
Foundations of Physics Letters, Vol. 12, No. 2, 1999

MODELS OF THE CLASSICAL ELECTRON
AFTER A CENTURY

J. L. Jimeneza and I. Camposb

aDepartamento de Fisica, Division de Ciencias
Basicas e Ingenieria
Universidad Autonoma Metropolitana, Iztapalapa
Apdo. Postal 21-939, Mexico 04000, D. F.
bDepartamento de Fisica, Facultad de Ciencias
Universidad Nacional Autonoma de Mexico
Apdo. Postal 21-939, Mexico 04000, D. F.

Received 8 January 1999

The point charge and the extended charge as models of the classical
electron are studied. The problems inherent to each model with re-
spect to self-interaction are disclosed and the possible solutions are
analysed. The possible relation between these models is also dis-
cussed. We argue that a totally electromagnetic electron, as well as
a point electron, is beyond the scope of classical electrodynamics.
This work is intended as a complement to F. Rohrlich's recent ac-
count in the sense that it points at challenges still present in the way
to a deeper understanding of the electron.
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1. INTRODUCTION

Recently [1], Prof. Rohrlich has once more analysed fundamental
problems of classical electrodynamics that go back to the end of the
last century, when phycisists were trying to understand the structure
and dynamics of the electron. These problems derive from the inter-
action of a charged body with its self-field, and take specific aspects
according to the postulated model, either a finite point charge or an
extended charged body in interaction with itself.

This self-interaction gives rise to the radiation reaction prob-
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lem, that for the point charge appears as self-acceleration or preac-
celeration, and to an extra inertia, the electromagnetic mass, whose
behaviour has been thought to be in conflict with relativity theory
[2-5]. These problems have been treated abundantly in the literature
[6-14], usually in controversies involving great names, but somehow
ambiguities and obscure points remain.

In this work, intended to be a complement to professor Rohr-
lich's account, we try to illuminate some of these obscure points by
making as clear as possible the model of charged particle used, either
a point or an extended particle, and explore the consequences of each
model with respect to self-interaction. We have found that often in
the literature this crucial distinction between models is not made,
resulting in more confusion.

Thus, for example, in the case of the extended charge the
problem of the self-stress is crucial, while for the point charge the
main problem is to "isolate" the singular trajectory of the charge in
a consistent way. There is also the problem of relating both models,
for example by taking the point charge as an appropiate limit of an
extended charge. Finally we must also explore the relation between
these classical models and the models of charged particles consistent
with quantum electrodynamics (QED).

2. THE EXTENDED CHARGE AND THE
RADIATION REACTION

Historically the first model of the electron to be explored was the
extended electron. Lorentz [2,3] and others conceived the electron
as a small spherical charge and the self-force, or radiation reaction,
as arising from the retarded interaction of one infinitesimal part of
the electron on another. The final result of this approach in the non
relativistic limit, for a charge distribution with spherical symmetry,
without rotation, and neglecting nonlinear terms, is the series that
represents the radiation reaction force f as [2,3]

where

The first two terms are
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U being the electrostatic energy of the charge distribution, and

here a is the acceleration and a is the time derivative of accelera-
tion. The other terms are proportional to the size of the charge and
therefore go to zero for the point charge. The term proportional to
the acceleration may be written as

defining m = U/c2. Here appears the factor 4/3, that supposedly is
in conflict with relativity theory. We will argue that the conflict is
rather between two different conceptions of a purely electromagnetic
electron. The other term, proportional to a and independent of
the size of the electron, is usually but not correctly interpreted as
a radiation reaction force for a point charge. This interpretation
is based on the fact that from equating the power of the radiation
reaction force to the radiated power,

one can obtain, with the use of the identity

However this derivation neglects the term d(a • v)/dt, since
after integration yields a • v evaluated at the limits of integration
and may be zero in particular cases, for example in periodic motion.
In addition a has no definite sign, behaving as a friction only in
particular cases. For these and other reasons it has been argued that
this term represents a force that results from a deformation or strain
of the bound field, whose associated energy may be retrieved, which
is not the case for the emitted radiation energy [15].

