Correct use of Maxwell stress equations for electric and magnetic fields
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By neglecting edge or end effects in electric or magnetic systems and by using certain other
conventional approximation techniques one may inadvertently create conditions that contradict
some of the assumptions upon which Maxwell stress tensors and stress integrals are derived.
Correction terms must then be added to the stress equations to make them usable, The nature of
these correction terms is discussed and several illustrative examples are given.

L. INTRODUCTION

The Maxwell stress tensor and Maxwell stress integral
for time-independent electric systems are derived under the
assumption that V X E = 0. For time-independent magnet-
ic systems they are derived under the assumption that
V-B = 0. Although these relations are always satisfied in
real electric and magnetic systems, they do not always hold
in systems that are conventionally simplified for the pur-
pose of calculations. Thus, for example, when edge or end
effects are neglected, as is frequently the case with systems
that otherwise would be too complicated for an exact solu-
tion, regions of space with V X E#0 or V-B#0 are implicit-
ly created. For instance, if one neglects edge effects in a
parallel-plate capacitor, one creates VX E£0 at the edges.
This is because the electric field then experiences a sudden
jump from a finite value inside the capacitor to zero just
outside. Since the field changes in a direction perpendicular
to the direction of the field, VXE is not zero anymore.
Likewise, when one neglects end effects in a solenoid, one
thereby creates V-B#0 at the solenoid’s ends. Such simpli-
fications of the systems, although usually perfectly safe,
make therefore Maxwell stress tensors and stress integrals
inapplicable to the systems.

This can be dramatically demonstrated by means of the
following ‘‘first capacitor paradox.” Consider a parallel-
plate capacitor of plate separation d and depth b (into the
page) with a voltage V applied to the capacitor, as shown in
Fig. 1. Let us construct a closed surface (“Maxwellian sur-
face”) whose intersection with the plane of the drawing is
efgh, and let us find the force on the volume enclosed by
this surface by evaluating the Maxwell stress integral (the
integral of the Maxwell stress tensor)

= _ 5% 2 .
F= 2§E a'S+60§E(EdS) (1)

over this surface. By symmetry, the contributions of the
front and the back surfaces cancel each other and the con-
tributions of the top and the bottom surfaces, ef and gh,
also cancel. If the edge effects are neglected, which we as-
sume to be the case, the surface ek contributes nothing,
since E = 0 outside the capacitor. Thus the only contribu-
tion to the force comes from the surface fg inside the ca-
pacitor. Since E = ¥V /d inside the capacitor, and since
ELld S on this surface, the force is

F= —(e,/2)(V¥/d )b, 2)

where i is a unit vector along the x axis and ¢ is the distance
between the two horizontal parts of the surface efgh.

Our solution is obviously wrong, since there can be no

force on an empty volume. It is clear therefore that, as far as
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the present problem is concerned, something is wrong with
Eq. (1) and, of course, with the stress tensor whose integral
Eq. (1) represents.

The correct solution of the capacitor problem is given in
Sec. II, where the proper use of stress equations for electric
systems is discussed. In Sec. III the proper use of stress
equations for magnetic systems is discussed. In Sec. IV the
compatibility of various stress equations with some special
electric and magnetic systems is examined.

I1. ELECTRIC SYSTEMS

Although Eq. (1) can be obtained by integrating the
Maxwell stress tensor for electric fields, it can also be ob-
tained in a much simpler manner by using the vector identi-

ty
5& (V-W)dS — 9§ V(W-dS) — 56 W(V-dS)

=fo(V><W)du +fw><(v><V)du

— J VV-Wdv — J WV.V dv. 3)

Since the force on a charge distribution in a vacuum is
given by

F= f pEdv = f (V-D)Edv = ¢, J-(V-E)E dv, (4)

Eq. (1) can be obtained from Eq. (3) by simply setting
V = W = E, multiplying Eq. (3) by &, and dropping the
two integrals with V X E (because VXX E = Oin all real time-
independent electric fields). As we shall presently see, it is
this last step, dropping the integrals with VX E, that is re-
sponsible for the capacitor paradox presented above. How-
ever, let us first examine what role is played by VX E = 0in
deriving the Maxwell stress tensor for time-independent
electric fields.

Although there are numerous variations in the deriva-

Fig. 1. Calculation of force acting on the empty space in a parallel-plate
capacitor.
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tion of the Maxwell stress tensor, they all belong to one of
the following four basic types: (1) where the volume force
pE is expressed as the divergence of a tensor'?; (2) where
the Maxwell stress tensor is postulated and where it is then
shown that its divergence represents the volume force?; (3)
where the electromagnetic momentum is found and then
the time rate of momentum transfer is determined®; and (4)
where the electromagnetic field tensor is derived and then
the Maxwell stress tensor is obtained from it.>

The first two of the above methods make an explicit use
of VXE = 0. All the others also use it, although implicitly,
and although it may not be easily apparent that they do.
Observe, however, that in the derivations which start
with time-dependent fields the Maxwell equation
VXE = — dB/dt is inevitably used. For stationary fields
this equation reduces to VX E = 0. Therefore the Maxwell
stress tensor for stationary fields is, in fact, always based on
VXX E = 0 whether or not this relation does explicitly ap-
pear in a particular derivation. Consequently VXE = Oisa
fundamental assumption for Eq. (1) regardless whether it is
obtained by integrating the stress tensor or directly from
Eq. (3).

For practical applications the integrals of stress tensors,
such as Eq. (1), are usually more important than the tensors
themselves, and therefore we shall concentrate our atten-
tion here on such integrals.

Having established the role of VX E = 0in obtaining Eq.
(1), we now suspect that by having neglected the edge ef-
fects in the system shown in Fig. 1 we have created
VXEs#0 and thus have made our system incompatible
with Eq. (1).

Asit follows from Eq. (3), the correct force equation that
must be used if VXE=0 is

F= — %E#;Ezds+eo§E(E-dS)

+é j EX(VXE) dv, (5)

which differs from Eq. (1) by the presence of an extra inte-
gral with EX(VXE). Let us evaluate this integral for the
capacitor shown in Fig. 1. Since

VXE — i( JE, _ JE, ) .(8Ex _ OE, )
dy dz z dx
JE JE
+ k( - - )’ 6
ox dy ©)
andsincefor oursystem E = — (¥ /d )jinside the capacitor

and E = 0 outside, we have in the region e'f'g’h ' of width
Ax

JE E - E,

VXE — k 'y — k inside outside 7
dx Ax 7

or
VXE = —k(V/dAx). (8)

Taking into account that the average value of E insid
e(/‘lglh ’ is .
Eav = - %(V/d )j (9)

and observing that the volume of the region is thA4x, we
obtain
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eof EX(VXE)dv = €[E,, X(VXE)]tbAx

- &K(_ L )tbe' K
2 a\ " aax)7eR%
2
= &<K) ¢bi. (10)
2\d

When this correction term is added to Eq. (2) it makes the
force equal to zero, thus resolving the capacitor paradox.

