a2/c2,,1, these expressions reduce to

Ez5
l0

2pe0

z

@c22z2#
,

~7!

Er5
l0c

2pe0aAc22z2
5

l0

2pe0r~z!
.

The axial component is independent ofa in the limit a2/c2

,,1 and agrees withdF/dq from Eq. ~1!. It results from
the product of an infinite surface charge density (s }1/a)
and a vanishing sina (} a). The radial component of the
electric field in the limit is just the naive result obtained b
applying Gauss’s law around the ‘‘wire.’’ It grows withou
limit as a/c→01, except at the very ends@where ~6!, not
~7!, must be used#.

The elongated prolate spheroid specifies one limiting fo
of a finite ‘‘wire’’ of negligible cross section. It is special in
that its charge density per unit length is constant, indep
dent of the ratioa/c. For such a uniform charge density, th
argument of Sec. I shows that in the limit ofa/c→01 there
must be an axial electric fieldEz given by ~1! or ~7!. Con-
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trary to the discussion there, however, we see here tha
axial field is required to guarantee that the charge be in e
librium on the spheroidal surface.

Obviously the spheroidal wire is a very special case,
not the only one. As shown by Griffiths and Li,1 for the
general ellipsoidal conductorwith arbitrary values of the
principal axes (2a,2b,2c), the linear charge density along
principal axis is constant and given by~4!, if the third axis is
the chosen one. In the limita,,b,,c, the ellipsoid ap-
proximates in a special way a flattened wire. We now turn
a more general~but cylindrically symmetric! shape.

III. GENERAL AZIMUTHALLY SYMMETRIC
CONDUCTING CYLINDER

A. Linear charge density to order 1ÕL2 inclusive

Consider our ‘‘wire’’ to be a long, thin, straight, azimuth
ally symmetric conductor of length 2c and possibly variable
radius r (z), whose scale is set by the radial parametera,
with a/c,,1. In fact, the criterion for long and thin is mor
stringent, namely, L[2 ln(2c/a)..1. Specifically, we
choose

@r ~z!#25a2f ~z!, ~8!

where f (z) is a smooth positive function, of order unity an
bounded above and below foruzu,c, and vanishing atuzu
5c. Later, we specialize tof (z)5(12uz/cu)2 and f (z)51
2uz/cun, with n a positive even integer.

We approach the problem of finding the equilibrium line
charge density on the surface of the conductor through
potential of a line charge~zero cylinder radius! evaluated at
r5r (z) and beyond, as did Andrews.3 We develop a system
atic iterative scheme to find the charge density as a po
series in 1/L, beginning with the lowest order approxima
tion, a line charge of constant densityl0 extending over the
range2c,z,c. Straightforward integration shows that th
electrostatic potential is

F~0!~r,z!5
l0

4pe0
E

2c

c dz8

Ar21~z82z!2

5
l0

4pe0
lnFz1c1Ar21~z1c!2

z2c1Ar21~z2c!2G . ~9!

We are interested in the potential near the wire@r'O(a)
,,c,uzu,c#. Introducing the scaled variablez[z/c, and
expanding the argument of the logarithm to first order
(r/c)2, we find the potential can be approximated by

F~0!~r,z!5
l0L

4pe0
F11

1

L
ln~12z2!1

1

L
ln~a2/r2!

1
~r2/c2!~11z2!

2L~12z2!2 1¯G ~10!

provided the observation point is not too close to the en
The last term can be neglected provided@12uzu#..r/2c, a
condition satisfied over most of the wire providedL..1.
Using ~8! and omitting the last term in~10!, we have the
approximate but accurate expression
791 Am. J. Phys., Vol. 68, No. 9, September 2000
he
i-

t

o

r
e

er

s.

F~0!~r,z!5
l0L

4pe0
F11

1

L
lnS 12z2

f ~z! D1
1

L
ln~r 2~z!/r2!G .

~11!

The integral in~9! is large, equal toL in leading order,
because of a peaking of the integrand atz85z,but with z/c-
andr/r (z)-dependent terms in next order. From~11! we see
that, beyond the leading order, the potential is not cons
on the surface of the conductor,r5r (z).

We wish to find an additionl1(z) to the constant linear
charge densityl0 such that its potential, when added to~11!,
will remove thez dependence atr5r (z) and give an equi-
potential conductor. Evidently,l1 /l0 will be of order 1/L.
To this end, consider the potentialF (1)(r,z) produced by
l1(z):

F~1!~r,z!5
1

4pe0
E

2c

c l1~z8!dz8

Ar21~z82z!2
. ~12!

We add and subtractl1(z) to the numerator and write

F~1!~r,z!5
l1~z!

4pe0
E

2c

c dz8

Ar21~z82z!2

1
1

4pe0
E

2c

c @l1~z8!2l1~z!#dz8

Ar21~z82z!2
.

The first integral is proportional toF (0) given by ~11!. The
second integral has an integrand that is unexceptional
z85z because the numerator vanishes there. In fact, in
limit of L..1, we may setr50 in the denominator with
the introduction of errors only of the order ofr2/c2. We thus
have

F~1!~r,z!5
l1~z!

l0
F~0!~r,z!

1
1

4pe0
E

2c

c @l1~z8!2l1~z!#dz8

uz82zu
. ~13!

The leading contribution to the first term in~13! is L @times
l1(z)/4pe0#, while the second integral and the remainder
the first term is, as observed by Andrews,3 of lower order in
L. Focusing on the leading order part ofF (1) @because it is
already down by one power ofL and so of the same order a
the second and third terms in~11!#, we have the sum ofF (0)

andF (1), evaluated on the cylinder@r5r (z)# as

F~0!~r ~z!,z!1F~1!~r ~z!,z!

