PHYSICAL REVIEW

VOLUME 152,

NUMBER 4 23 DECEMBER 1966

Classical Motion of an Extended Charged Particle*

D. J. Kaup
Department of Physics and Astronomy, University of Maryland, College Park, Maryland
(Received 9 August 1966)

The classical equations of motion of an extended particle are re-examined and methods are found which
eliminate the usual difficulties with the % factor, runaway solutions, and preacceleration. Point particles are
not considered, but rather localized, nonsingular distributions. The % factor is eliminated by using Dixon’s
method for deriving the macroscopic equations of motion, while runaway solutions and preacceleration are
eliminated by retaining the structure-dependent terms that the Dirac equation neglects. Finally, it is shown
that in the limit of slowly varying external forces, these solutions become identical to those obtained from

the integral form of the Dirac equation.

I. INTRODUCTION

HE equation of motion for a charged particle was
originally developed by Abraham and Lorentz in
its nonrelativistic form, and later, in the relativistic
form by Dirac.! The resulting equations possessed two
highly undesirable properties of which there was no
analog in classical physics, namely, runaway solutions
and either the specification of initial acceleration or a
preacceleration. The runaway solutions and the speci-
fications of initial acceleration can be eliminated if we
allow ad hoc conditions to be imposed, such as bounded
motion as t—o or the “principle of undetectablility
of small charges.”? However, when it is eliminated, the
resulting equation then contains a preacceleration.

If we restrict our attention to classical physics, these
results are, to say the least, very distrubing. If we
would consider the particle not as a point, but rather as
a highly localized collection of interacting fields, then
there is a very general conservation law of classical
physics which should require that no runaway solutions
exist, namely, conservation of energy, which the Dirac
equation appears to violate. Also, in Newtonian me-
chanics, the specification of initial position and velocity,
along with the value of the force, is sufficient to deter-
mine the future motion, while with the Dirac equation,
in addition to the above quantities, we must also
specify either the initial acceleration or the future values
of the force. And, the latter violates the usual concept
of causality.

In this paper, we will show by deriving an alternative
equation that the above-mentioned difficulties do not
actually exist. In Sec. IT, we will specify our conventions
and the microscopic equations from which we will derive
our results, and in Sec. ITI, we will present a derivation
of the macroscopic equation of motion for a monopole
particle. In Sec. IV, we will derive the nonrelativistic
limit of the macroscopic equation which results in a
linear integral equation for the acceleration. From this
alternative equation, the nonrelativistic Dirac equation
can be derived. Then in Sec. V, we will show that pre-
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acceleration and runaway solutions of the Dirac form
do not occur. Furthermore, we will show that if the
external forces are sufficiently slowly varying, the
solutions of the alternative equation and of the Dirac
equation are identical.

II. MICROSCOPIC EQUATIONS AND
CONVENTIONS

Throughout this paper, we will never consider point
particles, but rather, will only consider nonsingular,
localized distributions. Since such distributions are
unstable if only electromagnetic fields are present, we
will assume, for stability, that there are also attrac-
tive, localized fields present. We will loosely call the
collection of these fields a particle. Gravitational effects
will be neglected in order to utilize the simplicity of
special relativity, and the tensor notation will be used.
In Cartesian coordinates, the metric g, is

—1
—1 2.1)

glﬂ’= _1 )

+1

where x* (k=1, 2, 3) is a space-like coordinate, x* is the
time-like coordinate, and ¢=1. Greek letters can take
the values of 1, 2, 3, or 4, while Latin letters are re-
stricted to 1, 2, or 3.

From the nonelectromagnetic fields present in the
particle we assume that a stress-energy tensor T,*
and a current density J” can be formed which satisfy
the following microscopic equations:

ami“"-l‘ avTe‘wz 0 N (22)
TmIW=Tm"M’ (2_3)
8, Fw=dm ], (2.4)

where
Pw=—po, (2.5)

1
T 7= ——[Fuer,— g FoF 5], (2.6)
4w
apan+avay+a“F1p=0- (247)
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Differentiation of (2.4) and (2.6) gives
9, =0, (2.8)
and
ami;w= —Fw],, (2.9)
From these two equations, we can derive the macro-
scopic equations of motion for a monopole? particle.