From Eq. (10) we can obtain a useful edge effect correc-
tion for parallel-plate capacitors that can be used in the
future without repeated calculations of V) E. This can be
done as follows. If the edge effects in Fig. 1 are not neglect-
ed, the correction term given by Eq. (10j is due to the field
outside the capacitor and represents the contribution of the
ef and gh surfaces to the second integral of Eq. (1). There-
fore the contribution of just one of these surfaces, e.g., gh, is
one half that given by Eq. (10), or

F = (€,/2)(V /d )t 'bi, (11)

where ¢ ' is the distance between the part of the Maxwellian
surface “experiencing” the edge effect force and the hori-
zontal midplane of the capacitor.

As an illustration of the use of Eq. (11) let us find the
force with which the edge field of a parallel-plate capacitor
tends to pull the edges of the capacitor plates away from the
capacitor. Let the capacitor be as shown in Fig. 2 (depth b,
as before), and let us construct a Maxwellian surface efgh so
that the part ef’is at infinity and the part e almost touches
the upper plate. The horizontal force on the portion of the
lower plate enclosed by this surface, as calculated from
Egs. (1) and (10), is then the sum of the contributions due to
the surface gh (internal field)

Foy = —(€&/2)(V?/d)b (12)
and due to the surface he (edge effect)
2
_&V” b, (13)

2
F. _—_Eg(_’i) (,'bzﬁ(ﬁ)z(i)b
2 \d 2\d/\2 4 d

the contributions of the surfaces ef and fg being zero be-
cause they are in the regions where the field is essentially
absent. Thus the force is

F,=F, +F, = —(eV?/4d)b. (14)

(There is of course also a vertical component of the force on
the plate, but it is of no interest to us in this example.)

We shall now turn to another problem where Maxwell
stress tensor or integral may give mysterious results unless
the problem is approached with some care.

Consider the capacitor shown in Fig. 3. Asbefore, let the
separation between the plates and the depth of the capaci-

Fig. 2. Calculation of force acting on the edge of a plate in a parallel-plate
capacitor.
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Fig. 3. Calculation of force acting on a dielectric inserted into a parallel-
plate capacitor.

tor be d and b, respectively. Let there be a dielectric of
dielectric constant € and thickness ¢ partially inserted into
the capacitor. If we now try to find the force on this dielec-
tric by neglecting the edge effects and using the corrected
force equation, Eq. (5), we are confronted with the “second
capacitor paradox.”

Indeed, let us calculate the force by applying Eq. (5) to
the Maxwellian surface efgh shown in Fig. 3. The field at
the surface fg is V /d, exactly as in the empty capacitor of
Fig. 1. The field in the dielectric at the capacitor edge is also
V /d, exactly as in the empty capacitor; therefore V X E and
E,, at the edge are the same, too. Hence the force as calcu-
lated from Eq. (5) will be also exactly the same as for the
empty capacitor, that is, F = 0! This result is, of course,
absurd, since in reality the dielectric is pulled into the ca-
pacitor.

To resolve this paradox we shall need to examine two
things:‘first, the range of applicability of Eqgs. (1) or (5),
second, how closely the capacitor with the dielectric pres-
ent, but end effects neglected, approximates the same ca-
pacitor with the edge effects not discarded.

Let us examine in some detail how Egs. (1) and (5) are
derived. Crucial to the derivation is the relation

F=¢, f (V-EJE dbv. (15)

For a vacuum €,V-E = V-D = p. For a dielectric, however,
€V-E = V.(D — P)=p + p,, where P is the polarization
of the dielectric, p is the real electric charge, and p,
= — V.P is the “equivalent polarization charge” (the
charge in a vacuum by which the dielectric can be replaced
for calculating electric forces acting on it or for calculating
fields produced by the dielectric®). Therefore Egs. (1) and
(5) are equally well applicable to systems containing dielec-
trics and to systems without dielectrics. However, when
Egs. (1) and (5) are used, the dielectrics must be treated only
in terms of the equivalent polarization charges p, because
that is the only way in which dielectrics are represented by
Egs. (1) or (5) (another representation and equation for die-
lectrics will be discussed in Sec. IV).

Let us now consider what happens to the system shown
in Fig. 3 when the edge effects are neglected. To make the
problem more general, we shall assume that the dielectric is
of some thickness ¢ < d, as shown in Fig. 4(a). If the edge
effects are not neglected and the dielectric is represented by
the equivalent polarization charges, the system is as shown
in Fig. 4(b), with the polarization charges present even out-
side the capacitor. But if the edge effects are neglected, the
system degenerates to that shown in Fig. 4(c), with the po-
larization charges confined to the interior of the capacitor.

It is now clear why we have obtained a zero force for the
system of Fig. 3. Having neglected the edge effects, we have
altered V-P and have placed all polarization charges inside
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Fig. 4. (a) A dielectric in a parallel-plate capacitor. (b) The dielectric is
replaced by equivalent polarization charges. (c} If edge effects are neglect-
ed, there are no polarization charges outside the capacitor. (d) Correct
system for calculating the force on the dielectric.

the capacitor, that is, inside a homogeneous field. But a
charge distribution in a homogeneous field cannot exper-
ience a force perpendicular to that field, and hence the
force that we have found is zero. Thus, to obtain the correct
force, we must represent our system as shown in Fig. 4(d).
(This does not mean that one may not ignore edge effects
when calculating forces from energy. In the present exam-
ple the energy is then calculated as a function of penetra-
tion of the dielectric into the capacitor, and the edge effects
are merely left out of the calculation, since for a sufficiently
long dielectric the field configuration outside the capacitor
is not affected by the degree of penetration.)

To find the force on the dielectric shown in Fig. 4(d), we
need to know the electric fields inside and outside the di-
electric. They are calculated by using the boundary condi-
tion €4F,,coum = €0€E gicteatric tOgether with the voltage rela-
tion Ejiecric?! + Evacoum (@ +¢)=V. The field in the
capacitor above and below the dielectric (not near its right
edge) is

E,=E.={ —¢€eV/[t+€eld—1)]}j; (16)
the field in the dielectric (also not near its right edge) is

E ={—-V/[t+¢ed—t)1]} (17)
and the field in the right side of the capacitor is

E=(—-V/d)j. (18)

The Maxwellian surface is efgh. Note that the horizontal
parts of this surface are close to the plates and the vertical
part g is reasonably far from the dielectric; this is needed in
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order to avoid the region of the unknown inhomogeneous
field in the vicinity of the dielectric’s edge.