When the point charge limit is taken in the above series, one
obtains the nonrelativistic equation of motion
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where mt contains the electromagnetic mass. This equation of mo-
tion, known as the Abraham-Lorentz equation, involves difficult in-
terpretative problems that arise from its non newtonian nature, being
third order in the time derivative of position. The main complication
is the existence of non physical solutions that violate conservation
of energy. These self-accelerating or runaway solutions appear, for
example, when Fex = 0. However, this case is analogous to taking
a friction force as impelling force. One flaw in this argumentation
is that the equation of powers, Eq. (6), does not take into account
that the radiation reaction force also changes the kinetic energy of
the radiating particle. Indeed, if the charged particle radiates energy
at the cost of mechanical energy, then the balance of powers must
be of the form [16,17]

where (f> is the potential energy, or

For a harmonic oscillator, (f> = |fc:r2 and this equation becomes the
nonlinear equation

or

where u>$ = k/m and T — | e2/mc3 is a time interval of order 10 -23s
for the electron.

This nonlinear equation was studied by Planck and has no
divergent solutions [6], as can be seen from the homogeneous solution
(with W0 = 0, and assuming a ^ 0), which is of the form

The solutions of the inhomogeneous equation are of the same
form,

where A is any of the roots of the equation
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It is interesting that the linearized equation for a damped oscillating
charge,

does have a divergent solution [6,18]. Thus the process of lineariza-
tion may not be sound enough in this case.

These problems, however, do not arise for the extended elec-
tron. First we note that the series (1) can be summed in the case of
a spherical shell of charge [19]:

with R=|x-x' | .
And so the self-force can be written in the form

Equation (17) can also be derived easily without summing the
series [20,21]. The method consists in working in the Coulomb gauge,
so that the self-interaction arising from the irrotational electric field
that comes from the scalar potential, being a static one and with
spherical symmetry, is zero. Then it is necessary to take into account
only the contribution from the transverse vector potential, which
satisfies the wave equation with the transverse current as source.
Therefore, from

where Atret is the retarded transverse part of the potential A, we
obtain

And considering the spherical symmetry of the distribution, we have

so that finally we get
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By Fourier analysis, this equation can be cast into the form

where

and p ( k ) is the Fourier transform of the spherical charge distribution.
Then the equation of motion for a non rotating charge distri-

bution, with spherical symmetry and in the rest frame, is

Thus Eq. (24) exhibits the nonlocality in time interpreted as
a causal connection in the context of the Kramers-Kronig dispersion
relations [3]. Therefore Eq. (24) does not present any conflict with
respect to causality, as the Abraham-Lorentz equation does.

For a spherical shell of radius r0 Eq. (24) reduces to

that, as Rohrlich mentions, has no unphysical solutions. This equa-
tion has been studied by several authors [22-26].

We have therefore that the point charge limit and the linear
approximation lead to the Abraham-Lorentz equation with all its
interpretative problems. Thus we may relax these restrictions and
explore the consequences. One move may be considering further
terms in the series Eq. (1). However, there is an interesting theorem
proved by Daboul [27] in 1973.

Briefly this theorem says that adding a finite number of terms
to the A-L equation will not solve the problem of the runaway solu-
tions. Therefore we must consider the infinite series, which is equiv-
alent to abandoning the point charge limit, or to take into account
nonlinear terms in the velocity and its derivatives, possibility that
we explore in the next section.

It is important to remark that the treatment of the extended
electron has been generalized to covariant expressions by Nodvick
[28] and Kaup [29], and also Dirac [30] has explored this model of
the electron.
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3. THE ROLE OF NONLINEAR TERMS

The most interesting point of these generalizations, that involve to
leave the rest frame of the electron, is that the non relativistic limit
implies a linear approximation. Indeed, Franca [31] et al. point out
that in order to obtain the non relativistic limit, Eq. (24), "new
nonlinear terms" have been dropped. Also Jackson indicates that in
obtaining the series Eq. (1) "nonlinear terms of order c~5 have been
neglected" [3].