III. MACROSCOPIC EQUATIONS OF MOTION

In order to consistently eliminate the commonly
occurring factor of £, we will carry out the integration
of the microscopic equations over the hyperplane which
is orthogonal to the 4-velocity of the particle. This
method has been discussed by Rohrlich? in his recent
book; however, Dixon® has given a more comprehensive
discussion for deriving the equations of motion via this
method. Although Dixon’s equations are in a general
relativistic form, they can be quite easily specialized
for special relativity. This we will do here and also
give a brief outline of Dixon’s method.

The basic equation we need is for the derivative with
respect to proper time of an integral over a hypersurface,
where the hypersurface is a function of the proper time.
This is given by Dixon’s equation (5.7),5 which when
specialized to special relativity is

o |
— s> =
ds :

A* is any arbitrary tensor of any rank in Minkowski
coordinates which is a function of two points: x* and
z#, Here x* is an arbitrary point on the hypersurface
2 and 2z* is the point where the world line intersects
the hypersurface. In the monopole approximation, the
exact position of the world line is more or less arbitrary,®
except that it should be located somewhere inside the
particle. Here we shall merely assume that it has been
uniquely specified, and define s to be the arc length along
it. U« is the tangent vector of the world line and also is
the4-velocity of the particle. w” is defined by we=dx*/ds.
When the hyperplane is maintained orthogonal to U?,
we have

aAx a4+
deE,,-[—/U“—dE,‘. 3.1)
At 0z«

wr=U*?[1— (x*—3%)a,], 3.2)

and a*=dU*/ds.

Now, let A# in (3.1) be replaced by T»*; then, using
(2.9), we obtain

d
— | Tpwdz,=— / FooJed3,. (3.3)

ds

3 We use the term monopole as referring not only to J”, but
also to T»#. In the monopole approximation, we neglect the
dipole moment, angular momentum, spin, and higher order effects.

4F. Rohrlich, Classical Charged Particles (Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts, 1965),
pp. 197-207.
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Likewise, for the quantities (x*—2z%)T,**, J*, and
(x*—3z%)J?, we have

d
— [ (x9—2) T yd, = / T ptwedS,— U= / T w?dZ,
A}

- / (x2—z)Fr Jwrdz,, (3.4)

d
—/J”d2,=0, 3.5)
ds
d
E—/(x“—z“)]’dl‘,=/]“wﬂd2,,—- U“/J"dZ,. (3.6)
s
If we define
Pm= / Tw®dZ,, 3.7
eE/]”dEy, (3.8)
Mob= / Tw*PwrdZ,, (3.9)

then upon neglecting the dipole moment and angular
momentum, we have

dpm*
ds

=— / Fw ] a0eds, (3.10)

Mob=Uep, b+ f (xa— )P T 0d3,,  (3.11)

/ JewedS,=eUe, (3.12)

as well as the fact that e is a constant of the motion.

Now, in line with the monopole approximation, we
will assume that in the instantaneous rest frame, J”
has only a fourth component. Thus, in the instantaneous
rest frame, we have from (3.11) that M**=p,* and also
M*=0. Since M*# is symmetric, we then have that
pm® must be parallel to U¢, or

pmt=moU, (3.13)

where m, is a scalar.

We will now decompose the electromagnetic field into
two parts: a bound field, F;*, and an external field,
Fext*, which satisfies the following equations:

Fw = F o4 Fo, (3.14)
O, F oy —=4m ", (3.15)
0,F ext#”=0. (316)

In addition, we impose the boundary conditions that
Fy# be the retarded solution and that as r —ow, Fp*
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must vanish at least as fast as 1/7. Then the boundary
condition on F* as r — is that F¥ — Fexy.