'
l0L

4pe0
F11

1

L
lnS 12z2

f ~z! D1
l1~z!

l0
G . ~14!

To assure constancy of the sum to order 1/L inclusive, the
first-order correction to the charge density must be

l1~z!

l0
52

1

L
lnS 12z2

f ~z! D . ~15!

The complete linear charge density, correct to first orde
1/L, is then

l~1!~z!5l0F12
1

L
lnS 12z2

f ~z! D G . ~16!
791J. D. Jackson
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This expression is equivalent to the approximation asse
by Andrews3 @his Eq.~3.2!, in my notation#

lAndrews~z!5
l0

11
1

L
lnS 12z2

f ~z! D . ~168!

For use below, we note in passing the result for theleading
order part of F (1)(r,z):

F~1!~r,z!'2
l0

4pe0
lnS 12z2

f ~z! D1O~1/L!. ~17!

With l1(z) known, we can proceed to the next step in o
iteration scheme. With~15! substituted forl1(z)/l0 , the
potential~13!, correct to second order in 1/L, is explicitly

F~0!~r,z!1F~1!~r,z!

5
l0L

4pe0
H 12

1

L2 F lnS 12z2

f ~z! D G2

1
1

L2 I

1
1

L
lnS r 2~z!

r2 D F12
1

L
lnS 12z2

f ~z! D G J , ~18!

where the integralI, of order unity despite appearances, i

I 5
L

l0
E

21

1 dx

ux2zu @l1~x!2l1~z!#

5E
21

1 dx

ux2zu F lnS 12z2

f ~z! D2 lnS 12x2

f ~x! D G . ~19!

The 1/L term atr5r (z), present inF (0), has been elimi-
nated byl1 , leaving a second-order variation inz. By the
same steps from~12! to ~14! with a l2(z) instead ofl1 , we
can infer that the first line in~18! is the negative of the
charge densityl2(z)/l0 . The linear charge density, corre
to order 1/L2 inclusive, is therefore

l~z!5l0H 12
1

L
lnS 12z2

f ~z! D1
1

L2 F F lnS 12z2

f ~z! D G2

2I G J .

~20!

The scheme of iteration is now clear. The second-or
charge densityl2(z) can be inserted into~13! instead of
l1(z) to generateF (2)(r,z). The sum of potentials will then
be constant up to order 1/L2, but will have z-dependent
terms of order 1/L3. These can be removed by identifyin
l3(z), and so on. In higher order, however, the integr
equivalent toI become intractable in terms of known fun
tions. Even~19! needs numerical computation, except f
special choices off (z).

Before evaluating~19! and ~20! for specific shapes fo
f (z), we address the conundrum posed in Sec. I. In Sec
we saw how the puzzle was not actually a puzzle but a
cessity for the spheroidal shape. But what about ot
shapes?

B. General resolution of the issue of the axial electric
field and charge equilibrium

Because of the shape of the conductor, defined byr (z) in
~8!, care must be taken to distinguish between the elec
field in thez direction and the electric field tangential to th
surface in ther –z plane. If b is the angle between the tan
792 Am. J. Phys., Vol. 68, No. 9, September 2000
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gent vector and thez axis in that plane, its tangent is tanb
5dr(z)/dz5r8(z)/c, wherer 8(z)5dr/dz. Define the scale of
variation of r (z) to be O(b), with a,,b. Then r 8
5O(ac/b) and tanb5O(a/b),,1. We therefore have
sinb'r8/c and cosb '1, with corrections of order (a2/b2).
The components of the zeroth-order electric field in thez and
r directions at the surface are, from~10! or ~11!,

Ez
~0!52

]F~0!

c]z
5

l0

2pe0c S z

12z2D ,

~21!

Er
~0!52

]F~0!

]r
5

l0

2pe0c S c

r ~z! D .

The zeroth-order component of the electric field tangentia
the surface is

Etan
~0!5Ez

~0! cosb1Er
~0! sinb

5
l0

4pe0c F 2z

12z2 1
2r 8

r G
52

l0

4pe0c

d

dz
lnS 12z2

f ~z! D . ~22!

The first-order potential is given in leading order by~17!. It
has only az component of electric field. With cosb '1, the
tangential andz components of the first-order electric fie
are equal and are

Ez
~1!5Etan

~1!52
dF~1!

cdz
5

l0

4pe0c

d

dz
lnS 12z2

f ~z! D . ~23!

Comparison of~22! and ~23! shows that the lowest orde
and first-order tangential fields cancel, as they must if
surface is an equipotential. The reader may think this poin
a bit of a straw man because the sum of the zeroth-
first-order potentials, shown in~18!, is constant on the sur
face to order 1/L, and so must give vanishing tangenti
electric field to that order. More interesting is the sum of t
z components of the electric field,

Ez
~0!1Ez

~1!52
l0

4pe0c

d

dz
ln~ f ~z!!. ~24!

Depending on the form off (z), there is a nonvanishingaxial
electric field of orderL0, but no tangential electric field.

Three points are to be made, as follows.
~1! If the surface is the spheroid of Sec. II,f (z)512z2.

Then the electric field in thez direction ~24! is just ~1!.
Actually, by looking back at~15! and ~17!, the reader will
see thatl150 and soF (1)50. In this case there are n
corrections to the constant linear charge density, as we
ready know from Sec. II.

