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A new method for calculating electric and magnetic forces is presented. The method makes it
possible to calculate forces directly from scalar and vector potentials rather than from field
vectors. Several new force equations are derived. They are grouped in four categories: equations
for calculating electric forces from electric scalar potentials; equations for calculating electric
forces from electric vector potentials; equations for calculating magnetic forces from magnetic
vector potentials; and equations for calculating magnetic forces from magnetic scalar potentials.
Since the potentials are usually easier to compute than the corresponding fields, the new equations
provide an effective alternative to the previously available techniques for force calculations. From
the theoretical point of view, these equations reveal a physical significance of electric and
magnetic potentials not heretofore apparent and provide a new insight into the nature of electric

and magnetic forces. Illustrative examples on the use of the equations are given.

I. INTRODUCTION

In the conventional treatments of electromagnetic theo-
ry, electric and magnetic fields are defined from the very
start in terms of forces, and potentials are either defined in
terms of energy or are closely associated with it. Inadver-
tently, these definitions or associations result in an implicit
conclusion that for calculating electric and magnetic forces
one should use fields, and that for calculating electric and
magnetic energies one should use potentials. Even when
equations later appear in which electric and magnetic ener-
gy is expressed in terms of the fields, the initial conclusion
prevails. And yet, it is precisely the association of the ener-
gy with fields rather than with potentials that has resulted
in the discovery of such important phenomena as the prop-
agation of energy by Poynting’s vector, electromagnetic
momentum, etc. These discoveries indicate that the con-
ventional association of energy with potentials rather than
with fields is nothing more than a historical circumstance
and is not demanded by the nature of electric or magnetic
phenomena. »

It appears plausible, therefore, that the association of
electric and magnetic forces with fields is also incidental
and that relations should exist by means of which forces
could be calculated directly from potentials rather than
from fields.

These considerations have led me to explore in some de-
tail the relations between forces and potentials. As I pro-
ceeded with this exploration, I became convinced that a
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number of useful and intriguing electric and magnetic force
relations have been previously overlooked. The purpose of
this article is to report and to discuss these relations.
Several illustrative examples are included in the article.
Most are very simple; their intent is to illustrate the appli-
cation of the theory rather than to obtain new results. How-
ever, some of the examples (such as Examples 3 and 9) are
relatively difficult to solve by standard means; these exam-
ples serve not only to demonstrate the use of the new equa-
tions, but also to demonstrate the power of the equations.

II. CALCULATION OF ELECTRIC FORCES FROM
SCALAR POTENTIALS

The electric force on a charge distribution p located in an
external electric field' E' is given by

F— f E' db. (1)
all charge
Let us write this equation as
F= P o dv+f PE’ db, 2)
surface layer interior

where the first integral is extended over the surface layer of
the charge distribution, and the second integral is extended
over the interior of the charge distribution. The volume of
the surface layer may be assumed as small as we please, so
that unless the internal charge is enclosed within a layer of
surface charge (which we assume not to be the case), the
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first integral may be disregarded. We then have

F= pE’ dv. (3)
interior
Let us now replace E' in Eq. (3) by — V¢', where ¢’ is the
external scalar potential at the location of p, and let us then
transform the integrand by means of vector identity (A1)
(all vector identities used in this article are listed in the
Appendix). We then have

F= J pE' dv
interior

= — f p Ve dv
interior

=J_. ¢ Vp dv—J V(pd')dv. (4)
interior interior -

If we now transform the last integral by means of vector
identity (A2), we obtain

F=J ¢'vpdv—56 pd dS, (5)
interior surface

where the second integral is extended over the surface of
the charge distribution.?

A remarkable feature of Eq. (5) is that it associates the
force on a charge distribution directly with the potential
rather than with the field. The equation is immediately sus-
pect, because the potential is determined only to within an
additive constant, while the force must be a single-valued
quantity. However, a closer examination of the equation
shows that any additive constant appearing in ¢’ integrates
out and has no effect on the force.’

If the charge distribution is constant, the first integral in
Eq. (5) vanishes, and we have

F= —p3§¢'ds. (6)

If the charge is confined to a thin layer, the surface integral
in Eqgs. (5) and (6) can be split into the integrals over the
broad surface of the layer and over the rim of the layer. The
latter integral contributes to the total force an amount

Fan = — §pbtdl, = — §op' dl. M

where ¢ is the thickness of the layer, o is the surface charge
density of the layer, and d1,, is a vector representing a
length element of the rim and directed out of the charge
distribution at right angles to the rim.

