<3 °K; the slope of this region is the critical exponent y.
Within the temperature region 0.14°K < T — T, <0.7°K,
the data can be observed ta be systematically lower than the
straight line drawn through the points above T — T,
=0.2 °K. Convection. in the fluids became obvious over
this temperature region, and it is thought that the transmit-
ted light intensity was increased as a result, and hence, the
calculated turbidities were smaller.

Data run 2 displays a plateau region close to, but above
T, (0.01 °K < T — T, <0.05 °K). The horizontal error bars
are large close to 7, due to the 0.05 °K uncertainty in 7.
Far above T, we observe large errors on the turbidities due
to the small differences between I and I,,. The effects of
multiple scattering were small when far above T, ; however,
close to T, the effect was important though negligible
compared to other errors.

All of the data collected within the temperature range
0.1 °’K < T — T, <3 °K were fit using a In-In, weighted, lin-
ear least squares routine.'* The slope ¥ was determined to
be 1.34 + 0.13. This value agrees within experimental er-
ror to other experimental results and to the predicted val-
ue; for example, the binary fluid mixture, polystyrene—
diethyl malonate, was found to have ¥ equal 1.23 + 0.03
using a similar technique.”

VIII. CONCLUSION

A simple experiment on the turbidity of a binary fluid
mixture near its critical consolute point has been described.
Quantitative results are consistent with theoretical predic-
tions of universal critical exponents. Much more precise
data may be obtained by using a photomultiplier tube for
light intensity measurements, and by using a two stage
thermostat to reduce temperature gradients across the cell
and hence eliminate convection currents when close to T,.
It is felt that this is an appropriate experiment for junior or

senior undergraduates and provides them with an opportu-
nity to experience the exciting field of critical phenomena:
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New method for calculating electric and magnetic fields and forces
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It is shown that for the purpose of electric field calculations, polarized dielectric bodies and real
electric charge distributions can be replaced by fictitious “polarization current” distributions.
Electric fields can then be calculated by any of the techniques available for calculating magnetic
fields, and vice versa. Also electric forces acting on electric charges and dielectrics can be
calculated by using the techniques available for calculating magnetic forces on currents. The
method is illustrated by examples on calculating electric fields produced by electrets and by

examples on calculating forces on dielectric bodies.

1. INTRODUCTION

_ Animportant method for calculating electrostatic fields
in the presence of dielectric media, sometimes known as the
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“Poisson transformation,” is the representation of such
media by “equivalent” space and surface charge distribu-
tions. This method allows one to reduce an electrostatic
system in the presence of dielectric media to a system of

"~ © 1983 American Association of Physics Teachers 545



real and fictitious charges in a vacuum yielding everywhere
exactly the same electrostatic field as that of the actual
system.

If one considers this method on the basis of the Poisson
theorem of vector analysis, one notices that dielectric me-
dia can also be represented by “equivalent” space and sur-
face current distributions, so that the contribution of di-
electric media to the total electrostatic field of a system
under consideration can be calculated by means of the
same equations and techniques as those used for calculat-
ing magnetic fields produced by electric currents in a vacu-
um. This means that for the purpose of electrostatic field
calculations an electrostatic system with dielectrics can be
reduced not only to a system of real and fictitious charges
but also to a system of real charges and fictitious currents
also yielding exactly the same electrostatic field as that of
the actual system. The latter method offers a new insight
into the structure of electrostatic fields, particularly those
in the presence of dielectric media, and is especially useful
for determining and analyzing electrostatic fields produced
by electrets (permanently charged or permanently polar-
ized dielectric bodies).

Animportant consequence of this method is that for cal-
culating electrostatic fields one can also replace real charge
distributions by equivalent fictitious current distributions,
and that for calculating stationary magnetic fields one can
replace real electric current distributions by equivalent fic-
titious electrostatic charge distributions. This makes it pos-
sible to use all the techniques usually reserved for calculat-
ing magnetic fields and magnetic forces also for calculating
electric fields and electric forces, and to use all the tech-
niques available for calculating electric fields and forces
also for calculating magnetic fields and forces.

IL. THEORY

According to the Poisson theorem of vector analysis a
vector field V regular at infinity can be found from its curl
and its divergence by means of the integral

1 f V'(V'.V) — V' X(V'XV) dv’
47 Jan space r ’

(1)

where ris the distance from the volume element dv’ located
at the source point x', y', 2’ to the field point x, y, z, and
where the primed operator V' operates upon the primed
coordinates only.'