~2! For any shape other than the spheroid, the lin
charge density has nonvanishingz-dependent corrections tha
can be written as an expansion in powers of 1/L. The ex-
ample of the second-order linear charge density for the r
circular cylinder is considered explicitly in Secs. IV and V
The second-order charge densities for a family of shapes
discussed briefly in Sec. V.

~3! For a general shape, the zeroth-order constant ch
densityl0 generates a potentialF (0), which is constant on
the conductor to orderL plus corrections of orderL0. These
order L0 terms give rise to the electric fieldE(0) whose
components are given by~21!. The first-order charge densit
792J. D. Jackson
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l1(z), which is of order 1/L, generates a potentialF (1) of
orderL0. The electric fieldE(1) is thus of the same order a
E(0) and is such as to combine with it to give a vanishi
tangential component of field on the surface. Equilibrium
the surface charge is assured, even in the limit thatL
→0, as the charge density approaches uniformity. It is
fact that a nonuniform linear charge density of orderLk

causes a potential of orderLk11 that resolves the puzzl
posed in Sec. I. Physically, the increase by one in the pow
of L is a result of the greater and greater peaking of
integrands in the expressions for the potential or the elec
field asa/c→0, the result of contributions from the nonun
form charge density in the immediate neighborhood of
observation point.

IV. RIGHT CIRCULAR CYLINDRICAL
CONDUCTOR „1…

A. Charge density to order 1ÕL2 inclusive

For a right circular cylinder, the radial functionf (z)51
for uzu,c. Then the integralI ~19! is

I cylinder5E
21

1 dx

ux2zu @ ln~12z2!2 ln~12x2!#. ~25!

We change variables tot5x2z, break up the integration
into t,0 and t.0, write out the logs as the sum of fou
terms and then recombine so that the arguments are line
t, and finally rescalet to obtain

I cylinder522E
0

1 du

u
ln~12u!

2E
0

~11z!/~12z! du

u
ln~11u!

2E
0

~12z!/~11z! du

u
ln~11u!.

We now break up the second integral into intervals~0, 1! and
(1,(11z)/(12z)). Then in the second part we change va
ablesu→1/u to find

I cylinder52E
0

1 dv
v

ln~12v !1E
~12z!/~11z!

1 du

u
ln u,

wherev5u2. The first integral can be found in the tables
be 2p2/6. The second integral is elementary. The result

I 5
p2

6
2

1

2 F lnS 11z

12z D G2

.

This gives the linear charge density, correct to order 1L2

inclusive,

l~z!5l0H 12
1

L
ln~12z2!1

1

L2 F @ ln~12z2!#2

1
1

2 F lnS 11z

12z D G2

2
p2

6 G1O~1/L3!J ~26!

and the potential near the wire to the same relative or
~including F (2)) is
793 Am. J. Phys., Vol. 68, No. 9, September 2000
f

e

rs
e
ic

e

in

-

er

F~r,z!5
l0L

4pe0
F11

1

L

l~z!

l0
ln~a2/r2!1O~1/L3!G .

~27!

On the cylinder (r5a) the potential is constant to orde
1/L2 inclusive. Note that, even thoughl(z) is, strictly
speaking, a line charge on the axis (r50), the potential~27!
for r>a corresponds to a conducting cylinder atr5a with
the expected surface charge density~computed from the ra-
dial electric field! equal tol(z)/2pa. It can be shown that
the difference is of ordera2/c2L215O(e2L/L), with, how-
ever,z dependence singular as (12z2)2n near the ends.

A referee has pointed out that an alternative expression
l(z), yielding the same result as~26! to order 1/L2, is

l~z!5
l0

F11
1

L
ln~12z2!G H 11

1

2L2 F S lnS 11z

12z D D 2

2
p2

3 G J .

~268!

This result combines Andrews’ form of the first-order char
density~168! with the second-order term2I cylinder. Empiri-
cally, ~268! is a better approximation to the charge dens
than~26! in that it keeps the potential on the surfacer5a an
equipotential slightly closer to the ends of the cylinder. T
differences disappear rapidly asL increases, of course. Ou
expansion in inverse powers ofL has advantages in analyti
work, in the calculation of the capacitance of the cylind
for example, see Sec. IV C.

B. Practicalities, comparison with numerical calculations
of others

The range ofL values for practical situations can b
judged by considering the range of radii for the largest a
smallest diameter copper wires in the American Wire Gau
table: a55.842 mm ~AWG No. 0000! to a53.993
31022 mm ~AWG No. 40!. For a wire 1 m inlength, the
range isL'10→20. Finer or longer wires can be imagine
but L<25 is a likely upper limit for an isolated wire@if
indeed anyone was interested in verifying~26!#.

Some numerical calculations exist for the charge den
on a cylinder.5,9,10 Sakar and Rao9 give a few values for the
density forL513.82. Their numbers are compared with~26!
in the top half of Fig. 3. Their averaging intervalDz52/9 is
sufficiently great that for their largest interval (7/9,z,1)
we have used~26! to find a weighted mean position for the
point. The agreement is satisfactory. Waterman a
Pedersen10 are concerned with scattering of electromagne
waves by conducting cylinders, but in an appendix pres
an empirical parametrization of their numerical results
the charge density for a constant potential along the cylind
My version of their fit to a range ofL'15→185 is l(z)
5l0(12z2)2g, whereg51/(L2b) and b'3.025. ForL
515, this empirical fit is compared with~26! in the bottom
half of Fig. 3. The agreements for other values ofL are
comparably good.