These nonlinear terms arise from taking into account correctly
the retardation effects. One of the difficult aspects of classical elec-
trodynamics is precisely the evaluation of retarded quantities, either
potentials or fields, since it is necessary to solve for t' the retardation
condition,

This can be done explicitly only in a few particular cases and
therefore retarded quantities must be treated implicitly. Griffiths
[32] obtained a few nonlinear terms for a charged dumbbell in par-
ticular motions. These results can be generalized. The appropriate
mathematical tool for this task is a Lagrange expansion [33], rather
than a Taylor expansion. When the retardation is treated correctly,
it is possible to obtain a first nonlinear term

which is part of the non relativistic limit of

an equation deduced by Abraham and that can also be obtained by
the method delineated in the Appendix.

This term is the spatial part of the four-vector

and is usually regarded as the real radiation reaction force, but only
the second term can be taken as such a force for the reasons exposed
in Sec. 2.
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4. THE POINT ELECTRON AND THE
RADIATION REACTION

After the advent of quantum mechanics and quantum electrody-
namics, the point charge model of the electron was regarded as
nearer to the true electron than the extended charge model. Thus
Dirac [34] obtained in 1938 the Lorentz-Dirac equation by assum-
ing an ab initio point charge, and not as a limit of an extended
charge. He therefore took Maxwell's theory as valid all the way to
the point-singularity that represents the electron. However, Dirac
clearly points out in his work that he is proposing a phenomenologi-
cal theory of the classical electron: "Our aim will be not so much to
get a model of the electron as to get a simple scheme of equations
which can be used to calculate all the results that can be obtained
from experiment".

This covariant treatment of the point electron is based on the
conservation of energy and momentum, as expressed in the covariant
law

where TMv is the stress-energy tensor of a closed system.
However, the electromagnetic stress-energy tensor does not

satisfy this law in the presence of a charge-current distribution, since
in that case

That is, the four-divergence of the electromagnetic stress-
energy tensor equals the covariant Lorentz force. The approach then
consists in applying the conservation law outside the world line of the
charge, that is enclosed within a tube of finite radius, but the con-
tribution of the singular world line of the charge is then ambiguous
[35,36], and Dirac [34] introduced symplifying hypotheses to arrive
at his equation,

In order that the contribution of the singularity behaves as
a state function, Dirac proposed to cut the tube that encloses the
worldline of the electron with spatial-like hypersurfaces orthogonal to
the world line. This is precisely the hypothesis that Fermi [9] intro-
duced to resolve the problem of the factor 4/3 in the electromagnetic
mass.

Equation (32) has unphysical solutions for certain external
forces or in absence of any. We have seen in the nonrelativistic case
that the radiation reaction force has no physical meaning without
an external force acting on the radiating charge. In the case of the
Lorentz-Dirac equation, a line of work is the study of the conditions
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to be imposed on the external forces in order to have physically
meaningful solutions [37].

Another way of eliminating divergent solutions is by imposing
asymptotic conditions: a —> 0 for t —> oo. This approach leads to an
integrodifferential equation [2],

where T is proper time, K* is the external force, and TO = 2/3 e2/mc3.
This equation, however, presents preacceleration for time intervals
of order TQ(~ 10~23 s for an electron). But let us remember that
Dirac's treatment renounces any exploration of the electron struc-
ture. Therefore the Lorentz-Dirac equation is an approximation to
the true dynamics of a classical radiating charge.