Let us apply Eq. (1) for finding the electrostatic field E of
a charge distribution p in the presence of a dielectric medi-
um having a polarization P. By the basic electrostatic laws
we have

Vix,y,z) = —

VD =p, (2a)

VXE=0. (2b)
By the definition of P we also have

P=D — ¢E. (3)
From Eq. (3) it follows that

V-E = (1/€,)V-D — (1/€,)V-P. 4)
Introducing the notation

pp=—VP (5)
and using Eq. (2a), we can rewrite Eq. (4) as

VE = (1/6) p + (1/€) pp- (6)

Substituting now Eqgs. (6) and (2b) into Eq. (1), we obtain
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E= —

' v'
L Yoar - L[ IPrgy q
41 €p Jallspace 7 477'60 allspace T
Using the vector identity
Yo _ vEe_PL;
r r 7

together with Gauss’s theorem of vector analysis, we can
transform Eq. (7) to the more familiar expresssion

# P
! Oy + L f Lrl i, (8)
47 €g Jall space 7 477'60 all space "2
where Fis a unit vector in the direction of  (from x', ', 2’ to
x, ¥y, z).

As can be seen from Eq. (8), the field E in the presence of
a dielectric medium may be regarded as the sum

E=

E=E, +E, (9)
of two partial fields: the ordinary “vacuum” field
- e gy (10)

a 417'60 all space 7

identical with the field produced by the charge distribution
p in the absence of the medium, and the “polarization”
field

1 P P ? ’

= — 11
EP 41 €o J;ll space 7'2 v ( )
associated with the medium and attributable to a fictitious
charge distribution p, defined by Eq. (5). For practical ap-
plications the integral of Eq. (11) can be transformed into a
volume integral over the interior of the medium and a sur-
face integral over the surface of the medium, which gives

1 f pet 1
E, = —av' +
P 477 €p Jinterior r 477'60

opt
—dy’, 12
J;urface ’,2 ( )

where

op = — b, P, (13)
fi,, being a unit vector normal to the surface and pointing
into the medium.?

Equation (12) together with Egs. (5) and (13) constitute
the well-known Poisson transformation for dielectric me-
dia {p, and o, are the fictitious “equivalent” space and
surface charge densities). The particular method used here
for obtaining this transformation indicates, however, the
possibility of a similar alternative transformation. This al-
ternative transformation is obtained by applying Eq. (1) for
finding the displacement field D, rather than the field E, as
follows.

From Egs. (2b) and (3) we have

VXD =¢VXE+ VXP=VXP, (14)
and, introducing the notation

Jp = (1/€,)VXP, (15)
we can write

VXD =¢€,Jdp. (16)

Substituting Eqgs. (2a) and (16) into Eq. (1), we have for the
displacement field D

! V'xJ
D= __l_ lﬂdv'+_€0_ X Pdv'.
47 Jan space F 47 Jan space r
(17)
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The first integral of this expression can be transformed as
before in Eq. (7); the second integral can be transformed ina
similar manner by using the vector identity

V' xJ IXP
= V')( —_
r P

together with Gauss s theorem of vector analysis. We then
obtain

1 pr € Jp XF

D=— ——dv’+——lJ dv'. 18

47 Jan space r2 47 Jan space r2 ( )

As can be seen from this expression, the displacement

field D in the presence of a dielectric medium can be re-
garded as the sum

D=D, +D, (19)
of two partial fields: the ordinary vacuum field

1 7
D, =— er ay 20
v 477 Jan space rz ( )
identical with the field produced by the charge distribution
p in the absence of the medium, and the “polarization”
field

60 JP X ;'
47 Jan space rz

associated with the medium. A surprising result here is that
D, is expressed by an integral identical with the well-
known integral representing the magnetic field (flux den-
sity field) of a current distribution in a vacuum

B_—_#’Of_d" 22
> v ( )

Hence D, is attributable to a fictitious current distribution
Jp defined by Eq. (15) in the sense that mathematically D,
is determined by J, in the same way as a magnetic field is
determined by the current that produces this field. What is
more, D, can be formally obtained from a geometrically
similar B by replacing y, with €, and J with J,.