Now, we expand Fex* in a Taylor series about the
world line, and upon neglecting the dipole moment and
higher order effects, we have from (3.10), (3.12), and
(3.14)

dpm®
ds

=— eFext“ﬁUg—/Fb“BJﬂdeE,, . (317)

Equation (3.17) is our macroscopic equation of motion
for a monopole particle. A consequence of (3.13) and
(3.17) is that the scalar m, is a constant of the motion
when J? is parallel to U*.

IV. AN ALTERNATIVE EQUATION
OF MOTION

In order to eliminate preacceleration and runaway
solutions, we will retain the structure-dependent terms
in the integral on the right-hand side of (3.17). Since
the integral is very complicated to evaluate in general,
we will only calculate it to the lowest order in velocity
for the three space-like components.

Take J” to be

T (x,0)=UDe(|x—2()|), “.1)

where p is spherically symmetric and is the charge
density. Define

Ge= /.Fb“ﬂjﬁwpdzp . (4.2)
The required solution for F*f is given by
Fbaﬂ= agAa— aaAﬁ, (43)
where
'~ it | x'—x] )
Ax(xt)= | dt’ | &3’ T(x’ t’) (4.4)
x|
Now, in the instantaneous rest frame, we have
Gt=0
e (4.5)

Gob= / F#Tw'd?x,,

and to the lowest order in velocity, after transforming
some origins,

AMx,f)= f dax’U’“(t—r’)p—(lH——x;—f—(—tz[—), (4.6)
r
Ak(x,t)=/d3x’p(|x+x /—z(t)l)% anfd%'
r
)= T OD )

v
where 7'=|x'|.-
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Inserting (4.6) and (4.7) into (4.5) and remembering
that p is spherically symmetric, we finally obtain

Gob=—1m.a*(t)+ / wa’“(t—-r) f(r)dr, (4.8)
where m, is defined by
me=% / d3x / d%’pwp(rl) , (4.9)
|x—x’|
and f is given by
1= [pullx D), (10)
3

and r=|x|.
If we now transform Gy
moving frame, (3.17) becomes

to an arbitrary slowly

m’a(f)—l—/ a(t—r)f(r)dr=F(), (4.11)
0
where F(¢) are the external forces and

m'=mo—3M.. (4.12)

Equation (4.11) is the alternative equation which we
started out to obtain. To be sure, the exact solution of
(4.11) will be dependent on the exact shape of the charge
distribution p(7); however, we will show in Sec. V that
if the external forces are slowly varying, the solution of
(4.11) will approach that of the integral form of the
Dirac equation.

The low-velocity limit of the differential Dirac equa-
tion can now be derived from (4.11); by expanding the
acceleration in the power series

a(t—r)=a()—ra(®)+---, (4.13)
and using
| 10 ar=tm., (414)
0
[ o1y ar=te, (4.15)
]
we obtain the Dirac equation
ma(f)=2ea()+F(@), (4.16)

where m=mqo+m..

Inspection shows that the initial conditions for (4.11)
and (4.16) are completely different. To specify the solu-
tion of the Dirac equation, the initial position and
velocity must be specified as well as requiring that the
velocity at = be bounded, while for the alternative
equation, specification of the past path is sufficient to
determine the time development.

We are now in a position to analyze the motion given
by alternative equation when the external forces are
given as functions of time.
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V. SOLUTIONS OF THE ALTERNATE EQUATION
A. Exponential Run-Away Solutions

We will now show that a necessary condition for
(4.11) to be free of runaway solutions when the total
mass is positive is for »'>0. This we will do by con-
structing an exponential runaway solution when
m’'<0. Let

a()=¢vt, (5.1)
with Im(w)<0. If (5.1) is to be a solution of (4.11), we
must have

m'+M(w)=0, (5.2)
where
M(w)=f f(r)eierdr. (5.3)
If we define ’
1 p sin(kr)
5 == / Pl )—rdr, (5.4)
wJo kr
so that )
p(r)=— / kBB, (5.5)
7 J—»
then from (4.10) and (5.5) we have
3 0
fin= -—3—1' k[p(k) e dk, (5.6)
and from (5.2), (5.3) and (5.6),
, 327['3 00 2 ; )
m=— p /_ao kz—wztp(k)] dk. (5.7)