Unfortunately it is not at all clear how to take into ac-
count the polarization charges outside the capacitor, if the
edge effects are neglected. Therefore we shall leave the edge
field intact and shall solve the problem by using a modified
version of Eq. (11) (another, more direct, solution of the
problem will be given in Sec. IV).

Observe that the contribution made by a given part of a
Maxwellian surface to the force depends only on the field at
that surface. Therefore the contributions of the surfaces ef
and hg in our system are exactly the same as would be made
by these surfaces if they were in an empty parallel-plate
capacitor having the same field and the same edge effects
{field configuration) as actually present at these surfaces.
But this field is

E =E,=E,={—€eV/[t+€d—1)]}i (19)

The configuration of the edge field in an empty parallel-
plate capacitor is controlled by the separation of the plates.
Hence an empty capacitor with the field given by Eq. (19)
and with the same edge effects as are actually present in the
system under consideration must have a plate separation

d'=[t+ed—1))/e (20)

Therefore we can find the force on our dielectric by using
Eq. (1) and two edge-effect forces (one for surface ef, the
other for surface hg) given by Eq. (11) with V' /d in it re-
placed by E' and ¢’ replaced by d '/2. The result is

2
F= — E(K)bdi
2 \d

2 —
23[ eV [t+eld—1t)] bi 1)
2 lt+eld—t) 3
or, after obvious simplifications,
€le — 1)V 2bt

= i (22)

2d [t + €ld —t)]
which is the correct expression for the force.

Finally, let us consider one more system for which Eq. (5)
rather than Eq. (1) must be used although no edge effects
are involved. The system is the so-called “slot-effect” elec-
tret transducer shown in Fig. 5. It consists of an electret of
thickness ¢ placed between a grounded bottom plate and a
parallel slotted electrode located at a distance d above the
electret. If a voltage V'is applied across the slot, the electret

experiences a horizontal force. Our problem is to find this

force.

Let the remanent polarization of the electret be P, and
let the real surface charge on the horizontal surfaces of the
electret be + o. It is customary to describe electrets in

- K—\hT--—r- ————— AT T o= g

d _j@ "® ,’O @° X
W NN A R AT

} el @';(Dép 18 |

Fig. 5. Calculation of force acting on the electret in a slot-effect trans-
ducer.
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terms of their “effective surface charge” defined as
o,=0+P, (23)

and we shall follow this custom here. The induced polariza-
tion of the electret is

P, =€je — 1)E,, (24)

where € is the permittivity of the electret material and E, is
the electric field in the electret (region 1). The boundary
conditions for D at the top surface of the electret require
that (unless otherwise stated we shall speak here only of the
y components of the fields)

D,— D, =o, (25)
where D, is the displacement outside the electret (region 2)
and D, is the displacement inside the electret (region 1).
Since D =P + ¢E, and since P inside the electret is
P, =P, + P,, while P, = Ooutside, Egs. (25), (24), and (23)
yield

€, — €€E, =0,. (26)
Designating the fields in the left half of the system by sub-
script /, and those in the right half by subscript 7, we also

have for the voltages between the bottom and top elec-
trodes

E”t+E21d= —%V (27)
and
E,t+E,d=1}V. (28)
Solving Egs. {28), (27), and (26), we obtain for the fields
20.d + €V
=, (29)
2€,led +t)
20.d — €V
E,= — 24— %" ‘ (30)
2e4ed +t)
g, €20.d + €,V
E, = — _(___"_) , (31)
€ 2¢,ed +t)
E, = e _ M . (32)
€ 2¢qled +t)
By inspection we also have for regions 3 and 4
E,= —V/2d+1t) (33)
and
E,=V/2(d+1) (34)

Let us now find the horizontal force on the electret by
applying Eq. (1) to the Maxwellian surface efgh shown in
Fig. 5. Rewritten for the x component, Eq. (1) is

F.= - 2§ E%s, +&§ B (EaS. (35)

By symmetry, the contributions of the surfaces ek and fg to
the two integrals of Eq. (35) cancel each other. The contri-
bution from ef'is zero, because there is neither dS, nor E,
at this surface. Thus the only nonvanishing contribution is
made by the surface Ag and is made to the second integral,
because on the surface 4g there is E, due to the voltage V'
applied to the slot. However, this E, is different from zero
only near the slot, e.g., between the points & ' and g'. Hence
we have for the force

F.=¢| E,EdS) (36)
h'g
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But on this surface E-d S = E,,dS in the left half of the
system (between /' and 0), and E-d S = E,, dS in the right
half (between 0 and g’). Since E,, and E,, are constant, and
since dS = b dx (as before b is the length, or depth, of the
electrodes into the page), we have

y
F, = €,Eyb f) E, dx + eoEz,bf E, dx. (37)
h’ 0

The two line integrals represent the potential differences
®n — @o and @, — @,., respectively. By symmetry, these
potential differences are just ¥ /2. Using these relations we
obtain from Eq. (37) upon substituting E,, and E,, and
simplifying

F . =Vo,th/(ed +1t). (38)

This result is however absolutely wrong. In fact it does
not agree with the expression obtained for the force (de-
rived by a different method) when the slot effect was first
described,” and does not agree with the actual force mea-
surements.®

The error in the above calculations is a subtle one. It is
due to the fact that in obtaining our solutions for the fields
in the left and right halves of the system we did not allow
these fields to change gradually across the middle plane of
the system. Instead, we made them jump suddenly from
one value to another. Thereby we have inadvertently creat-
ed VXE at the middle plane, and have made our system
incompatible with Eq. (1). To obtain the correct solution we
should have used Eq. (5). However, since Eq. (5) differs
from Eq. (1) only by the presence of the volume integral
with VXE, we can obtain the correct solution by merely
evaluating this integral and adding it to Eq. (38).

Assuming that the fields at the middle plane change over
a short distance Ax, we find, essentially as in the previous
examples,

E, -E, —k 14

VXE, =k = , 39
x5 Ax (ed + t)Ax B9)
.E,+E . o,d
Elav =] - ! = -] ’ (40)
2 €oled + 1)
E, —FE
VXE2=k 2r 2! =k 314 , (41)
Ax (ed + t)Ax
. By +E . Ol
EZav =] z 2 =1J . (42)
2 €led +t)
The volume integral of Eq. (5) contributes a force
F =¢, J EX(VXE)dv = [E,,, X(VXE,)]tb4x
+ €[ E,.y X(VXE,)]dbAx, (43)

which, upon substituting Eqgs. (39), (40), (41), and (42) re-
duces to

F. =(e— 1\Vo,tbd /(ed + 1 - (44)

Adding now Eq. (44) to Eq. (38), we finally obtain the cor-
rect result

F,=Vo,bt(t+d)/ed+1t) (45)
for the slot-effect force.