For practical applications the integral of Eq. (21) can be
transformed into a volume integral over the interior of the
medium and a surface integral over the surface of the medi-
um, which gives®

D, = dv’ (21)

Jp XF € JExF?
D, =0 P dv + —LJ ds’,
d 477 Jinterior ’2 47 Jsurface r
(23)
where
J7 = (1/€) i XP (24)

is the fictitious surface current (“current per unit width”).

Equation (23) together with Egs. (15) and (24) constitute

the desired transformation alternative to the Poisson trans-
formation (J, and J% are the fictitious equivalent space
and surface current densities).

It should be emphasized that the practical significance of
this transforamtion consists not only in the possibility of
using Eq. (23) directly for finding D, but also in the fact
that D, is formally related to J, and J% just as a magnetic
field is related to the electric currents producing this field.
This means that D, can be found from J, and J¥ by any of
the techniques available for the calculation of magnetic
fields, i.e., not only by direct integration but also indirectly
through vector potentials, scalar potentials, method of har-
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monics, axial expansion, etc. Thus this transformation re-
sults in a substantial increase of methods that can be used
for calculating and analyzing electrostatlc fields in the
presence of dielectric media.

Since electric fields are force fields, it is plausible that the
equivalent currents can be used for direct calculation of
forces on dielectric bodies. To obtain explicit formulas for
such calculations we shall start with the vector identity

3(; (V-W)ds — ff V(W.ds) — 3€ W(V.ds)
- fo(VXW)dv + wa(VxV)dv

— fV(V-W)dv — fw(v-V)dv. (25)

Let the surface integrals be extended over a surface enclos-
ing the dielectric body the force upon which is to be found.
Let the external field at the location of this body be E'.
Substituting in Eq. (25) P for V and E’ for W and taking into
account that P = 0 outside the dielectric, that VXE' =0,
and that V-E’ = O (the sources of the external field are out-
side the surface of integration), we obtain

= f E'X(VXP)dv — f E'V-Pdv. (26)

But the force on a dielectric in an external field is given by

F= f ppE dv= — f (V-P)E' dv. (27)
Hence, by Eq. (26), the force can also be calculated as -

F= —jE'x(VxP):J(VXP)XE’du (28)
or, with Eq. (15), as

F= f Jp X D'dy, {29)
where we have replaced €,E’ with D’. Except for the sym-
bols, Eq. (29) is identical with the equation describing the
force acting on a current in an magnetic field

F=fJ><B’ dv. {30)
Consequently, electric forces on dielectrics can be calculat-
ed by the same techniques that are used for calculating
magnetic forces on currents. In particular, for a surface

distribution of the equivalent current the force can be cal-
culated from

F=fJ§’xD'ds, (31)
and for a straight filamentary equivalent current from

F=1,.xD'! (32)
with

I, = J, (33)

where ¢ is the width of the equivalent surface current, and /
is its length.

Although the vector D’ appearing in Egs. (29) and (32) is
the external displacement field, it can be replaced by the
total field D, since the self-field (field due to J,) produces
no net forces on the dielectric. In linear isotropic dielectrics
D’ (or D) can be replaced by €,¢E’ (or €,¢E), where € is the
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permittivity of the dielectric. It also can be replaced by
P + ¢,E, in accordance with Eq. (3).

ITI1. EXAMPLES

To illustrate some of the ways in which one can use the
equivalent current transformation obtained above, we shall
find with its help the electric fields of several differently
shaped electrets and shall find electric forces acting on die-
lectrics in some typical electrostatic systems. For simpli-
city we shall assume that the electrets carry no real space or
surface charge, and that the polarization of the electrets is
not affected by depolarizing fields (the latter assumption
has no effect on the calculations, but the fields which we
shall find using this assumption may differ from the fields
of real electrets in which a depolarization may occur).

Example 1: Find the electric field on the axis of a disk
electret of thickness ¢, radius a, and uniform polarization P
directed along the axis of the electret if t<a [Fig. 1(a)].