Griffiths and Li1 give a numerical fit@their Eq.~3.7!# to the
smoothed charge density of their discrete distribution of 2
point charges on a line. While not strictly comparable
~26!, the fit might naively be expected to correspond toc/a
'100– 200 orL'10.6– 12. In fact, good agreement of~26!
with their formula occurs forL'1761.
793J. D. Jackson
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Despite the peaking at the ends displayed in Fig. 3,
magnitude of the charge density variation is such that
departure from uniformity is rather small. A measure of t
nonuniformity is the percentages of charge on the inner
of the cylinder (uzu,1/2) and the outer half (1/2,uzu,1).
For L56 (c/a'10), the percentages are 43%~inner! and
57% ~outer!. For L520 (c/a'1.13104), they are 48%~in-
ner! and 52%~outer!.

C. Capacitance of conducting right circular cylinder

The capacitance of an isolated long right circular condu
ing cylinder of radiusa and length 2c is found from~26! and
~27!. From ~27! we see that the potential of the cylinder
V5l0L/4pe0 . The total chargeQ is the twice the integra
of ~26! over the interval, 0,z,c. The capacitance is there
fore

C54pe0

2c

L E
0

1 l~z!

l0
dz. ~28!

The result of the integration is

C54pe0

2c

L H 11
2

L
~12 ln 2!

1
4

L2 F11~12 ln 2!22
p2

12G1O~1/L3!J ~29!

or, numerically,

Fig. 3. Comparison of Eq.~26!, normalized to unity atz50, with numerical
calculations.~a! Sakar and Rao~Ref. 9!, L513.82~solid triangles; solid dot
is mean position weighted according to the shape of~26!!. ~b! Waterman
and Pedersen~Ref. 10!, L515 ~dashed curve is empirical fit to their nu
merical results; see text!. Note the suppressed zero for the ordinates.
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C54pe0

2c

L H 11
0.613 705 6

L
1

1.086 766

L2 1O~1/L3!J .

The result~29! is not new. An expression equivalent to
was published by Vainshtein6 in 1962. He chooses to defin
V5L22(12 ln 2) to suppress formally the term in 1/L in
~29!. His form, equivalent to~29!, is

C54pe0

2c

V H 11
42p2/3

V2 1O~1/V3!J . ~30!

Obviously, Vainshtein derived the charge density, too, but
does not state it explicitly.

The problem of the capacitance of a right circular cylind
has been treated in the literature by numerical methods.11,12

Smythe11 used an approximation technique~described in
Ref. 8, pp. 209–211! to find the capacitance forc/a51,2,4,
8. He gives a convenient interpolation formula,C/4pe0a
52/p10.5539 (c/a)0.7587. ~The coefficients are from my fi
to his numerical values and differ slightly from his.! How
does our~Vainshtein’s! formula for long cylinders compare
with Smythe’s? For c/a54 (L'4.16) the values are
C/4pe0a52.328 @Eq. ~29!#, 2.222 ~Smythe!. For c/a58
(L'5.545), they areC/4pe0a53.307 @Eq. ~29!#, 3.320
~Smythe!. The fractional errors of~29! compared with
Smythe’s values are 4.8% and 0.4% forc/a54 and 8, re-
spectively. Vainshtein’s version~30! is marginally poorer. It
appears that~29! accurately represents the capacitance o
long right circular cylinder forc/a>10. Smythe’s interpola-
tion formula suffices for 0,c/a,10.

V. SECOND-ORDER LINEAR CHARGE DENSITIES
FOR OTHER SHAPES

The second-order linear charge density for a right circu
cylinder was expressible in terms of known functions.
general, a random choice of the radial profilef (z) in ~19! to
computeI will not result in known functions. However, a
remarked earlier, the integrand in~19! is quite smooth in its
behavior atx→z ~with opposite limits from above and below
because of the denominator!. It is only necessary to break th
integral up into two ranges, (21,x,z) and (z,x,1), for
numerical integration.

Numerical computations ofI were done for f (z)5(1
2uzu)2, and f (z)512uzun, with n an even integer. The firs
choice is a ‘‘double cone’’ conductor, shown at the top
Fig. 4~a!, along with profiles for the second choice off (z)
with n52, 4, 6, 8, and 10. Note that in the limitn..2 the
shape of the ‘‘wire’’ approximates a right circular cylinde
For L515, the curves of the second-order charge densi
for the double cone andn52,4,6,8 are shown, along with
that of the right circular cylinder in Fig. 4~b!. The trend from
n52 ~spheroid! to n58 shows the progression toward th
right circular cylinder. In contrast, the double cone conduc
has a linear charge density that seems to tend toward ze
the ends. The known behavior of the surface charge den
near the tip of a cone~Ref. 13, p. 106! corresponds here to
the linear charge densityl(z)}(12z)1/L. The behavior
shown in Fig. 4~b! agrees qualitatively with this dependenc
but our results cannot be trusted too close to the ends of
conductor. Atz50 the double cone has a discontinuity
slope. The behavior at such places can be deduced from
794J. D. Jackson
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dimensional electrostatics~Ref. 13, p. 78!. The linear charge
density should be singular asuzu22a/pc for uzu,a. For L
515, the exponent has absolute value 731024; the singu-
larity is too small in magnitude and extent to be discerni
in our numerical integration. In Fig. 5 we display the line
charge densities for the right circular cylinder and for t
double cone forL515, 30, and 60 to illustrate the tren
toward uniformity with increasingL. The lesson to be
learned from Figs. 4 and 5 is that the detailed behavior of
charge density is shape dependent, even for very thin w
Only in the limit 1/L50, unattainable in practice, where it
approached very slowly, do the differences among cond
tors absolutely disappear. Even then, the shape-dependz
component of electric field~24! is present! Each cat doe
have a grin that betrays its identity!