It should be noted that the external potential ¢’ appear-
ing in the above equations can be replaced by the total po-
tential ¢, because a self-potential cannot produce a net
force on a charge distribution.

Example 1. A point charge g is located on the axis (z
axis) of a thin-walled cylinder of uniform surface charge o,
length 2/, and radius a. The distance between ¢ and the
center of the cylinder (assumed to be to the right of ¢) is z.
Find the force exerted on the cylinder by the point charge.

Since the charge distribution is constant, only the sur-
faces of the cylinder contribute to the force, and, by the
symmetry of the system, the only contribution comes from
the two end surfaces (rims) of the cylinder. The external
potential ¢’ at the end of the cylinder closest to the charge
is* ¢’ = g/4mex[(z— D + a*1"?, and that at the other
end is ¢' = q/4me, [ (z + [)* + a*]'%. By Eq. (7), taking
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into account that the integrand is a constant, the force is
then

F=kog2ra/dme, [ (z — 1)* + &)

—ko@2ma/dwe, [ (z + 1)? + a*]"?
or

F:kq"“( 1 _ 1 )
2, \[(z—D>+a]"* [+D*+a1")

Example 2. A thin sheet of dielectric material of surface
area S carrying a uniform surface charge o is inserted be-
tween two large parallel horizontal grounded conducting
plates, so that it is located at a distance @ from the bottom
plate and at a distance b from the top plate. Find the force
on the sheet.

The sheet induces surface charges o, and o, on the lower
and upper plate, respectively, so that

o,=—ob/(a+b), o0,= —oa/(a+Db).
The potential produced by these charges in the space
between the plates is

¢ = [o(b—a)/ 26 (a+b)]x,
where x is the distance up from the bottom plate. Let the
thickness of the surface charge be . The two surfaces of the

charge are then at distances x =a —t/2and x =a + t /2
from the bottom plate. By Eq. (6), the force is then

=ip ob—a) (a——t-)S

T 2, (b+a) 2
s a(b-a)( —t—)S
¥ et T2

or
F=ipt[o(a—b)/2¢,(a+b)]S
=i[d*(a —b)/2¢,(a + b)] S.

Example 3. A uniformly charged sphere of charge g and
radius @ consists of two separate hemispheres. Find the
force between the hemispheres.

Since p is constant, we can use Eq. (6). However, we
shall use this equation with the total potential ¢, because ¢’
is difficult to compute. The total potential for r<a is

¢ = (q/8m€,a’) (3d* — 1),

where 7 is the distance from the center of the sphere. Let
us assume that the hemispheres are separated by a horizon-
tal plane, and let us calculate the force on the upper hemi-
sphere. The surface integral in Eq. (6) can be split into a
part over the hemispherical surface and a part over the flat
base of the upper hemisphere. Since the magnitude of fd S
over a hemispherical surface is just the area of the projec-
tion of the hemisphere on its base, the contribution of the
hemispherical surface to the force is

F, = ipgma*/4me,a = ipga/4e,,

where 1 is a unit vector normal to the base and directed
downward. The contribution of the base of the hemisphere
is '

F,= _ipj g -(3a® — P)2mrdr
o 8meya

- _ip(3_4_‘1__‘19_)= _i%p%
8¢, 16¢, 16¢,
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The total force F, + F, is then
F = —ipga/16¢, = —i3q°/64me,a’.

I11. CALCULATION OF ELECTRIC FORCES
FROM VECTOR POTENTIALS

Electric fields in charge-free regions can be represented
not only as gradients of scalar potentials but also as curls of
vector potentials.’

Letusreplace E'in Eq. (1) by (1/€,)V X A’, where A’ is
the vector potential due to the sources producing E’ (the
presence of p does not preclude the existence of the external
vector potential A" at the location of p, since all sources of
A’ are outside of p). We have

=1

€ Jall charge

PYXA’ dv. (8)

Splitting the integral, as before, into an integral over the
surface layer of the charge and an integral over the interior
of the charge, and ignoring the first integral, we have

=1

€y Jinterior

p VXA’ dv. (9)

Using now vector identity (A3), we have

F=L| pvxAd
€y Jinterior
_1 VX (pA")do
€p Jinterior
1 '
- VpXA'dy,

€ Jinterior

and, using vector identity (A4), we obtain

F=L1 AxVodr—Ld  pA'xds. (10)
€q Jinterior €y JSurface
For constant p, Eq. (10) simplifies to
F= —lpffA'xds. (11)
€

For a layer of charge, the contribution of the rim of the
layer to the total force is
1

F,. = —ipr'xtdlom -1
€o €y

ogA'Xdl,,, (12)

where 1, 0, and d1,,, are the same as in Eq. (7).