Since P is constant, VX P = 0, and hence, by Eq. (15),
the space current J, is zero. On the flat surfaces of the
electret #;, is parallel to P, and hence, by Eq. (23), the sur-
face current density J% is zero there. On the cylindrical
surface, however, #;, is perpendicular to P, so that on this
surface JY¥ = (1/€,)P6, where @ is a unit vector tangential to
this surface and right-handed with respect to P. The elec-
tret may be represented therefore by an equivalent ring
current I, = J 't = (1/€,)Pt along the edge of the electret,
as shown in Fig. 1(b). The magnetic field of such current is
known and can be expressed at a point z of the symmetry
axis with the origin at the center of the ring as (see, for
example, Ref. 1, p. 347)

B = puoH = [ p, Ia*/2(a* + 2%"*1k,
where k is a unit vector along the z axis. Hence, outside the
electret the fields D and E are (observing that in a vacuum
D = ¢,E)

D = Pta*/2{a® + 22)*?
and

E = D/e, = Pta*/2¢,(a* + 2%’
Inside the electret (the electret is thin), z=0 and, by Eq. (3),

E = (1/€,)(D — P). The internal fields on the axis of the
electret are therefore

D=Pt/2a
and
E-L(B_p)- B[ L) _F
€ \2a € 2a €

where the last expression represents E in a very thin elec-
tret.

{a) (b)

Fig. 1. To find the electric field on the axis of a disk electret (a), the electret
is replaced by an equivalent current ring (b).
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(a)

Fig. 2. To find the electric field in a central hole of a rectangular electret
(a), the electret is replaced by equivalent rectangular and cylindrical cur-
rents (b). (The radius of the hole is very much exaggerated.)

Example 2: A square electret of thickness ¢, length /, and
uniform axial polarization P has at its center a small cylin-
drical hole of radius a oriented along the symmetry axis
[Fig. 2(a)]. Find the electric field at the center of the hole if
t¢l and a<t.

Just as in the preceding example the equivalent currents
by which the electret can be replaced are [Fig. 2(b)] a cur-
rent along the edge of the electret and a current along the
walls of the hole (directed oppositely to the current along
the edge). As before, the magnitude of these currents is I,

= (1/€,)Pt. A real rectangular current along the edge
would produce the magnetic field (see, for example, Ref. 1,
p. 359)

H = 221 /nl k.

The cylindrical current along the walls of the cavity is simi-
lar to the current in a long solenoid of length ¢, where the
magnetic field is

H= — (I/t)k.

The total magnetic field due to these currents is
He (2 D)is G,
7l t t
The electrostatic fields D and E in the cavity are therefore

D~ — (Pt/t)k= —P
and

E=D/e;= — P/e,.

Example 3: An electret is made in the shape of a thin
hemispherical shell of radius a, thickness ¢, and uniform
radial polarization P [Fig. 3(a)]. Find the electric field at
the center of the shell.

Since P is radial, the only equivalent current is a ring

current along the flat surface of the shell [Fig. 3(b)], and its
magnitude is, as before, I, = (1/¢€,)Pt. By Example 1, at the

(a) {b)

Fig. 3. Tofind the electric field at the center of a hemispherical electret (a),
the electret is replaced by an equivalent current ring (b).
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() {b)

Fig. 4. To find the electric field at the end surface of a cylindrical electret
(a), the electret is replaced by an equivalent current (b) on the cylindrical
surface of the electret.

center of the ring a real circular current produces the mag-
netic field

H = (I /2a)k.

Hence the fields D and E at the center of the electret are
D=Pt/2a

and
E = Pt /2ae,.

Example 4: A cylindrical electret of radius @ and length /
has a uniform axial polarization P [Fig. 4(a)]. Find the ex-
ternal electric field at the center of a flat surface of the
electret.

The only equivalent current corresponding to this elec-
tret is a circular current along the cylindrical surface [Fig.
4(b)] of magnitude I = (1/€,)Pl. The magnetic field pro-
duced by such a current at the center of an end surface is
(see, for example, Ref. 1, p. 349)

H=[I/2(%+d)"*] k.
The fields D and E at the point under consideration are
therefore

D =PI/2*+a})'?
and

E =D/e, =Pl /2¢,(I* + a2

Example 5: Find the magnitude of the external electric
field near an edge of a large thin electret of thickness ¢ and
uniform polarization P normal to the electret [Fig. 5(a)].

The only equivalent current is along the edge of the elec-
tret and is J = (1/€y)Pt. Since the edge is straight and long,
the current 7 is just a straight filamentary current. As is
known, such a current produces a circular magnetic field

H=1/2mr.
Hence the fields D and E near an edge of the electret are
D =Pt /27r

E /’/,, ////,
~ \\ E
o / / . - //
/ 7/
Ve ’;7 / J A7 r>>t
IR
d /L7/ // ’// -

l\_—’l‘/ .