Perturbations around a smooth shape can also be tre
but this would take us too far away from our purpose.

Fig. 4. ~a! Shapes of conductors defined byr (z)/a512uz/cu @double cone#
andr (z)2/a2512uz/cun. The transverse~radial! coordinate has been scale
by a factor ofc/6a to make the different shapes visible.~b! Linear charge
densities for the shapes of part~a! for the double cone andn52,4,6,8 for
L515, along with that of a right circular cylinder. Note the suppressed z
for the ordinate.
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VI. THIN RIGHT CIRCULAR CONDUCTING
CYLINDER „2…

An alternative approach to the problem of the conduct
cylinder is an approximation scheme similar to the vario
numerical methods employed by others. We wish to de
mine the linear surface charge density on the actual cylin
such that the surface is an equipotential. Since the phys
situation is symmetric with respect to the planez50, the
charge densityl(z) must be even inz. We expand it in a
power series ofN11 terms inz2, with N11 initially un-
known coefficients. Since the overall scale of the density
arbitrary, there are really onlyN coefficients to be deter
mined. We write

l~z!5 (
k50

N

Akz
2k. ~31!

The surface charge density iss(z)5l(z)/2pa. The poten-
tial is azimuthally symmetric. We therefore need only t
azimuthal average of the Green function 1/ux2x8u. With
both the observation pointx5(a, 0, z5cz) and the source
point x85(a cos 2Q, asin 2u, z85cz8) on the surface, we
find

K 1

ux2x8u L 5
2

pc E0

p/2 du

A~2a/c!2 sin2 u1~z2z8!2
. ~32!

o

Fig. 5. Behavior of the linear charge density versusz/c with increasingL
~L515,30,60! for two different shapes.~a! Right circular cylinder.~b!
Double cone.
795J. D. Jackson
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In terms of the linear charge density~31! and the averaged
Green function~32!, the potential becomes

F~a,z!5
1

4p«0

2

p E
0

p/2

duE
0

1

dz8l~z8!

3F 1

Aa21~z2z8!2
1

1

Aa21~z1z8!2G . ~33!

Here we have introduced the quantitya52(a/c)sinu and
exploited the symmetry ofl(z8) to restrict thez8 range to
~0, 1!.

When F is expanded in a Taylor series inz only even
powers occur:

F~a,z!5F~0!1
1

2!
z2

]2F

]z2 ~0!1
1

4!
z4

]4F

]z4 ~0!1¯ .

Here and below we suppress the explicit dependence oa.
The longitudinal electric field~timesc! is evidently

cEz52
]F

]z
52Fz ]2F

]z2 ~0!1
1

3!
z3

]4F

]z4 ~0!1¯G .
~34!

If we now substitute the power series~31! for l(z8) into ~33!
and require that the firstN terms in the expansion~34! vanish
~in order to approximate an equipotential on the surface!, we
obtain N coupled linear equations for theN unknowns,yk

5Ak /A0 .
Implicit in the discussion so far is the idea that the ends

the cylinder are unimportant. We must address that is
before proceeding further. If the cylinder is capped by he
spheres of radiusa, or a similarly smooth joining, there wil
be no singularity in the surface charge density atz56c.
Even with flat plates or a hollow tube, the charge dens
though singular~Ref. 13, p. 78! at r5a, z56c, is inte-
grable. The charges within a distance of ordera of each end
are dQ5O@2pa2s(0)#5O@al(0)#.14 The axial electric
field in the central region from the ends is thus estimated
be

cuEz
~ends!u5

4dQz

4p«0c~12z2!2 5OS a

c

l~0!

4p«0

4z

~12z2!2D .

~35!

The end contribution isO(a/c) compared to~1! or ~21!, the
magnitudes of axial electric field involved in establishi
equilibrium on the long cylinder. ForL..1, we clearly
havea/c52e2L/2,,1. For example,L510 corresponds to
a/c'0.013; L520, to a/c'1024. We may safely neglec
end effects forL..1 provided the observation point is no
too close to either end. We saw the same sort of restrictio
Sec. III.

Now we implement our approximation scheme. We d
mand

]2 jF

]z2 j ~0!50 for j 51,2,3,...,N. ~36!

In ~33! we need

]

]z F 1

Aa21~z6z8!2G56
]

]z8 F 1

Aa21~z6z8!2G ,

so that
796 Am. J. Phys., Vol. 68, No. 9, September 2000
f
e

i-

,

o

in

-

]2 j

]z2 j F 1

Aa21~z6z8!2G
z50

5
]2 j

]z82 j F 1

Aa21z82G . ~37!

The N constraints~36! are (j 51,2,3,...,N)

05
4

p E
0

p/2

du(
k50

N

AkE
0

1

dz z2k
]2 j

]z2 j F 1

Aa21z2G . ~38!

We define the coefficients in the set of algebraic equation

b jk5
4

p~2 j !! E0

p/2

duE
0

1

dz z2k
]2 j

]z2 j F 1

Aa21z2G . ~39!

With yk5Ak /A0 , theN equations of~38! can be written

(
k51

N

b jkyk52b j 0 , j 51,2,3,...,N. ~40!