Note that, in contrast to the similar equations for scalar
potentials, only the external vector potentials can be used
in Eqgs. (8)-(12), because an electric vector potential is
defined only for regions of space external to the charges
that produce the vector potential.

Example 4: Find the force between the plates of a paral-
lel-plate capacitor whose plates are disks of radius a sepa-
rated by a small distance d and carrying equal and opposite
surface charges + o.

Let us assume that the positive plate is the “force-pro-
ducing” plate and that the negative plate is the “force-expe-
riencing” plate. The vector potential due to the positive
plate is, in cylindrical coordinates whose z axis coincides
with the symmetry axis of the capacitor and is directed
from the positive to the negative plate, A’ = (¢/4)9.

Since o is constant, Eq. (11) can be used to find the
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force. Only the rim of the charged layer makes a net contri-
bution to the force (on the flat surfaces, A’ Xd S is radial
and produces no net effect).

By Eq. (12), in lieu of Eq. (11), the force is then
2 2
9% ta= —kZ S.
4¢, 2¢,

2 L
infi—aexdlou, = —k
& 4

[ Although this expression has been derived for a capacitor
with circular plates, the result is independent of the form of
the plates. This can be shown by using the vector potential
in rectangular coordinates A'= — iogy/4 + jox/4 and
noting that {f (x dy — y dx) represents the area of the sur-
face enclosed by the path of integration. ]

Example 5: Find the force between a point charge gand a
uniformly charged disk of charge Q and radius a located at
a distance z from the point charge, if the surface of the disk
is perpendicular to the line (z axis) joining the point charge
with the center of the disk.

The vector potential of the point charge is, in spherical
coordinates centered at the point charge,

A’ = (g/47r) [ (1 — cos ) /sin 6 16,

where & is the angle between r and the z axis. As in the
preceding example, only the rim of the disk contributes to
the force. Substituting cos@=2z/(2> +4a*)"* and
rsin 6 = a, we obtain, by Eq. (12),

F=kij€ oq[1 —z/(2 + a»)''?] dl
€ 47a

=k(1/6,){og[1 — z/(2* + a*)"*1 /4ma}2ma
= k(qQ/Zeoﬂ'az) [1 —z/(22 + 02)1/2].

Example 6. An infinitely long line charge of density A is
placed along the z axis of rectangular coordinates. An infi-
nite plane sheet of surface charge is placed parallel to the yz
plane at the distance x = a from the line charge; the center
of the sheet being on the x axis. Find the force per unit
length exerted by the line charge on the sheet, if the charge
density of the sheet is

o= —o,[d/(@+)].

Since the charge is not constant, we must use Eq. (10).
Assuming that the thickness of the surface charge is ¢, we
have for Vp

The vector potential produced by the line charge is, in
cylindrical coordinates,

A= (A /2m)0k,

where @ is the angle around the z axis in the xy plane. By the
symmetry of the system, the surface integral in Eq. (10)
makes no contribution to the force (the contributions of
the front and back surfaces cancel, and there is no contribu-
tion from the edges at infinity).

Expressing the gradient of the charge in terms of the
angle 0, we have

Vo = (20, /ta)sin € cos® 8 j.
The force per unit length is then
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* 2
F, = _il __’1_9 %
€& J-w 27 ta

Ag, f”” do

sin 8 cos® 6t dy

280 sin 6 cos® 9

= —i

2mey J—nn2 cos’ 6

/1 /2
= _j 2% f Osin20d9— —i2%
27e, w2 4¢,

IV. CALCULATION OF MAGNETIC FORCES
FROM VECTOR POTENTIAL

The magnetic force on a current distribution J due to an
external field B’ is given by

F= IXB' dv.

all current

Replacing B’ in Eq. (13) by V)X A’, where A’ is the external
vector potential, and splitting the integral into an integral
over the surface layer and an integral over the interior of
the current, we have