5. THE PROBLEM OF ELECTROMAGNETIC MASS

As mentioned above, the Lorentz approach to the radiation reaction
force gives as coefficient of the acceleration term, for a spherical
shell of charge, (4/3) (u/c2), where U is the electrostatic energy
of the charge distribution. This coefficient also results when the
electromagnetic mass is calculated as a coeficient of the velocity,
using as definition of linear momentum of a charged particle the
expression

where S, as usual, is the Poynting vector.
This factor also appears when the "kinetic energy",

is calculated for a point charge.
The factor 4/3 seems to spoil the possibility of having a four-

vector.

for the electromagnetic energy-momentum of a point charge, where
U is the electrostatic energy and p the momentum as defined in Eq.
(34). Again we have different approaches to solve this problem, ac-
cording to the model of the electron considered in the calculations.
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Let us note that we are trying to construe a four-vector with purely
electrostatic energy and purely electromagnetic momentum as de-
fined by Eq. (34).

A. The Extended Electron

This model has the problem of introducing non electromagnetic forces
that supposedly hold stable the charge distribution of the classical
electron. Since the Compton wavelenght of the electron is about
one hundred times its classical radius, obviously we are dealing with
a quantum system. However, we will see below that in the quan-
tum level it is also necessary to introduce non electromagnetic fields
in order to obtain physically meaningful results. Poincare was able
to prove that by assuming the existence of these forces, known as
Poincare stresses, the factor 4/3 can be explained, as follows.

Since the Poynting vector S is part of the electromagnetic
stress-energy tensor,

where u is the energy density and Tij is the stress tensor introduced
by Maxwell, then the four-momentum can be defined as

In the rest frame, indicated by subindex (o),

where U0 is the electrostatic energy, and

If we apply a Lorentz transformation to pM, we find, for rela-
tive motion along z axis and with signature (- 2),
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Therefore we see that a four-vector for the energy and momen-
tum can be obtained only if the electromagnetic stress is annulled
by another, non electromagnetic, stress; that is, only if the charge
distribution is stable. This is the content of von Laue's theorem38.
It is worthwhile to emphasize that the condition d^T^ = 0 is a
necessary but not sufficient condition for energy and momentum to
constitute a four-vector (U/c, p), while von Laue's theorem provides
a necessary and sufficient condition to have such a four-vector for a
static system.

Indeed, the condition d^T**" = 0 only gives us a condition of
conservation of energy and momentum that is independent of any
space-like hypersurface. Then we require that a total stress-energy
tensor, electromagnetic plus non electromagnetic, satisfies a condi-
tion of stability given by

where

Poincare used a perfect fluid as model of the non electromag-
netic part of the electron and introduced as stabilizing non electro-
magnetic stress, for a shell model, a pressure

which gives a non electromagnetic energy,

We have that a perfect fluid is described by a tensor

where po is the mass-energy density, p is the pressure and r/*"" is the
metric tensor. Thus for the Poincare model p = pc

0.
Since we have spherical symmetry and the electromagnetic

stress-energy tensor is traceless,
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then Eq. (41) and Eq. (42) become

and

where UQ is the electrostatic energy of the spherical electron.
The non-electromagnetic part is transformed as

and

Now, two conceptions of a "purely electromagnetic" electron
have been proposed. Either we postulate that the momentum must
be totally electromagnetic and then Pcoh = 0, or we postulate that
the energy of the electron at rest must be only the electrostatic en-
ergy, u0; that is, u0

c = 0.
The first option, proposed by Lorentz and others, according

to the "electromagnetic world-view," gives

and then we obtain for the total energy and momentum

The second option, U§ = 0, gives



Models of the Classical Electron 139

and therefore

and

Physically we can say that the first option implies that we add
to the electrostatic energy the necessary non electromagnetic energy
that appears as an extra electromagnetic energy, associated with the
magnetic field, for the observer that sees the electron moving with
velocity v. In other words, there is a kinematic relativistic transfer
of energy from the non electomagnetic part to the electromagnetic
part of the electron. Something analogous happens in the case of
a confined field, as in the explanation of the experiment of Trouton
and Noble. We find then that while in non relativistic mechanics
constraint forces do no work in any inertial frame, in relativistic
mechanics they may do work with respect to some inertial frames.
This point has been exhibited by Boyer [10] as a direct consequence of
the relativity of simultaneity. The second option means merely that
we substract from the moving electron the non electromagnetic part,
taking as total energy just the electrostatic energy of the charge. We
can see therefore that there is no conflict with relativity theory if we
accept that the electron has a non electromagnetic part. Therefore
the conflict with the 4/3 factor arises when we mix both conceptions
of a "purely electromagnetic electron".