III. MAGNETIC SYSTEMS

Just like forces in electric systems, forces in magnetic
systems can be calculated by using a Maxwell stress tensor
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or stress integral. The stress integral can be obtained by
integrating the stress tensor or, more directly, from the
vector identity given by Eq. (3). Since the force on a current
distribution in a vacuum can be expressed as

F=fJXde=f(VXH)XBdU

=,uof(V><H)><H dv, (46)

we obtain from Eq. (3) by setting in it V = W = H, multi-
plying it by u,, and dropping the two integrals with V-H
[because in a vacuum V-H = (V-B)/u,, = 0]

— _ o :
F= 23911 ds+yoffH(HdS). (47)

Let us use Eq. (47) to calculate the force on the volume
enclosed by a cylindrical Maxwellian surface efgh in the
solenoid shown in Fig. 6. The current in the solenoid is 7,
the length is /, and the number of turns is #. Let the radius
of the Maxwellian surface be r. If the end effects of the
solenoid are neglected, the field inside the solenoid is

H = (nl /])i (48)

and the field outside the solenoid is zero. By the geometry
of the system, only the vertical parts of efg# can then make
a contribution to the force. But on e/ the field is zero, thus
the only contribution comes from fg and is (noting that H is
parallel to d S on this surface)

F = i(uy/2)(nl /17r. (49)

Once again we get a force on an empty space! The cause of
this “solenoid paradox” is the fact that in deriving Eq. (47)
we have assumed V-H = 0, whereas by neglecting the end
effects of the solenoid we have inadvertently created
V-H +#0 at the solenoid end. Indeed, since

0H, + oH, + JH,
dx dy 9z
we have at the left end of the solenoid

H .. — .
V.H = ( inside Houtsnﬂe) — ni , (51)
Ax IAx
where Ax is the distance over which the change in H takes
place. Had we retained the integrals with V-H, the force

equation would have been

F= — /?fﬁﬂzars +;¢oj£H(H-dS)

V-H= , (50)

— o f H(V-H)dv. (52)

For the solenoid under consideration the last integral in

_______________

!
i
]

f i 1

Fig. 6. Calculation of force acting on the empty space in a solenoid.
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Eq. (52) is (only the region e'f'g'h’ contributes)
Ho J H(V-H)dv = iuoH,, (V-H)yrr’dx

X
—ite ("_l’)zwz, (53)

where H,, = nl /2listhe average magneticfieldine’f'g’'h".
Subtracting Eq. (53) from Eq. (49) we obtain F = 0, the
correct answer.

Before going any farther, we must determine whether or
not Eq. (47) could have possibly been derived without as-
suming V-H = 0. In particular, we must clarify whether
this assumption is necessary if Eq. (47) is obtained by inte-
grating the Maxwell stress tensor for magnetic fields.

As in the case of electric fields, there are several varia-
tions for deriving the stress tensor.””> But all these varia-
tions make use of the Maxwell equation V-B = 0, which for
a vacuum reduces to V-H = 0. Thus V-H = 0 (or, more
properly, V-B = 0) is aiready built into the Maxwell stress
tensor and therefore Eq. (47) is based on this relation no
matter how it is derived. Hence, it is Eq. (52), rather than
Eq. (47), that must be used for calculating forces in magnet-
ic systems where, for whatever reason, V-H = 0 does not
hold.

It should be noted however, that magretic systems are
usually much more difficult to treat iri terms of the Max-
well stress tensor or stress integral than electric systems. In
magnetic systems there is no counterpart of perfect con-
ductors within which the fields are zero and at the srface
of which they are normal. Therefore it is usually more diffi-
cult to find Maxwellian surfaces for which the direction
and magnitude of magnetic fields are everywhere known.
For this reason one should use for magnetic force calcula-
tions only those surfaces on which the fields are very well
defined, because otherwise it is difficult to determine what
correction terms are needed and where they should be
used.

Consider, for example, the system shown in Fig. 7. It
consists of a large solenoid into which a small solenoid is
partially inserted. The current, the number of turns, the
radius, and the length of the large and the small solenoids
arel,,n,,ry, 1, and I,, n,, r,, and l,, respectively. Let us find
the force with which the small solenoid is pulled in (or
expelled from) the large solenoid. If we try to find the force
by enclosing the entire small solenoid into the Maxwellian
surface and using Eq. (52), we end up with incomprehensi-
ble results: on such a surface there are too many regions
where the fields are not clearly defined and where V-H is in
doubt. The best way to solve this problem is to use a cylin-
drical Maxwellian surface enclosing only the winding of

Fig. 7. Calculation of force acting on a small solenoid inserted into a large
one.
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one of the solenoids but not-the empty spaee withirthe
solenoids. Such a surface is shown in Fig. 7. Let us neglect
the end effects of the large solenoid and let us apply Eq. (47)
to this surface. The vertical parts of the surface can be made
as small as we please and therefore make no contribution to
the force. By symmetry, the first integral makes no contri-
bution, either. The x component of the magnetic field due
to the large solenoid is present at the interior surface only
and is

H, =nl/l. (54)

The x components of the field due to the small solenoid are
the same on both surfaces, so that their effect cancels (the
normal component of the field also being the same on both
surfaces). Thus the x component of the force is due to the
second integral of Eq. (47) evaluated over the interior sur-
face and is

F, =p, JHIX(H-d S)=H,, | pHdS=H,, f B.dS,
(55)

wheré we have factored out the constant H,, and replaced
1oH with B. Since d S has the direction of an inward nor-
mal, {B.d S is the negative of the magnetic flux escaping
through the wall of the large solenoid. But this flux is en-
tirely due to the enclosed end of the small solenoid (we have
neglected the end effects of the large solenoid and thereby
have made its field strictly horizontal). If the large solenoid
is sufficiently long and if the small solenoid is sufficiently
far inside it, the escaping flux is equal to the total flux of the
small solenoid so that

f'B-ds = TFuoHyrr, (56)

where H, is the field produced by the small solenoid (** + »
sign is used if H, is opposite to H,). Thus the force on the
small solenoid, being opposite to that on the large one, is

F, = iﬂo(”lll/ll)(”zlz/lz)m%~ (57)

[Observe that although we had neglected the end effects of
the large solenoid, we did not need Eq. (52) because the
regions with V-H 30 were not enclosed by the Maxwellian
surface.]

Let us next consider still another type of error that may
be encountered when calculating magnetic forces from the
Maxwell stress tensor or integral.

Let us suppose now that instead of the small solenoid, a
plunger of permeability 1 and radius 7, < r, is inserted into
the large solenoid, as shown in Fig. 8. To find the force on it
we would probably try Eq. (52) with some reasonable
expression for V-H at the left end of the solenoid. However,
strange as it may be, Eq. (52) cannot possibly give us the
correct solution for the problem, because it is totally in-
compatible with the system under consideration! Indeed, a

h
Fig. 8. Calculation of force acting on a plunger inserted into a solenoid.
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crucial step in deriving Eq. (47) was the use of the relation
F=,uof(V><H)><Hdv. (58)

But this relation is valid only for forces exerted by a mag-
netic field on currents in a vacuum and does not represent
forces on magnetic materials. How then can one find the
force on the plunger by using a Maxwell stress equation?
We shall give the answer in Sec. IV.