The coefficientsb jk are evaluated in the Appendix. The re
sults for smalla/c are

b jk5
1

k2 j
for j Þk, ~41a!

b j j 5L21(
p51

2 j
1

p
. ~41b!

First we look at the largeL limit. To leading order inL,
the coupled equations~40! reduce to the uncoupled set,

Lyj5
1

j
, j 51,2,3,...,N.

We may consider the limit ofN→` and find the charge
density,

l~z!5A0F11
1

L (
j 51

`
z2 j

j G5A0F12
1

L
ln~12z2!G , ~42!

in agreement with the first-order correction in~26! found
above.

To go beyond the asymptotic limit, we may solve th
coupled equations by matrix methods. For smallN the alge-
bra is manageable by hand. For example, theN52 results
for the coefficients are

y15
2~3L214!

~6L225!~L23!16
,

~43!

y25
3~L21!

~6L225!~L23!16
.

In Fig. 6 thisN52 charge density, correct to orderz4 inclu-
sive, is compared with~26!, normalized to unity atz50, for
L520. We see that the agreement is good foruzu,0.7, but
the quartic fails to be singular enough for largeruzu. Also
shown are the charge densities forN55 andN515, found
with the Pascal linear equation tools ‘‘ludcmp’’ an
‘‘lubksb’’ ~Ref. 15, pp. 683, 684! on a Macintosh. Becaus
the results forN515 and~26! are virtually indistinguishable,
we plot points for the analytic form to show the agreeme
As expected intuitively, the higher the degreeN of the poly-
nomial, the better the representation atuzu values near unity.
796J. D. Jackson
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VII. SUMMARY AND CONCLUSIONS

We have revisited the problem of the charge density o
‘‘wire,’’ defined in Sec. II as a very elongated prolate co
ducting spheroid and more generally in Sec. III, where
issue of the ‘‘unbalanced’’ force is resolved. For a conduc
of length 2c with variable radiusr (z) of ordera, we give an
iteration scheme to generate the linear charge density
power series in 1/L, whereL[ ln(4c2/a2). The linear charge
density to second order in 1/L inclusive is shown to be

l~z!5l0H 12
1

L
lnS 12z2

f ~z! D1
1

L2 F F lnS 12z2

f ~z! D G2

2I G J .

~20!
whereI is given by~19! and@r (z)/a#25 f (z). @See~8!.# For
the special case of the right circular cylinder (f (z)51) the
integral I can be evaluated analytically. The linear char
density is then

l~z!5l0H 12
1

L
ln~12z2!1

1

L2 F @ ln~12z2!#2

1
1

2 F lnS 11z

12z D G2

2
p2

6 G1O~1/L3!J . ~26!

We show that the first-order correction inl(z), though very
small for largeL, produces an electric fieldtangent to the
surfaceof the conductor that just cancels thetangentialcom-
ponent of the zeroth-order ‘‘unbalanced’’ field~1! to give
equilibrium to the charge on the surface.

Sections IV and VI treat the practical situation of a co
ducting right circular cylinder. We compare the result~26!
with numerical results in the published literature in Fig.
Calculation of the total charge leads to an expression for
capacitance of an isolated long conducting right circular c
inder. A numerical comparison with the results of Smyth11

for modestL(c/a54, 8! shows that our result~or equiva-
lently, Vainshtein’s6! for C is an excellent representatio
~better than 1%! for c/a>10 or L>6.

In Sec. V we present results obtained by numerical in
gration for the second-order charge density on long cond

Fig. 6. Comparison of second-order analytic charge density~26! for the
right circular cylinder, normalized to unity atz50, ~solid points! with N
52, 5, and 15 polynomial approximations~continuous curves! for L520.
Note the suppressed zero for the ordinate.
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tors of different shapes. Figure 4 illustrates how the cha
density along the conductor varies with shape for finiteL,
while Fig. 5 shows the approach to uniformity with increa
ing L for two different shapes. Even in the limit of infini
tesimala/c, when the charge density is essentially unifor
in z and the conductor is virtually a line of charge, the sha
leaves its signature in the longitudinal electric field~24!.

In Sec. VI a different approach to the right circular cylin
der, involving a polynomial approximation inz to the charge
density, is presented. WithN independent coefficients in th
expansion ofl(z) to orderz2N, we demand that the firstN
terms in a Taylor series inz of the tangential electric field a
r5a vanish. The vanishing of the corresponding derivativ
of the potential leads to a set ofN inhomogeneous couple
linear algebraic equations for the coefficients in the cha
density. To leading order inL, the equations become trivia
the limit N→` can be taken; the series can be summed;
first-order analytic result in~26! is obtained. For arbitraryL,
matrix inversion methods can be used, by hand for smaN
or by computer for largerN. The results of the polynomia
approximation approach are compared with the analytic fo
~26! in Fig. 6.

It is worth stressing two striking things that emerge he
~1! The specific behavior of the linear charge density a

the fields on the wire depend on its ‘‘primordial’’ shape b
fore the limit a/c,,1 is taken. The prolate spheroid has
uniform linear charge densityl(z) for all aspect ratios and a
longitudinal electric field that in the limit approaches~1!. For
the general azimuthally symmetric conductor, the line
charge density can be expressed as a series in inverse po
of L, with the tangential electric field vanishing and the
asymptotic axial electric field depending on the shape,
given by ~24! ~which, of course, includes the prolate sphe
oid as a special case!. The right circular cylinder has a non
uniform linear charge density, but no axial electric field b
cause its surface is parallel to thez axis and the surface
charge is in equilibrium there.