B. The Point Electron

Since QED seems to imply a point electron, in 1938 Dirac published
[34] a classical phenomenological theory of the point electron.

As mentioned above, one important step in his treatment is
to cut the tube enclosing the world line of the electron with spatial-
like hyperplanes orthogonal to the world line. With this choice he
was able to obtain an energy-momentum four-vector for a purely
electromagnetic electron, in the sense of considering covariantly only
its electrostatic energy.

This approach, also proposed by Fermi and others and redis-
covered by Rohrlich [39], is equivalent to modifying the definition of
electromagnetic momentum given by the space integral of the Poynt-
ing vector. The new definition is
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where

is an element of the spatial-like hyperplane orthogonal to the world
line of the electron, and the subscript a in the integrals indicates
that the volume of the electron is to be excluded from the integra-
tion. This volume will be a sphere in the rest frame, or its Lorentz
transform in any other frame.

The Lorentz transformation of this four-vector gives

and

In this way the factor | in the electromagnetic mass does not
appear, and the problem of the stability and structure of the electron
can be put aside. This geometrical approach can be seen as a kind
of projection of the "instantaneous" rigidity of the point electron in
its rest frame to all the hyperplanes orthogonal to the world line.
The construction of this four-vector represents a satisfactory way of
eluding the problem that poses the non electromagnetic part of the
electron.

However, this definition of the electromagnetic energy-momen-
tum holds only for these hyperplanes. Therefore a fully relativistic
treatment according to the principle of relativity, which postulates
that "The laws of nature are to be formulated in a way that is inde-
pendent of the choice of space-like hypersurfaces" [40], must consider
a closed system. If a static and stable model is studied then also von
Laue's theorem must be taken into account.

Another aspect of the problem is the possible relation between
the extended electron and the point electron. Here we find that the
point electron of Dirac is not a limit of the extended electron of
Lorentz, in spite of the name: Lorentz-Dirac equation. Briefly, what
is at stake is the notion of a relativistic rigid body. On the one hand,
the extended electron of Lorentz and Poincare is a static and stable
object, with vanishing self-stress in every reference frame, while on
the other hand the Dirac electron is the point limit of the instan-
taneous rigid body Lorentz transformed to other reference frames.
This notion of rigid body can be traced to Born, notion criticized
by Sommerfeld, Ehrenfest and von Laue, who proposed as definition
of a rigid body one for which the space integral of the self-stress
is zero. The essence of the problem is that a relativistic extended
body, moving with respect to a reference frame, will have different
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accelerations in different points, and thus a relativistic kinematical
approach is insufficient: a dynamical approach is necessary.

8. THE ELECTRON IN QED

At present QED is considered a theory of a deeper level of expla-
nation than classical electrodynamics. As a consequence, the point
electron is rather a formal limit in CED, while in QED is a fun-
damental entity. However, the point electron in QED is subject to
quantum fluctuations that smear it over the finite volumes amenable
to experimental exploration. In this way the point electron acquires
and effective finite charge distribution. This makes the structure of
the radiation reaction problem for the quantum point electron sim-
ilar to that of a classical extended charge. Here we also find that a
purely electromagnetic mass for the quantum electron is not possible
[41]. While satisfactory advances have been made in understanding
the behaviour of the electron, as indicated by Rohrlich [1], there is
a particular point that deserves attention.

If the electron in QED is to satisfy von Laue's theorem, it
must be shown that the self-stress vanishes. Here we find that there
is a calculation by Pais [42] that gives the result

where a is the fine structure constant, m is the mass, and ip and «/>
are the spinor field and its adjoint that represent the electron field.
Rohrlich [43], however demonstrated that by using a relativistic cut-
off the self-stress is zero. This approach implies the introduction of
an additional neutral vector meson field, and therefore also in QED
the electron appears as a not totally electromagnetic system.