IV. DIFFERENT TYPES OF STRESS INTEGRALS

We shall now derive a number of stress integrals de-
signed for specific electric and magnetic systems. Our start-
ing equation will always be the vector identity given by Eq.
(3). We shall use, however, different force equations, de-
pending on the system to be considered. In these equations
p, pp,» and P are real charges, polarization charges, and
polarization vector, respectively; J, J,,, and M are real cur-
rent, magnetization current, and magnetization vector, re-
spectively.

A. Stress integrals for electric systems

(1) Force on real charges in a vacuum:

F= f E dv = ei J(V-D}D dv. (59)
Setting in Eq. (3) V 0= W =D, we obtain
F= — 5L—jpzars + é§D(D.dS)
+ ei J D (VX Djdv. (60)
0

(2) Force on real charges only, even if they are embedded
in dielectrics:

F= f pEdv = J (V-D)E dv. (61)

Setting in Eq. (3) V= E, W = D, we obtain
F= — § (E-D)dS + § EDdS) + § D(E-d S)

+f[E><(v><D) + DX (VXE) — DV-Eldv. (62)

(3) Force on real charges and/or dielectrics (considered
as equivalent charges) in a vacuum:

F= f (p+pr)Edv=¢, J (V-E)E db. (63)
Setting in Eq. (3) V= W = E, we obtain
F= — %§E2d5+eo§E(E-dS)

+ & f EX(VXE)db. (64)

(4) Force on dielectrics in a vacuum due to an external
field E:

F= f pp Edv= — f(V~P)E'dv. (65)

Setting in Eq. (3) V= E', W = P, we obtain
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F= § (P-E)dS — fﬁ PEdS)— 95 E'(P-dS)
~ f [PX(VXE)+ E X (VXP) — P(V-E)]dv. (66)

B. Stress integrals for magnetic systems

(1) Force on real currents in a vacuum:
F=fJXde=pOJ(VXH)XHdU. (67)
Setting in Eq. (3) V= W = H, we obtain
F— _ %ffmds +u03§H(H-dS) —pofH(v-H)dv.

(68)

(2) Force on real currents only, even if they are within
magnetic materials:

F=JJXde=f(VXH)Xde. (69)
Setting in Eq. (3) V = H, W = B, we obtain

F= — 45 (H-B)dS + 43 H(B-dS) + ff B(H.dS)

+ f[Hx (VXB) — H(V-B) — B(V-H)]dv.  (70)

(3) Force on real currents and/or magnetic materials
(considered as equivalent currents)® in a vacuum

F=f(J+JM)><de=if(VXB)dev. (71)
Ho
Setting in Eq. (3) V= W = B, we obtain

1 1 1
F= — — ¢ B? — ¢ B(B-dS)— — | B(V-B)dv.
2#036 ds+#0§; (B3 #of ( );l;)

(4) Force on magnetic materials in a vacuum due to an
external field B’

F=fJMxB’dv= -l—f(VxM)XB’du. (73)
Mo

Setting in Eq. (3) V=M, W = B’ we obtain

- _1{mp 1 .
F= #OSB(MB)ds+#0§>M(BdS)

1 ’ i r
+;;3€B(MdS)+,u0f [MX(VXB)

— M(V-B') — B'(V-M)]dv. (74)
(Other similar equations can naturally be derived in an
analogous manner.)

We shall illustrate the use of the above equations with
three examples.

As the first example, consider a parallel-plate capacitor
of plate area S and plate separation d with a voltage ¥V
applied between the plates. Constructing a tightly fitting
Maxwellian surface around one of the plates (top plate, for
example) and using Eq. (64) we find that the attractive force
between the plates is

F=(e,/2)V/d)S. (75)
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Suppose now that the capacitor is submerged in a liquid
dielectric. Since the electric field between the plates re-
mains the same, Eq. (64) gives exactly the same force as
before, which clearly is a wrong result. The reason for the
error is in the fact that Eq. (64) is incompatible with the
second system—its purpose is to find forces on bodies lo-
cated in a vacuum. What we need is the force on a body
located in a dielectric, and that force is given by Eq. (62).
The contribution of the surface integrals of Eq. (62) to the
force on the top plate is (assuming that the y axis is directed
upward)

F' = — e eV /d)’S;j. (76)
There is, however, also a contribution from the volume
integral:

F'= — J DV-E dv. (77)

Since inside the metal plates E = 0 while inside the capaci-
tor E = — (V' /d)j (assuming that the top plate is positive),
wehaveat theinner surface of the topplate V-E = (V /d )4y,
where Ay is the distance over which E changes. Since the
average D within this distance is

Dplate + Dcapacitor - _— Goé'V i, (78)
2 2d
we have
F" = (e,€/2)(V /d )3, (79)
so that the total force, F' 4+ F”, is
F = — (e,€/2)\(V /d)*Sj, (80)

which is the correct result.

As the second example consider once again the capacitor
with dielectric shown in Fig. 4(d). An equation compatible
with the system is Eq. (66). Since P = 0 outside the dielec-
tric, there is no contribution from the surface integrals. The
only contribution comes from the volume integral. If we do
not neglect the edge effects of the capacitor, VXE' =0.
Also, V-E' = V.D'/€, = Osince there are no real charges in
the space within the capacitor. Thus the force is all due to
the term E'X(VXP). There are two regions where
VX P#0: the right edge of the dielectric, and the edge of
the capacitor. By Eq. (17), the polarization in the dielectric
is

€le— 1)V .
t+ed—t)"

Assuming that it changes to zero over a small distance 4x
both at the right edge of the dielectric and at the edge of the
capacitor, we have for the two regions

ele — 1)V

P=cle— )E= — (81)

VXP= + 82
T [t+eld—1)]Ax (82)
Theexternal field at therightedgeisE' = — (¥ /d )j,and at
the edge of the capacitoritisE], = — (¥ /2d )j(theaverage

between the field inside and outside the capacitor). Hence
the force is

_ [(K\ 4
d/[t+ed—1))Ax

__(L‘\ €ole — 1}V
2d/ [t + €ld — t)]Ax

]Axbt (ixk) (83)
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or
€ole — 1)V?bt ;

2d[t+eld—1)] "
which is identical with Eq. (22).