(13)

IX(VXA') dv.
(14)

F=J Jx(VxA’)dv+f
surface layer i

nterior

As before, the integral over the surface layer can be ig-
nored. The integral over the interior can be transformed by
using vector identity (AS5) to

F= j A'(V-J)dv + fJ(V-A’)dv
+fj> (A*J)dS — ffJ(A"dS)

—§A’(J-dS) ——JA’X(VXJ)dv. (15)

But V:J =0, V-A" = 0, and J-d S = 0 (because a current is
always parallel to its surface). Therefore, we have

F =§ (A'-J)dS —fJ(A’-dS)

—JA'X(VXJ)dv. (16)

We can also transform the second volume integral together
with the second surface integral in Eq. (15) by using vector
identity (A6). We then obtain the alternative force equa-
tion

F =§ (AJ)dS — J- (A'V) J dv

—JA’x(VxJ)dv. (17

From this equation we immediately see that for constant J
the force is simply
F=5£(A’-J)dS. (18)

For a surface current of density J*° = ¢ J per unit width,
where ¢ is the thickness of the current, the edges (rim) of
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the current contribute

Frim = §(A,.J(s) )d loul

—§J“’(A'-dlom) (19)
to Eq. (16) and
Frim =f§ (A"J®)d1,,, (20)

to Egs. (17) or (18).

Although the above equations have been derived for the
internal potential A’, they remain valid if the total potential
A is used in them, because the self-potential cannot create a
net force on a current.

Example 7. A long straight wire is placed along the z
axis. It carries a current 7’ in the direction of z. A straight
current-carrying strip of length L and width a is placed
parallel to the wire in the xz plane. The current in the strip
is I, also in the z direction, and the distance of its front edge
from the wire is d. Find the force on the strip.

Wecan use Egs. (18) and (20) tosolve the problem. The
surface current density in the stripis J' = k 1 /a. The vec-
tor potential produced by the wire is, in cylindrical coordi-
nates,

A'= — (uI'/2m)nrk.
By the symmetry of the system, the contributions of the
two flat surfaces of the strip cancel each other so that only

the contributions of the edges remain. By Eq. (20), noting
that the integrand is a constant, we then have

I I
F=ite 1nd(i)L—i”° 1n(d+a)(i)L
2 a

2T a
'L
=1 Ho In d .
2ma d+a

Example 8. A solenoid of n, turns, radius q, length /,,
and current I, is partially inserted into a larger solenoid of
n, turns, radius b, length /,, and current I, . Neglecting end
effects (that is, assuming that the magnetic field of each
solenoid is confined to the interior of the solenoid), find the
force on the smaller solenoid.

We can use Egs. (18) and (20) to solve the problem. Let
us assume that the axes of the two solenoids coincide with
the z axis (directed left to right), that the smaller solenoid
is to the right of the larger solenoid, and that both currents
I, and I, are right-handed relative to z. The vector poten-
tial produced by the larger solenoid is then, in cylindrical
coordinates,

A’ = (uon, I, /25,)r 0.

By the symmetry of the system, only the end of the smaller
solenoid inside the larger solenoid contributes to the force.
The surface current of the smaller solenoid is
J® = (n,1,/1,)0. Hence, the force is, by Eq. (20),

F= Lony I, a n I, dl,, = _ﬂo”1”21112 ra’k.
21, I I A

Example 9. A uniformly charged spherical shell of
charge density p, inner radius @, and outer radius b consists
of two separate hemispheres. The shell rotates with angular
velocity @ about its vertical symmetry axis (z axis) passing
at right angles to the equatorial plane separating the two
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hemispheres. Find the force between the two hemispheres.

The current density in the shell is, in spherical coordi-
nates centered at the center of the shell, J = pwXr. The
vector potential inside the shell is

A = (u,p0/30) (5b* — 3r* — 2a°/r)rsin 6 ¢.

Let us find the force on the upper hemisphere. To do so
we can use Eq. (17) with the total potential A. Since
VXJ = 2po, AX(VXJ) does not contribute to the net
force, so that only the surface integrals need to be consid-
ered. Since J is not a function of ¢, the second integral
vanishes. Thus the force is all due to the first integral of Eq.
(17). The contribution of the fiat base of the hemisphere is

b 5
F, = — f HoP® (5b 2 37— 3‘—1—) rpor2ar dr
a 30 '3

2 2
= —k”"—’;g’—’l (36° — 5b%* — 8ba® + 10a°).