Y /, -7

LK

(a) (b)

Fig. 5. To find the electric field outside an edge of a plane electret (a), the
electret is replaced by an equivalent current ribbon (b).
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(b)

Fig. 6. To find the force between two electrets (a), the electrets are replaced
by two equivalent current ribbons (b).

and
E = Pt 2rmeyr,

where  is the distance from the edge.

Example 6: A large electret is broken along a straight
line of length / in two pieces, located at a distance d</ from
each other. Find the force between the two pieces if the
polarization is constant and perpendicular to the flat sur-
face of the electret [Fig. 6(a)).

According to Example 5, the system is equivalent to a
system of two parallel currents of magnitude I = (1/¢,)Pt,
shown in Fig. 6(b). (The current corresponding to the re-
maining portions of the electret edge may be neglected if d
is sufficiently small) The magnetic force (repulsion)
between such currents is (see, for example, Ref. 1, p. 451,
Problem 13.15)

F=(uydl,/2md)l.
Hence the two electrets repel each other with the force

F (Pt)2 1 P%?
= €, ol — —_— .
€/ 2md 2med

Example 7. A voltage V is applied to a parallel-plate
capacitor [Fig. 7(a)] consisting of two square plates of
length a separated by a distance d. A large dielectric slab of
thickness d and dielectric constant € is inserted between the
plates. Neglecting end effects, find the force acting on the
slab.

The field in the capacitor is everywhere E = — (V' /d )f
wherejis a unit vector along the y axis. The displacement in
the slab is D = €,€E. The polarization of the slab is
P=D—¢E= —¢)e—1)(V/d)j and is constant
throughout the part located inside the capacitor. Hence J,
is zero everywhere except near the edge of the capacitor,
where P abruptly changes to zero (because the edge effects
are neglected). The abrupt change in P creates V X P. If the
change is assumed to take place over a small distance Ax,
the corresponding equivalent space current density is, by

—T—

JERS

vy
() (b)

Fig. 7. To find the force with which a dielectric is pulled into the parallel-
plate capacitor (a), the dielectric is replaced by an equivalent current rib-
bon I, and space current J, (b).
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(@ (b) ()

Fig. 8. To find the electric field between two charged disks (a), the disks are
first replaced by an equivalent polarized dielectric (b), and then by an
equivalent current ring (c).

Eq. (15),*

=1 —_le=1¥;

Te €o VXE Ax d
The only surface current that needs to be taken into ac-
count is on the forward edge of the slab, where it produces a
current ribbon I, = (€ — 1)Vk (the effects of the currents
along the front and back edges cancel by symmetry). The
equivalent current system is shown in Fig. 7(b). The exter-
nal displacement field D’ (that is, the field due to capacitor
alone) at the location of this ribbon is — €4(¥ /d ). At the
location of J, the average external field D' is — ley(V /d)j
(because in the capacitor the electric field is — V' /d, and
Jjust outside it is zero). Hence the force on the slab is, by Egs.
(29) and (32),

F= Jp XD'dv + I, XD'a. (34)

edge

Since 4x is small, the integral may be replaced by the pro-
duct Jp XDV, crage 4% da. We then obtain

2d

Ax d

n V A
+le— WA x22]

2. . 24 a

= —eo(e—l)%i+eo(e—l)l/d—ai

or
Vi~
F=¢/e— 1)7“1. (35)

(c)

Fig. 9. To find the force between two solenoids (a), the solenoids are first
replaced by two polarized cylinders (b), and then by two charged disks (c).
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IV. TRANSFORMATIONS FOR REAL CHARGE
DISTRIBUTIONS

An interesting consequence of the Poisson transforma-
tion and of the “equivalent current” transformation is that
by using them in succession one can reduce also real charge
distributions to equivalent fictitious current distributions
yielding the same electrostatic field as that of the actual
charge distribution. Indeed, by reversing the Poisson trans-
formations, a system of real charges can be replaced by an
equivalent dielectric medium of polarization P. Next, this
medium can be replaced by an equivalent current system
Jp. From this current system the displacement field D, can
be found. Finally, the electric field of the original system
can be obtained from E = ¢,(D, — P).