As the last example, consider once again the force on the
plunger in the solenoid shown in Fig. 8. An equation com-
patible with the system is Eq. (74). On the Maxwellian sur-
face efgh, M = 0. Thus all surface integrals are zero. If the
end effects of the large solenoid are not neglected, V-B’ = 0.
Since there are no currents inside the solenoid, VX B’ = 0.
Thus the force is

F—_ L

Ho

Just as VX PP in the preceding example, V-M 50 at the right
end of the plunger and at the edge of the solenoid. Since the
field in the plunger is H =in,I,//,, the magnetization is
M = ipylu — 1)n,1,/1; inside the plunger. It is zero out-
side. Hence, in the two regions,

V-M = Fpuolu — U)n,d,/1,4x. (86)
The original field in the solenoid is B’ = iun,I,//,, and at

the edge of the solenoid B, = iuynJ,/2!, (the average
field). The force is therefore

. 1
F= — — {(uonI,/1))[ — iolp — N)n,1,/1,4x]

0

+ (o 11/ 21) [polpe — 1)nid /1, Ax ) }Ax7rsi (87)

(84)

B'(V-M)dv. (85)

or
_ 2
Fotok—l) (——”'1 : ) i (88)
2\,
V. CONCLUSIONS

Maxwell stress equations for electric and magnetic fields
frequently become invalid when certain, usually perfectly
safe, approximations are used. Typical examples of such
approximations are simplified fields which, for the purpose
of calculations, are assumed to experience sudden changes
that do not occur in reality. The effects of such approxima-
tions on Maxwell stress equations are subtle and are fre-
quently overlooked. The situation may be further compli-
cated by the fact that different stress equations are
compatible with some systems but are incompatible with
the others. One must be careful, therefore, to select only
those stress equations that apply to the system under consi-
deration. Even then, correction terms may be needed to
compensate for certain approximations. The correction
terms are, however, easy to identify and easy to compute.
Therefore the need for them should not be considered as an
impediment to the use of the stress equations. On the con-
trary, the correction terms actually constitute a useful tool
which allows one to use the stress equations on a scale
much larger than that which is possible without them.
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Causality paradoxes and nonparadoxes: Classical superiuminal signals and

quantum measurements
T. M. Helliwell

Department of Physics, Harvey Mudd College, Claremont, California 91711

D. A. Konkowski

Center for Relativity, Department of Physics, University of Texas, Austin, Texas 78712

(Received 1 November 1982; accepted for publication 30 November 1982)

A potential causality paradox in quantum mechanics involving the measurement of a correlated
system of two atoms that have moved far apart is constructed along the lines of a classical
causality paradox involving the exchange of superluminal signals between distant observers. It is
shown that the quantum measurement example does not lead to a paradox, but that the results
have implications for the interpretation of quantum mechanics. The thought experiments
presented have been used in undergraduate courses in special relativity and quantum mechanics.

L. INTRODUCTION

Paradoxes are part of the established lore of special rela-
tivity and of quantum mechanics. Discussions on how to
resolve them have deepened our insight into the two the-
ories. They also point to some of the fundamental features
of these theories in such a provocative and graphic way that
they make stimulating classroom presentations and discus-
sions. Well-known examples include the twin paradox' and
the pole-and-barn paradox” in special relativity, and the
paradoxes of Schrodinger’s cat® and Wigner’s friend* in
quantum mechanics.

Causality paradoxes are especially fascinating. These are
paradoxes in which someone travels to the past or sends
signals to the past, so that the conditions which made possi-
ble the departure or transmission may be changed: the
paradigm is “killing your own grandfather as a boy.” It has
long been known that one may be able to signal the pastif it
is possible to send superluminal messages.” Whether the
paradoxes that arise as a consequence are real or only ap-
parent has been a matter of controversy, depending to some
extent upon the properties with which one endows the hy-
pothetical signal.>”’ '

A potential superluminal signal arises from the collapse
of wave functions in quantum-mechanical measurements.
If a measurement is made on one of a pair of widely separat-
ed but correlated particles, a resulting instantaneous col-
lapse of the wave function of the pair might be expected to
have some instant influence on the other particle. One
would like to know whether such an effectively infinite-
velocity influence can be used to construct a causality para-
dox.
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In this article we analyze two parallelly constructed sets
of thought experiments. One set involves the exchange of
classical superluminal signals (tachyons), and the other in-
volves the collapse of correlated wave functions in a quan-
tum measurement. The tachyon experiments are described
in Sec. II; the quantum measurement experiments are de-
scribed in Sec. I1I. Several possible interpretations of the
quantum measurement results are discussed in Sec. IV. A
brief summary of the conclusions is given in Sec. V.

The thought experiments described here have been used
in undergraduate courses in special relativity and quantum
mechanics.® We have chosen to use specific numbers in the
examples, which keep the arithmetic simple and which
stress the symmetry between the two observers. One could,
of course, choose different numbers or proceed algebraical-
ly instead.

II. A CLASSICAL TACHYON PARADOX

Hypothetical classical superluminal particles can be
used to construct a causality paradox if they have certain
properties.” We make the following assumptions”:

(1) Pulses of tachyons with any speed v > ¢ can be trans-
mitted and received by observers in any of the inertial refer-
ence frames envisioned in special relativity.'’

(2) Transmitted pulses can be modulated with the
sender’s call sign, so there is no confusion as to who sends a
signal and who receives it."'

(3) All signals are strong and unequivocal.'?

(4) The human observers who transmit and receive can
equally well be preprogrammed automata, so that ques-
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Erratum: “Correct use of Maxwell stress equations
for electric and magnetic fields” [Am. J. Phys. 51, 988-996 (1983)]

Oleg D. Jefimenko

Physics Department, West Virginia University, Morgantown, West Virginia 26506

Several equations between Eqgs. (44) and (45) have been
left out of the article, “Correct use of Maxwell stress equa-
tions ....” The equations are analogous to Eqs. (39)-(44)
and produce correction terms due to V X E at the boundar-
ies (3, 1), (3, 2), (2, 4), and (1, 4) of Fig. 5, where the vertical

field is discontinuous. Two more groups of equations pro-
duce correction terms due to V X E created by the horizon-
tal field E, ; this field generates V X E throughout regions 1
and 2. When all the correction terms are added to Eq. (38),
one obtains Eq. (45).

SOLUTION TO THE PROBLEM ON PAGE 437

In Fig. 1, CD is the virtual image of the trousers AB. CD
is of the same length as 4B and is situated at the same

MIRROR

8 Y o EYE — T

\
\
I:>

D
le |B
X
x 1
Fig. 1. Mirror image of a man and his trousers.

464 Am. J. Phys. 52 (5), May 1984

distance x behind the mirror as 4B is in front of it. The
angle subtended by the trousers’ image is given by

@=a—B=tan"'(h/2x) —tan"'[(h — I)/2x].