Only the vertical component of d S makes a net contribu-
tion to the integral over the outer hemispherical surface.
Hence this surface contributes

/2 5
F2=kJ Fop® (5b2_3b2_-2"—)bsin0pmb
o 30 b3

X sin 827b 2 sin 6 cos 8 dO
= k(uop’w*n/30) (b° — a’)b.

The inner surface of the upper hemisphere contributes,
similarly,

7/2
F, = —kf (opw/6) (b> — a*)a sin 6 poa
(V] .

X sin 8 27a” sin 8 cos 6 df
= —k(uop’0?*n/12)(b* — a*)a*.
The total force is then
F=F, +F, +F,

= — k(uop’0*n/60) (b° — 6ba® + 5a°).

V. CALCULATION OF MAGNETIC FORCES
FROM SCALAR POTENTIALS

Let us replace the flux density vector B’ in Eq. (13) by
— po V¢', where ¢’ is the external magnetic scalar poten-
tial. Transforming the equation as before, we have

F=fJxB'dv= —yofJxV¢’dv

= —uof IXV¢' dv—,uof IX V' dv.
surface layer interior
(21

Disregarding the integral over the surface layer and using
vector identity (A3), we obtain

F= ~,uof IXVS' dv
interior
=,uof VX (¢'3)dv
interior
— g f #VXJ dv. (22)
interior
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The first integral on the right can be transformed by using
vector identity (A4) into a surface integral, so that the
force becomes

F= —,u0§¢'JXdS—,uof &'V J dv. (23)

For a surface current J* the contribution of the rim sur-
face is

Fin = —,uoqui'J(”xdlom. (24)

Note that only the external potential can be used in the
above equations because the magnetic scalar potential is
defined only for regions of space external to the source of
the potential.

Example 10. An infinitely long wire carries a current I’
along the z axis of rectangular coordinates. A conducting
bar of square cross section and thickness 2a is placed paral-
lel to the wire so that the center line of the bar is in the xz
plane at a distance d from the wire. The surfaces of the bar
are parallel to the yz and xz planes. The bar carries a cur-
rent I in the z direction. Find the force exerted by the wire
on the bar, if the length of the bar is /.

The potential of the wire is, in rectangular coordinates,

¢ = — (I'/2m)tan~'(p/x), for y>0
and
¢ = (I'/2m)tan—'( — y/x),

Since the current density is constant, only the surface inte-
gralin Eq. (23) needs to be used. Also, by the symmetry of
the system, only the horizontal surfaces of the bar contrib-
ute to the force, both surfaces making equal contributions.
Hence we have, integrating over the upper surface,

g (4) () e
= —i(I'l /4ma*>){(d + a)8, — (d — a)8,
+ (a/2)In[d® + (d + a)?]
— (a/2)In[a* + (d — a)*]},

where 8, is the angle between the x axis and the line joining
the wire with the near edge of the bar, and €, is the angle
between the x axis and the line joining the wire with the far
edge of the bar, both lines being in the xy plane.

Example 11. A thin disk of uniform charge density p,
radius a, and thickness ¢ rotates with angular velocity o
about its symmetry axis, which is also the z axis of cylindri-
cal coordinates. Also on the z axis and perpendicular to it is
a distant ring of surface area S carrying a current I. The
distance between the ring and the disk is z. Assuming that
the current in the ring and the rotation of the disk are right-
handed relative to the z axis, find the force exerted by the
ring on the disk.

The potential of the ring is, in cylindrical coordinates,

¢’ = (IS/4m) [/ (2 + )],

where z is the distance from the ring and r is the distance
from the z axis.

The rotating disk constitutes a current distribution
J = pwrf for which VXJ = 2pwk. Using Egs. (23) and
(24), and taking into account that, by the symmetry of the
system, only the rim of the ring contributes to the surface
integral, and that the potential and the current density are

for y<O.

F= —i2
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constant at the rim, we have
F = ku, [1Sz/47(Z* + a*)**|pwat 27a

_ k,uof [2ISzpor /47 (2 + )’ *1¢ 2mr dr
o .

= kuo ISpot [a’z/2(2* + @)
Y,

+z/(Z+a*)'"? —1].