~2! The second striking thing is the extreme slowness
the approach to uniformity of the linear charge density on
cylinder as a function ofc/a. Forc/a510, 1/L50.1669; for
c/a.104, 1/L50.050, only a factor of 3.3 smaller. Fo
1/L50.01, we needc/ag2.631021!

In passing we note that the technique of Sec. III~and also
Sec. IV! can be applied to the long-wavelength limit of th
radar cross-section problem,4,5,6,7,10 for which one requires
the charge density~for calculation of the electric dipole mo
ment! for a potential varying linearly along the length of th
cylinder. The relevant charge density is odd inz, but other-
wise the approaches are identical.
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APPENDIX

The coefficientsb jk in Sec. VI are defined as

b jk5
4

p~2 j !! E0

p/2

duE
0

1

dz z2k
]2 j

]z2 j F 1

Aa21z2G , ~A1!

wherea5(2a/c)sinu and j 51,2,...,N while k50,1,2,...,N.
In anticipation of choosinga/c,,1, we consider the de
rivative in ~A1! in the limit a→0. Then

lim
a→0

]2 j

]z2 j F 1

Aa21z2G5
]2 j

]z2 j S 1

z D5
~2 j !!

z2 j 11 . ~A2!

If we insert this limiting result into~A1!, we see that ifk
. j the z integrand is nonsingular. Thus, with the neglect
terms of orderO(a2/c2) and fork. j , we have

b jk5
4

p E
0

p/2

duE
0

1

dz z2~k2 j !215
1

k2 j
~k. j !. ~A3!

Next considerk5 j . We have

b j j 5
4

p~2 j !! E0

p/2

duE
0

1

dz z2 j
]2 j

]z2 j F 1

Aa21z2G . ~A4!

We integrate by parts twice, recognizing that the odd deri
tives of 1/(a21z2)1/2 vanish atz50 and the even deriva
tives are finite~for aÞ0), while theqth derivative atz51 is
(21)q(q)! plus O(a2/c2). Neglecting the corrections w
then have

b j j 52
2

2 j
2

2

2 j 21
1b j 21,j 21 . ~A5!

Repeated use of this recursion relation gives us

b j j 522(
p53

2 j
1

p
1b11. ~A6!

We now must evaluateb11:

b115
4

p E
0

p/2

duE
0

1

dz z2
]2

]z2 F 1

Aa21z2G . ~A7!

Two integrations by parts yields

b115231
4

p E
0

p/2

duE
0

1

dz
1

Aa21z2
. ~A8!

The z integration gives ln@(11A11a2)/a#' ln(2/a)
5 ln@c/(asinu)#. Here we have neglected, as usual, corr
tions of O(a2/c2). The final integral is

b115231
4

p E
0

p/2

du@ ln~c/a!2 ln~sinu!#

52312@ ln~c/a!1 ln 2#5L22~11 1
2!. ~A9!

We substitute into~A6! to obtain the general result for th
diagonal element,

b j j 5L22(
p51

2 j
1

p
. ~A10!
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We now turn to the case ofk, j . We put j 5k1n, with
n51,2,... . Starting with~A1! instead of~A4!, we follow the
same procedure of two integrations by parts to obtain
general recursion relation,

bk1n,k52
~4k12n21!

~k1n!~2k12n21!

1
k~2k21!

~k1n!~2k12n21!
bk1n21,k21 . ~A11!

Now consider the special casek50. The integral~A1! re-
duces to@neglectingO(a2/c2)#

bn05
4

p~2n!! E0

p/2

duE
0

1

dz
]2n

]z2n F 1

Aa21z2G
5

4

p~2n!! E0

p/2

duF ]2n21

]z2n21 F 1

Aa21z2G G
0

1

5
4

p~2n!!

p

2
@2~2n21!! #52

1

n
. ~A12!

We now use the recursion relation~A11! to evaluatebn11,1:

bn11,152
1

~n11!~2n11! F2n131
1

nG52
1

n
5bn,0 .

~A13!

This result suggests that perhapsbk1n,k is independent ofk.
To test this idea we add and subtract 1/n to bk1n21,k21 on
the right-hand side of~A11!. The result is

S bk1n,k1
1

nD5
k~2k21!

~k1n!~2k12n21! S bk1n21,k211
1

nD .

~A14!

Beginning atk51 with ~A12!, we can iterate~A14! succes-
sively. The left-hand side is equal to zero for anyk. We thus
have established that forj .k,

b jk5
1

k2 j
2 ~k, j !. ~A15!

In summary,~A3! and ~A15! combine to give, forkÞ j ,

b jk5
1

k2 j
, ~A16a!

while for k5 j , ~A10! is

b j j 5L22(
p51

2 j
1

p
. ~A16b!

These expressions for the coefficients have corrections
orderO(a2/c2), appropriately neglected forL..1.
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VERSATILE THEORISTS

A hasty investigation of the angular distribution of the neutron beam, performed as soon as the
accelerator started functioning, indicated a forward distribution, as expected, but with a minimum
at deflection zero. This was reported in a colloquium attended by Oppenheimer, and he immedi-
ately gave a learned theoretical explanation of the phenomenon. I listened to it and then said that
it was better to check if by chance there was not a lead brick just in front of the target, projecting
a shadow. Immediately after the colloquium somebody rushed to check my hypothesis. It was
correct.