Consider, for example, the electric field at the center of
the system of two charged layers + Q (surface charge den-
sities + o) of radius a and separation ¢ shown in Fig. 8(a)
(t<a). By inspection and by Eq. (13) this system is equiva-
lent to a uniformly polarized dielectric disk of polarization
P = g [Fig. 8{b)]. The transformations for such a disk have
been already demonstrated in Example 1: the equivalent
current system is a ring of current shown in Fig. 8(c).
Hence, by Example 1, the electric field midway between
the two charged layers is

E = (0/¢€y)(1 — ¢t /2a),

which, incidentally, is a more accurate expression than the
usual E = o/¢, given for this system in most textbooks.

It is easy to see that by reversing the equivalent current
transformation one can also reduce real current systems to
equivalent charge systems for the purpose of calculating
magnetic fields or magnetic forces.

Consider, for example, a system of two long coaxial sole-
noids placed close to each other, as shown in Fig. 9(a). Let
the thin solenoid be of cross sectional area S, and length /,;
let it have n, turns, and let it carry a current /,. Let the
other solenoid be of area S,% S, and length /,; let it have n,
turns and let it carry a current [,. Suppose that we want to
find the force exerted by one solenoid on the other. Revers-
ing the steps of the preceding example, we can replace the
two solenoids by equivalent polarized rods [Fig. 9(b}],
whose polarizations are P, = €yn,[,/!, and P, = ¢;n,1,/1,.
The two rods can in turn be replaced by two charged disks
of surface charge density o, = €yn,1,/1, and o, = €gn,1,/
1,. Since the diameter of the first disk is much smalier than
that of the second, it can be regarded as a point charge
g = 0,5, = €yn,1,S,/1,. The entire system thus reduces toa
point charge ¢ in front of a large disk of surface charge
density o, [Fig. 9(c)]. The force on g in this system is

F=qB'=q2 — g% _mdih g

€ 2¢, 20,1
Hence the force between the two solenoids is (replacing €,
with g, as explained in Sec. II)

F= pominoIy I, S..
AL
V. CONCLUSION

The equivalent current transformation presented here
allows one to supplement the usual methods for the calcu-
lation of the electrostatic fields in the presence of dielectrics
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by the methods developed for the calculation of the station-
ary magnetic fields produced by electric currents. When
used together with the Poisson transformation it allows one
to calculate all electrostatic fields in terms of equivalent
stationary magnetic fields produced by electric currents,
and vice versa. The possibility of such inversions can be
stated in the form of the following two propositions:

Proposition I: To every electrostatic field there corre-
sponds a geometrically equivalent magnetic field that can
differ from it only in a limited region of space, and to every
magnetostatic field there corresponds a geometrically equi-
valent electric field that can differ from it only in a limited
region of space.

Proposition II: Within the limitations of Proposition I,
electric forces can be calculated in terms of the equivalent
electric currents, and magnetic forces can be calculated in
terms of the equivalent electric charges.

The existence of such reciprocal relations between elec-
tric and magnetic systems contributes to the internal unity
and harmony of the electromagnetic theory and expands
the range of techniques available for calculating electric

and magnetic fields and forces.

'Details on using this theorem for calculating electric and magnetic fields
can be found in O. D. Jefimenko, Electricity and Magnetism [Appleton-
Century-Crofts (now Plenum), New York, 1966}, pp. 42, 93, 248, 249,
343, 344, 480, 481.

2One obtains Eq. (12) from Egs. {11) and (5) by taking into account that V-P
vanishes outside the medium and reduces to “surface divergence” #;, P
at the surface of the medium.

3One obtains Eq. (23) from Egs. (21) and (15} by taking into account that
V X P vanishes outside the medium and reduces to “surface curl” #,, XP
at the surface of the medium.

“To find VXP, we use the relation VXP = t(AP /4y — AP,/4z2)
+j(AP /4z — AP,/Ax) + k (AP,/4x — AP,/4y). In the present case
P, =P, =0, while P, = — €,(¢ — 1)V /d and changes along the x axis
only. Since P=10 outsnde the capacitor, 4P,/Ax = P,/Ax, and hence
VXP= — keje — 1)V /dAx.

5The same result is obtained if the total field D rather than the external
field D' is used in Eq. (34). Inside the slabD = — e4¢(V /d )} Outside the
capacitor D = 0. Inside the capacitor but outside the slabD = — &(V'/
d)j. Theaveragefields are therefore Dmm‘lse = — lee(V/d)j j attheloca-
tionof J» and D, ..., = J€gl€ + 1)(V /d ) jatthelocation of 1. Replacing
D' in Eq. (34) by these expressions yields Eq. (35).