For the best view, we maximize € from conditions d@ /
dx = 0 and d 20 /dx® < 0. After a little algebra, we get

x=1[ah— N2
A.Tan
Department of Physics
Alabama A & M University
Normal, AL 35762
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Comment on “Correct use of Maxwell stress equations

for electric and magnetic fields”
R. Gerhard-Multhaupt

Institute for Electroacoustics, Technical University of Darmstadt, Merckstrasse 25, D-6100 Darmstadt,

Federal Republic of Germany

(Received 9 January 1984; accepted for publication 4 April 1984)

“This result is however absolutely wrong.” Thus, in his
recent article,’ Jefimenko brands his Eq. (38)

F,=Vob/ed+1) (C1)

for the horizontal force F, on the charged dielectric (or
electret) in a slit-effect device according to his Fig. 5. Un-
fortunately, it is not mentioned in Ref. 1 that Eq. (C1) was
reported by several authors®™ to be the correct force equa-
tion for the slit-effect transducer of Fig. 5 [Eq. (15) of Ref. 2,
Eq. (11) of Ref. 4, and Eq. (16) of Ref. 5]. In some of these
articles,”* Jefimenko’s early slit-effect papers®® are direct-
ly criticized and shown to be partly inconsistent.

It will be demonstrated in the following that the deriva-
tion of the supposedly correct’ Eq. (45) is muddled by a
simple sign error as well as by an unjustified omission of the
electret-edge contributions to the total force. From the re-
sult of these calculations, it will become clear that Eq. (C1)
is indeed the correct force equation for the particular slit-
effect arrangement discussed here, as long as only the elec-
tret contribution to the horizontal force is considered {cf.
Refs. 2-5). The fundamental aspects of force calculations
on dielectrics are not discussed in the present context.

In Ref. 1, the horizontal force F, calculated from the
horizontal field E, [Eq. (38)] is “corrected” by addition of a
force F [Eq. (44)] resulting from the edge effects at the
middle plane between the left and the right halves of the
device. Correct addition of Egs. (38) and (44), however, re-
sults in

F, =Vo,bt(2ed —d + t)/(ed + t ), (€2)

which differs from Jefimenko’s' Eq. (45) by 2F . [Eq. (44)]
and does not agree with his original force expression.® Fur-
thermore, Eq. (C2) does not contain the nonvanishing con-
tributions from the edge effects of the electret itself
[between regions 3 and 2 as well as 3 and 1 in the left half of
the device and between regions 2 and 4 as well as 1 and 4 in
its right half (cf. Fig. 5 of Ref. 1)].

Following the formalism proposed in Jefimenko’s pa-
per,’ these additional contributions to the horizontal force
can be easily calculated. In analogy to the derivation of Eq.
(44), we obtain (1) for the lower left (11) edge effect between
regions 3 and 1, using Eqgs. (29) and (33),

_ &V7dtb (€d —d + 2et — 2t)
8led + t)A(d + t )?
th(o.deyV + o?d*?
(o.de, . ); (©3)
2€yled +t)
(2) for the lower right (Ir) edge effect between regions 1 and
4, using Eqgs. (30) and (34),
€V *dth (€d — d + 2et — 2t)
8(ed + t)A(d + t )?

th (o,de,V — 2
(Ue 60 Oﬁd ); (C4)
2¢q(€d +t )

" o__
Fll"'

Fi=+
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(3) for the upper left (ul) edge effect between regions 3 and 2,
using Egs. (31) and (33),

€,V 2dth (26*d + €’t — 2ed — t)
8(ed + ¢ )%d + )
—o*t?
_ dblo.eteV oit?) . and (C5)
2¢6pled +t)?

(4) for the upper right (ur) edge effect between regions 2 and
4, using Eqgs. (32) and 34),

€ Vdth (26%d + €t — 2ed — 1)

Fi=+

Fi =
8ed + t)A(d +t)?
_ dblo.eteV + o’t?) (C6)
26 (ed +t)?

Addition of equations (C3)}—(C6) yields the total horizontal-
force contribution F'? of the electret edges

Fy=Fi+Fi+F;+F
= —(e— 1)Vo,tbd /(ed + t)?, ' (C7)

which exactly cancels the contribution F; of the edge ef-
fects at the middle plane of the transducer [Eq. {44)].

Thus, by adding Egs. (38), (44), and (C7) [or Egs. (C2) and
(C7)], the horizontal force F, on the electret in Jefimen-
ko’s! slit-effect device is found to be correctly represented
by Eq. (38). The result demonstrates that the correct use of
the Maxwell stress equations leads to the same slit-effect
equations as the use of other theoretical approaches.?~> Je-
fimenko’s' observation, that sudden field changes have to
be treated carefully in Maxwell stress formulations, is
strongly supported by this agreement.

In an independent approach, Eq. (38) [or (C1)] can also
be obtained by restricting the integration volume to regions
1 and 2 only (cf. Fig. 5 of Ref. 1). In this case, the contribu-
tions of the left (1) and right (r) vertical surfaces of the inte-
gration volume do not cancel each other. Their sum F is
given by

Fr= —%(@E%—Eﬂd&)

= —(e— Vo tdb/(ed +1) (C8)

This result, which was calculated by use of Eqs. (29)-{32)
and (35), has to be added to Eq. (C2) in order to find the
total horizontal force. Because Egs. (C7) and (C8) are iden-
tical, the addition again yields the same force equation [(38)
or (C1)}. '

In conclusion, the correct use of Maxwell stress equa-
tions according to Jefimenko’s' suggestion leads to the
same slit-effect equations as the application of dther princi-
ples,”™ if all edge effects are properly included. Thus Jefi-
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menko’s original force expression® as well as all its later
variations'’'° have to be corrected as stated before.>*>
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It is true that Eq. (45) in the paper under consideration' is
improperly derived. Several intermediate equations similar
to Egs. (39)-(44) have been inadvertently left out and
should be inserted between Eqs. (44) and (45). However, the
error has no effect on any equations or on any conclusions
reached in the paper. In particular, it does not change the
fact that Eq. (38),

F,=Vo,tb/(ed +1), (R1)

does not represent any force in a slot-effect transducer (ex-
cept when d = 0) and that Eq. (45),

F,=Vo,th(t+d)/led + ), (R2)

is the correct equation for the force on the electret in the
transducer shown in Fig. 5 of Ref. 1.