Emilio Segrè, A Mind Always in Motion—The Autobiography of Emilio Segre` ~University of California Press, Berkeley,
1993!, p. 229.
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muonic system in which the muon spends considerable t
within the nucleus. The energy value is adjusted upward
til the right-hand boundary condition is satisfied~see Fig. 1!.
The large difference between the seed value and the
energy value~218.916 vs210.413 MeV for the 1s state!
demonstrates the significance of the finite size of the nuc
for muonic atoms.

The fine structure corrections outlined by Tiburzi and H
stein @their Eqs. ~16!–~18!# can be easily added to th
MATHCAD worksheet~omitted here for the sake of brevity!,
r
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using traditional numerical algorithms, so that a thorou
comparison of theory and experiment can be made.
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Jackson’s paper1 supports an emerging consensus2 that the
linear charge density on a conducting wire is uniform, in th
zero radius limit. This is easily proved for the special case o
an ellipsoid, but Jackson demonstrates that it holds rega
less of shape. This conclusion is so counterintuitive that w
decided to reexamine the original numerical studies,3 based
on discrete charge distributions, that appeared to confirm t
more plausible hypothesis that the charge accumulates pr
erentially near the ends.

We placeN charges at equal spacing on the interval 0
,x<1:

q1 at x151/N,

q2 at x252/N,

¯

~1!qn at xn5n/N,

¯

qN at xN51

~and equal charges at the corresponding points on21<x
,0!, together with a single chargeq0 at x050. We then
adjust the charges so that the Coulomb force on each of the
exceptqN ~which is subject to an extra confining force! is
zero:

(
j 51

N
qj

~n1 j !2 1
q0

n2 1 (
j 51

n21
qj

~n2 j !22 (
j 5n11

N
qj

~ j 2n!2

50 ~n51,2,...,N21!, ~2!

subject to the constraint

q012(
n51

N

qn51 ~3!

~the scaled total charge on the wire!. This does not determine
the charge at the center—the force onq0 is automatically
e
f
d-
e

he
ef-

m

zero, by symmetry. To ensure continuity we chooseq0

5q1 . What remains is a set ofN linear equations for theN
unknown charges.

Griffiths and Li2 solved this system numerically forN up
to 100, and persuaded themselves that the linear charge
sity was approaching a nontrivial limiting form—fairly fla
in the center, but with spikes at the ends (x561). They
were seduced by extraordinarily slow convergence asN

Fig. 1. Linear charge density on a needle, as a function of position.
calculation was done using 2N11 point charges equally spaced on th
interval from 21 to 11, and requiring that the net force on each char
~except the end two! vanish. The total charge on the needle is 1.~a! Solid
line: N516 384; dashed line:N532. ~b! Expanded view of the right end
this time the dashed line isN51024.
515p/ © 2001 American Association of Physics Teachers
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orm the
→`, as we can see from Fig. 1, which extends the calcu
tion out to N516 384: AsN increases, the charge densi
approaches 1/2, except at the very ends, which occup
decreasing portion of the length and contain a diminish
fraction of the total charge.

In Fig. 2 we plot the charge density at the center (l(0)
5Nq0) as a function ofN, to demonstrate the~painfully slow!
approach to 0.5. Jackson shows that the natural expan
parameter isL21, whereL[ ln(4c2 /a2), with 2c the length
of the wire anda its characteristic ‘‘radius,’’ and he sugges
that for the discrete model this translates toL;2 lnN. In
Fig. 2 the solid line is a best fit of the form

l~0!5P11
P2

ln N
1

P3

~ ln N!2 ; ~4!

for our data~with N ranging from 32 to 16 384! P150.500,
P2520.152, andP3520.123.

In Fig. 3 we plot the charge density at the ends of the w
(l(1)5NqN), as a function ofN. It seems clear that this
quantity increases without limit—in fact, our data are w
represented by the functional form

Fig. 2. Charge density at the center of the needle, as a function ofN. Dots
represent the numerical results. The solid line is the best fit of the f
l(0)5P11P2 /ln N1P3 /(ln N)2 ~for N ranging from 32 to 16 384!, which
occurs forP150.500, P2520.152, andP3520.123. Evidentlyl~0! ap-
proaches the uniform density value of 0.5, asN increases.
516 Am. J. Phys., Vol. 69, No. 4, April 2001
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l

l~1!5FQ11
Q2

ln N
1

Q3

~ ln N!2G ln N, ~5!

with Q150.0719,Q250.912, andQ3520.874~solid line!.
Nevertheless, these ‘‘rabbit ears’’ inl(x) are of decreasing
significance asN→`, in the sense that they occupy a dimi
ishing portion of the total length and contain a smaller a
smaller fraction of the total charge.
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Fig. 3. Charge density at the ends of the needle (x561), as a function of
N. Dots represent the numerical results. The solid line is the best fit of
form l(1)5@Q11Q2 /ln N1Q3 /(ln N)2#ln N, which occurs for Q1

50.0719, Q250.912, andQ3520.874. Evidentlyl~61! diverges asN
increases.
PREPARATION?

Gibbs began his lectures on thermodynamics with the Carnot cycle, which he always got
wrong. After getting thoroughly mixed up he concluded the first lecture with an apology, and in
the second lecture he gave it letter perfect. It was in this way he introduced entropy, rather than in
the formal way in the ‘‘Heterogeneous Substances’’.

E. B. Wilson, a student of J. Willard Gibbs, as quoted by Clifford Truesdell in J. Serrin~editor!, New Perspectives in
Thermodynamics~Springer, New York, 1986!, p. 107.
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