Example 12. Find the force between the wire and the
conducting strip described in Example 7.
The potential of the wire is, in cylindrical coordinates,

¢ =—UT'/2m0o
above the xz plane and
¢ =('/2m)6

below the xz plane. By the symmetry of the system, only the
flat surfaces of the strip contribute to the force, each con-
tributing the same amount. Let the thickness of the strip be
2¢. Since the strip is thin, & at these surfaces can be ex-
pressed as? /x. The current densityis / /2ta. By Eq. (23) we
then have, integrating over the upper surface,

x +d
I+ I
Fe _2i J Lt Ty
Who x 27 x 2at
7’
=i’u0 Lln d .
2ma d+a

V1. FORCE EQUATIONS FOR TIME-DEPENDENT
FIELDS

The force equations derived in the preceding sections
can be easily extended to time-dependent fields by using
retarded potentials and by taking into account the follow-
ing three considerations.

(1) In order to treat the forces as purely electric or pure-
ly magnetic, all force-experiencing charges should be sta-
tionary, and all force-experiencing currents should be neu-
tral and should have zero divergence (otherwise net
charges are required by the continuity condition}.

(2) Instead of the scalar potentials, mixed potentials
should be used for representing E' and B’, that is,

AA*
E = —Vgx__"
é. P

’

and

Ik
e

ot

where the asterisks indicate that the potentials are retard-
ed, and the subscripts ¢ and m stand for electric and mag-
netic, respectively.

(3) In deriving magnetic force equations, one should
take into account that V-A* = — e,u, dp.*/dt (Lor-
entz’s condition).

Using these considerations and repeating the derivations
employed for obtaining Egs. (5), (10), (16), (17), and
(23), we then obtain the corresponding time-dependent
equations:

JA?
F=f¢;*Vpdv—fp( e )a’v——§p¢’*d8, (5a)

630 Am. J. Phys., Vol. 58, No. 7, July 1990

B = —po Vo, + 1o

s

F= (i)f A*XVpdv— (L)é)‘pA;*xd S, (10a)

€0/ €
F= 35 (AZ*3)dS — fﬁ J(A*dS)

9p.*

— eo,uof J e dv — f AXX(VXJd)dv, (16a)
F= 35 (A*3)dS — f AZEX (VX 3)dy

—f(A;,,*-V)J dv, (17a)
F= —#oé ¢ FIXdS

JAL*
—,uof OV J dv +'“°f Jx( e ) dv. (23a)

VII. CONCLUSION

The possibility of calculating electric and magnetic
forces directly from potentials has been explored. Several
new force equations have been derived. The equations con-
siderably expand the methods available for electric and
magnetic force calculations. By directly associating forces
with electric and magnetic potentials, these equations re-
veal an entirely new aspect of the potentials and give them a
physical significance not previously apparent.

It is clear that potentials can be used for force calcula-
tions just as well as the fields can be. There is no objective
reason to assign great physical significance to equations
expressing forces in terms of fields than to equations ex-
pressing forces in terms of potentials. Therefore our tradi-
tional view of electric and magnetic fields as being primar-
ily responsible for force effects and of potentials as being
primarily associated with electric and magnetic energy is
merely a historical circumstance rather than a consequence
of an unbiased interpretation of the nature of electric and
magnetic phenomena.

The illustrative examples presented in the article provide
a new insight into the nature of electric and magnetic
forces. Consciously or subconsciously we associate these
forces with some invisible “threads” (after Faraday’s
“physical lines of force”) that “attach” themselves to elec-
tric charges and currents. Even if we profess to reject such a
mechanical picture of the forces, we nevertheless do associ-
ate the forces with certain specific locations. For example,
the force on the smaller solenoid of Example 8 is conven-
tionally attributed to the end effects of the larger solenoid
(because only then an axial force can be obtained from
§IXB dv). We say “the force acts on the part of the
smaller solenoid located in the end region of the larger sole-
noid.” But does the force really act there? Not according to
Example 8! According to that example, the force acts on
the end of the small solenoid located well within the large
one. Or consider Examples 7 and 12. They both deal with
exactly the same physical system. Yet, according to Exam-
ple 7, the force is entirely due to the rim of the current-
carrying strip, while according to Example 12 it is entirely
due to the broad surfaces of the strip. And, of course, ac-
cording to the usual equation, F = §{JXB’ dv, the force is
due to the interior of the strip.
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So where exactly do electric and magnetic forces act? To
what are they applied? For that matter, what are electric
and magnetic forces? All we can actually say about electric
and magnetic systems subjected to forces is that electric
and magnetic fields affect the state of motion (or the
shape) of charges and currents located in these fields. We
can account for these changes by evaluating certain inte-
grals over the interior or over the surface of charges and
currents so affected. Or we can account for these changes
by evaluating certain integrals (Maxwell’s stress integrals)
over surfaces (Maxwellian surfaces) passing through emp-
ty space around the affected charge and currents. Certain-
ly, there is no objective reason to ascribe to any one of these
integrals a greater physical significance than to any other.
But then we must revise our concept of the localization of
forces, and, very likely, of the electric and magnetic forces
themselves. Our view of the forces as field—charge or field-
current interactions appears to be not so well grounded
after all. A plausible alternative is field-field interactions,
the charges or currents merely manifesting these interac-
tions but not experiencing them directly. Our force equa-
tions are then merely a means of predicting the outcome of
these interactions, rather than a revelation of forces as a
physical reality.®’