To restore the missing equations without an unnecessary
duplication of computations, we shall make use of some of
the calculations presented in Gerhard-Multhaupt’s com-
ment. As it is shown in the Comment, after four more re-
gions with VX E#0 [boundaries (3,1) (3,2), (2,4), and (1,4)]
are taken into account, the correction terms cancel the con-
tribution of VXE at the middle plane, so that Eq. (R1) is
obtained once again. There is, however, one additional re-
gion where VXE=#O0. This region is the entire volume of
the transducer! The additional V X E is created there by the
horizontal component of the field E, as a consequence of
the simplifying assumptions about the vertical components
E, that have been made for deriving Eqs. (29)(34) of Ref.
1.2

Let us consider in some detail the role and the behavior
of E, in the slot-effect transducer. First of all, we notice
that according to the basic force equation

F=f(p+p,,)Edv, (R3)

the electret will not experience a horizontal force unless
there is a horizontal component of the field at the location
of the electret [represented in Eq. (R3) by the real and po-
larization charges p and p,].> Second, we notice that
E_ = 0at the bottom electrode, because only a normal field
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can exist at the surface of a conductor. Third, we notice
that since E, is constant in all subregions of the transducer
shown in Fig. 5 of Ref. 1, E, may not be a function of x;
otherwise

vi-2 £ +9E, (R4)
ox dy
will not vanish, so that electric charges will be present
throughout the transducer.

Thus, as a result of approximations used for the vertical
field, we have created a unidirectional field E, which varies
in a direction perpendicular to the field direction. In such a
field VX E#0. Furthermore, since E, is not a function of

x, it satisfies the relation
ExL =¢a _¢b’ (RS)

where ¢, and @, are the potentials of two points located at
the same distance y above the bottom electrode (¢ = 0), and
where L is the horizontal distance between these points.
But since the vertical components of the field are constant
in their respective regions, ¢, — ¢, is a linear function of y.
Hence E, is also a linear function of y. Therefore VX (E. i),
or, for simplicity, VXE,, must be constant throughout
regions 1,, 1,,2;, and 2,.

To find VXE,,, we proceed as follows. The potential of
a point on the top surface at the left edge of the electret is
#, = — E,,t. The potential of a point on the top surface at
the right edge is ¢, = —E, . Hence the potential difference
is

¢l - ¢r = (Elr - Ell)t’ (R6)
or, substituting Eqgs. (29} and {30) of Ref. 1,
& — ¢, =Vt/led +1). (R7)

Remembering that E, is a linear function of y and using
Egs. (R5) and (R7), we therefore have for VX E,,, in regions
1and 2

VxEl(x) = - k(Ex,y= t Ex,y:O)/t
= —kV/L(ed + 1), (R8)
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VXEZP‘) = - k(Ex,y=d+z _Ex,yzt)/d
= —keV /L (ed + t), (R9)

where L is the length of the electret. The correction term
due to VXE,, is then

F = eofEx[VxE(x,] dv, (R10)

where the integration needs to be extended only over re-
gions 1 and 2, since regions 3 and 4 can be made as small as
one pleases. We have therefore

F,= —e {[EyV/L(ed+1t)]btL/2
+ [EV/L(€d +1)]btL /2
+ [En€V /L (ed +t)]bdL /2

+ [Ey €V /L (ed +t)]bdL /2}, (R11)
which, after substituting Eqgs. (29)—(32), becomes
F. = —(e— )Vo,tbd /(ed + t )*. (R12)

Adding Eq. (R12) to Eq. (R1), we finally obtain Eq. (R2),
which is the same as Eq. (45) of Ref. 1 and the same as the
force equation originally reported by the author.*

The slot-effect transducer was used in Ref. 1 merely as
an illustration of the proper application of the Maxwell
stress integral to this particular system. For practical pur-
poses one can find the force on the electret much easier by
using the basic force relation Eq. {R3) directly. Since this
method also reveals the true nature of Eq. (R1), we shall
demonstrate it here.?

Observe that, in contrast to Maxwell stress equations,
Eq. (R3) does not depend on VXE or on E outside the
charge distribution, so that fewer approximations are need-
ed when this equation is used. Observe also that Maxwell
stress equations for electric fields are derived directly or
indirectly from Eq. (R3) or from its differential form.
Therefore Eq. (R3) must give either a more accurate or an
equally accurate result as that obtained from the Maxwell
stress equations.

To apply Eq. (R3) to our system, we replace the electret
by an equivalent surface charge distribution®
o, =0 + 0, + 0;, where o is the real surface charge, o, is
the remanent polarization surface charge, and o; is the in-
duced polarization surface charge (o, + o, = — Pen,,,
where P = P, + P, is the sum of the remanent and induced
polarization of the electret, and n,, is a unit vector directed
into the electret). For the left and the right half of the top
surface of the electret (other surfaces do not contribute to
the force) these charges are given by the “surface diver-
gence” of E

o, =E, —E,, (R13)
and
O =E2r '—Elr’ (R14)

where the fields are given by Egs. (29)—(32) of Ref. 1.
The force can now be found by evaluating

F, =f p.E, dv =fa,Ex dS=f o,E . bdx
1

=0, bf E,dx+o, bJ E, dx, (R15)
1 m

where 1 indicates the left edge of the electret surface, r indi-
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cates the right edge of the electret surface, and m is the
middle point of the surface directly below point o in Fig. 5
of Ref. 1. The last two integrals are just the potential differ-
ences ¢, — #,, and ¢, — &,, each equal to (¢, — #,)/2 by
the assumed symmetry of the system. Combining Eqgs.
(R13), (R14), (R15), and (R7), we promptly obtain Eq. (R2)
once again.

It is interesting to note that by the same method of direct
force calculation one can also obtain Eq. (R1) if instead of
the total charge o, = o + o, + 0; one uses just o+ o,
(thus ignoring the induced charge o;). Consequently, Eq.
(R1), which Gerhard-Multhaupt erroneously assumes to
be correct, represents merely an imperfect version of Eq.
(R2).

The original “criticism” of Eq. (R2) to which Gerhard-
Multhaupt refers was prompted by the failure of the cri-
tics®® to derive Eq. (R2). They derived Eq. (R1) instead,
which they obtained by an improper use of energy rela-
tions,® by an improper use of Maxwell stress tensor,*™® and
by falsely supposing that Eq. (R3) was less reliable than
Maxwell stress equations.® As it follows from Ref. 1 and
from the present discussion, this criticism was completely
groundless. The newer critics® merely duplicated old errors
and quoted some of the expletives with which the original
criticism was embellished, without attempting a new anal-
ysis of the validity of methods used to obtain Eq. (R1) and
Eq. (R2).

Naturally, as it was pointed out by the author from the
very start,* Eq. (R2) is only an approximate force expres-
sion. The final decision on its validity must come either
from a more detailed theoretical analysis or from accurate
experimental measurements. The author is not aware of
any theoretical analysis more detailed than that presented
here and in Ref. 4. And the only accurate measurements of
the force known to him were done by Walker and himseif. '°
These measurements involved meticulous determinations
of €, a study of the effect of the variation of # on the force,
and precise measurements of the force for a wide range of V'
and o, values. The results of the measurements were in
excellent agreement with Eq. (R2).

Gerhard-Multhaupt’s concluding suggestion that Eq.
(R2) ““as well as all its later variations will have to be cor-
rected” is interesting, but its implementation will have to
wait until somebody produces a better equation.
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