Therefore we find that neither in CED nor in QED the elec-
tron is a self-sufficient entity: non electromagnetic stresses or com-
pensating fields must be introduced in order to make the existence
of the electron possible.

9. CONCLUSIONS

Both, CED and QED give satisfactory accounts of experimental facts
in their respective domains of application. However, neither CED
nor QED can account for the existence of electrons, in the sense
that electrons are not purely electromagnetic systems. As Pauli [44],
Einstein and others put it: "The electron is itself a stranger in the
Maxwell-Lorentz theory as well as in present-day quantum theory".
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On the other hand, the Lorentz force law gives the action
of an external electromagnetic field (i.e., produced by other charges
and currents) on a test charge. Thus we find two types of problems
that can be dealt with in electrodynamics: either the charge-current
distribution is given and then we can obtain from the theory the
evolution of the electromagnetic field, or a field is given in a region
of space-time and then we can obtain the trajectories of the electron
in that region, through the Lorentz force law.

However, in the radiation reaction problem the motion of the
electron produces a field that influences the motion of the electron.
That is, the field and the charge-current distribution are unknown.
Hence the difficulty of the problem, that at present can be ap-
proached only approximately, given the smallness of the radiation
reaction force. This difficulty has provoked two radical approaches:
either to eliminate the field and construe a relativistic action at a dis-
tance theory, or to modify Maxwell's theory at very small distances.

We also see that the extended charge model may be the way
for further exploration of the electron. Indeed, Bohm and Weinstein
[20], and Dirac [30], going beyond the extended rigid electron, have
found self-oscillations that after quantization give masses on the me-
son range. These results, together with Rohrlich's work [43], point
to a connection between meson theory and electron theory. Thus,
after a century, the search for a deeper understanding of the electron
continues.

APPENDIX

The retardation is usually expressed with a Taylor series in the form

However, R is also a function of t' through the dependence on x(t').
Therefore the retardation condition is

And this dependence of R on t' precludes the direct use of a Taylor
series. However, it is possible an expansion in terms of a Lagrange
series [33]; this series is of the type
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where the relation

is satisfied.
If we take 77 = t', T/J = t, a = — £ and s(r/) = R(t'), we obtain

the retardation condition. Also, from g(r)~) = T] = t' we can obtain a
series expansion for the retardation condition in terms of t. However,
it is necessary to introduce a small parameter in order to be able to
cut it to the desired approximation. In the extended charge the size
of the distribution will play this role. In the point charge the role of
this parameter is played by the radius of the tube that encloses the
world-line of the electron. Therefore it is necessary to introduce a
series of the form

where the coefficients An will depend on the particular form of the
distribution.

Then it is necessary to invert this series to obtain t1 — t as a
power series in d, which substituted in the Lagrange expansion can
give an expression for retarded quantities (the fields or potentials),
as power series in d. Dirac did this [34], in his paper of 1938, by
ingenious manipulations of a few terms. However, by using the the-
orem of the argument in complex variable theory, this series can be
inverted systematically, giving [33]

With these results it is possible to obtain the nonlinear terms men-
tioned by Jackson [3], that are the same as those obtained by Franca
et al. [31] In this way one finally can get the Lorentz-Dirac equa-
tion in its non covariant expression. However, the method can also
be used in an explicitly covariant way [45], arriving at the covariant
Lorentz-Dirac equation. Also, in the point charge limit one obtains
the radiation reaction force [33a]

that is just the spatial part of the Lorentz-Dirac force, derived by
Abraham before the advent of relativity theory. As Rohrlich men-
tions, this non covariant equation has as covariant generalization the
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Lorentz-Dirac equation, that in the non relativistic limit contains the
non linear term

which presently is interpreted as the true radiation reaction force,
since it always oposes the motion, as a true friction force. It is also
possible to obtain directly the non covariant limit of the Lorentz-
Dirac equation by taking into account the retardation effects on the
energy balance [46].
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