APPENDIX: VECTOR IDENTITIES

In the following vector identities, light-face letters are
scalars, boldface letters are vectors. The letters do not rep-
resent any particular electric or magnetic quantities.

ViplU) =¢ VU + UVg, (A1)
§UdS=JVUdv, (A2)
VX (@A) =9 VXA 4+ Vo XA, (A3)
§Ade= —JVXA dv, (A4)

A rotating U-tube experiment

§ (AB)dS — §'B(A-d S) — ff; A(B«dS)

=f [AX (VXB) + BX (VXA)

— A(V-B) — B(V-A) ]dv, (A5)

§A(B-dS) -=f [(V:B)A + (B-V)A]dv. (A6)

! All basic force equations in this article are derived for external, rather
than for total, electric and magnetic fields. This is done for two reasons:
First, only external fields produce net forces on charges and currents;
second, only external fields can always be associated with scalar as well
as with vector potentials.

This formula has been previously derived (although in a different con-
text) in Oleg D. Jefimenko Electricity and Magnetism (Electret Scientif-
ic, Star City, WV, 1989), 2nd ed., pp. 210 and 211. The derivation is
repeated here for the sake of completeness of the presentation.

*This can be easily shown by replacing the potential in Eq. (5) by a
constant.

*In order not to dilute the presentation by excessive details, the potentials
are stated here without derivations.

5 The possibility of expressing electrostatic fields by vector potentials is
not well known. J. A. Stratton, Electromagnetic Theory (McGraw-Hill,
New York, 1941), pp. 25-28, indicates such a possibility without, how-
ever, making any use of it.

¢ A discussion of force equations would be incomplete without a discus-
sion of torque calculations. The force equations presented in this article
cannot be used for calculating torques: The arbitrary additive constants
in the potentials result in indeterminate values for the torques. However,
general equations for calculating torques from potentials, similar to the
corresponding force equations, can be derived by using techniques not
much different from those by which the force equations have been de-
rived here; see Oleg D. Jefimenko, “Direct calculation of electric and
magnetic torques from potentials,” to be submitted to Am. J. Phys.

" The electric force equations obtained in this article can easily be convert-
ed to gravitational force equations. This can be done by simply using
mass densities and gravitational potentials (scalar or vector) in Eqs.
(5)-(7) and (10)-(12) and removing €, from Egs. (8)—(12).
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A rotating U-tube experiment is described in which the axis of rotation lies between a vertical arm
and the axis of symmetry of the tube. As the rotational frequency is slowly varied, the equilibrium
position of the liquid in the tube can abruptly change, resulting in a hysteresis loop. The effect is
not due to friction, which causes a much smaller amount of hysteresis. The data agree well with

the theory.

L INTRODUCTION

In a previous article,' we theoretically considered the
equilibrium states of a liquid in a rotating U-tube (Fig. 1).
If the frequency is slowly increased from zero, the height of
the “near” end of the liquid (the end that is closer to the
axis of rotation) continuously decreases. When this end is
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in the near corner, the liquid can forward jump to a config-
uration in which the near end is in the horizontal segment
of the tube. If the frequency is now slowly decreased, the
liquid temporarily remains in such a configuration, and
then backward jumps to a configuration in which the near
end is in the vertical segment of the near arm. We showed
that this hysteresis occurs for a range of locations of the
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