Lise Meitner and the beta-ray energy controversy: An historical perspective

Sallie A. Watkins

University of Southern Colorado, Pueblo, Colorado 81001
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Much has been written about the early history of beta-ray research and the controversy it
provoked. Many prominent physicists lent their talents to the solution of this puzzling problem.
One of the foremost of these was Lise Meitner, conspicuous in the fray not only because of her
creative experimental work, but also because of her attachment to a physical principle—the
simplicity of nature. This article reviews the sequence of events as they preceded, coincided with,

and followed her work on the subject.

Lise Meitner began her graduate studies at the Universi-
ty of Vienna in 1901. She received the Ph.D. in physics in
1905, but remained on at the University until 1907 to clear
up some unfinished work. (One study was that of the deflec-
tion of alpha-rays. At that time, there was some uncertain-
ty as to whether they were deflected in passing through
matter. She designed and carried out one of the first experi-
ments to show some deflection does, indeed, occur.) In
1907, she went to Berlin and soon began studies on radioac-
tivity with a young chemist, Otto Hahn.

By 1907, several significant discoveries had been made in
the field of beta rays. Chronologically presented, they are
1899: Rutherford had shown that the nucleus emits two

kinds of radiation, one about 100 times as penetrating as

the other. He named them alpha and beta rays.'

1899: Becquerel showed that beta rays can be deflected by a
magnetic field.”

1900: Pierre Curie found that beta rays have ranges of the
order of several tens of centimeters of air. He showed
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that they produce much less ionization than alpha rays,
and are markedly deviated by magnetic fields.

1900: Becquerel® and the Curies® showed that beta rays are
negative. They established this by studying the direction
of defiection in a magnetic field. Curiously, however, the
photographic image was diffuse and extended, even
though the entering beam was well collimated. This
seemed to suggest that either (a) beta rays from the same
source were not all identical or (b} they were emitted
from the source with a range of energies.

Becquerel had also applied an electric field to the beam of
beta rays. Combining the measurements thus obtained
with the magnetic field observations, he was able to cal-
culate a rough value of e/m. This was close enough to
that of the electron to make it fairly clear that beta rays
are streams of electrons.

1902: Kaufmann used simultaneous parallel electric and
magnetic fields to measure the ratio of charge to mass
and the velocity of beta rays.® (The electric field causes a
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For field points outside the region, the previous integral
expression given by Eq. (6) reduces to

I N APPSR <
v=— [ sirwrar = X,

with K the constant integral factor. The inverse square field
follows immediately, and we have obtained an alternative
direct proof to the previously stated theorem.

In conclusion, it is evident that Helmholtz’ theorem is an
extremely significant theorem of vector calculus which to a

large extent has been neglected in mathematical physics.

'G. Arfken, Mathematical Methods for Physicists (Academic, New York,
1966), pp. 58-62.

2W. Panofsky and M. Phillips, Classical Electricity and Magnetism (Ad-
dison-Wesley, Reading, MA, 1962), pp. 2-7.

*J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), p.
140.

*L. Eyges, The Classical Electromagnetic Field {(Dover, New York, 1962),
pp. 123, 387-8.

*P. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw—
Hill, New York, 1953}, Chap. 13.

Erratum: “New method for calculating electric and magnetic fields and
forces” [Am. J. Phys. 51, 545-551 (1983)]

Oleg D. Jefimenko

Department of Physics, West Virginia University, Morgantown, West Virginia 26506

The external displacement field D’ in Eq. (34) is incor-
rectly described. The actual external field is the sum of the
original field of the capacitor and the field due to charges

induced on the capacitor plates by the dielectric. However,
due to the symmetry of the system under consideration, the
latter field has no effect on the force in this particular case.

Erratum: “Correct use of Maxwell stress equations for electric and magnetic
fields” [Am. J. Phys. 51, 988-996 (1983)]

Oleg D. Jefimenko

Department of Physics, West Virginia University, Morgantown, West Virginia 26506

The external field E’ used in Eq. (83) is incorrectly de-
scribed. The external field is actually the sum of the origi-
nal field ¥ /d of the capacitor and the field due to charges
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induced on the capacitor plates by the dielectric. Dueto the
symmetry of the system under consideration the latter field
has no effect on the force in this particular case.
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