Now, since ' is real, we find from (5.7) that the real
part of & must vanish, and thus for w= —1c, with ¢ real
and positive, (5.7) becomes

Ry R (5.8)
"= 3 4/;00 k2+o? i )

Although (5.8) is a function of ¢2, it is in general only
meaningful if ¢>0 because, until certain restrictions
are placed on f(r), M (w) can only be defined by (5.3) in
the lower half complex plane.

Since

—— / st Tk, 5.9

and since the integral in (5.8) is a monotonic decreasing
function of ¢, we have that for each value of 7’ within
the range

—&m.<m'<0; (5.10)
there exists one and only one value of o satisfying (5.8).
Since for m'<—#%m., m will be negative, a necessary
condition for (4.11) to possess only stable solutions
when m>0 is for m’>0.
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B. Preacceleration

We will now use this result to show that the solution
of (4.11) does not contain a preacceleration when
m’>0. The inhomogeneous solution of (4.11) is given by

a(z)=i,F(t)+/w K(s)F@—s)ds, (5.11)
m —o0
and

K(s)=

dw,

1 /°° M (w)ets (5.12)

2am’ J —o '+ M (w)

and M (w) is given by (5.3).

Now let us consider K (s) for s<0. Since M () is well
defined and analytic in the lower half of the complex
plane, we can evaluate K(s) by means of a contour
integral consisting of the real axis and an infinite
semicircle which extends into the lower half plane.

From (4.10) and (5.3),

@M (w)=— f'(0)— / o' (Ndr,  (5.13)

which (if 7/ — 0 as r —) gives

| M ()] <const/|w?|, (5.14)

and thus along the infiite semicircle, M (w) is zero.
Since by (5.8), we see that the denominator of (5.12)
can never vanish, there are no poles inside the contour,
and consequently K (s) must vanish if s<O0.
Thus, we may rewrite (5.11) as

a(t):i,F(t)+ / T KOF—sds, (515
m 0

which shows explicitly that there is no preacceleration
in the solution of (4.11).

C. Stability of (5.15)

We will now show that when the charge density is
localized and bounded by some reasonable function,then
the solution of (5.15) cannot ‘“runaway” after the
external forces are turned off.

Let F(¢) be zero for all >, and let F,, be the maxi-
mum value of |F(¢)| in the interval £,>¢>— . Then
from (5.15) for ¢>t,

0

aOI<Pa[ K@l 619
t—ito
Integrating (5.12) by parts, we obtain
i © @Br Mw)
SK(s)=—— eios I:—-—————:Idw, (5.17)
2em’ J_w  dePLm’+M(w)

and thus, providing that M (w) is at least differentiable
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to the third order, we have

|K(s)| <K3/s®, (5.18)
where K3 is some positive constant.
Then from (5.16) and (5.18),
la(t)| S KsFm/2(t—10)?, (5.19)

which shows that the velocity as well as the acceleration
remains bounded. A sufficient condition for the third
derivative of M(w) to exist can be obtained by con-
sidering (5.3). Upon differentiating,

a3 M ()
dwa

and thus if 74f(r) vanishes as r —, (5.20) is defined
for all w, and consequently, the third differential of
M (w) exists.

In terms of the charge density, we have from the
definition of f [Eq. (4.10)] that if p is sufficiently local-
ized such that

_ _1:/:0 raf(f)e_iwrdr , (5,20)

lo()| <4/ (24194, (5.21)

then we are guaranteed that 74f(r) will vanish and,
consequently, the solution of (5.15) cannot “runaway.”

D. Comparison with Dirac Equation

We will now compare the solution of the alternative
equation with that of the Dirac equation, when F(¢) is
sufficiently slowly varying, so that the second and all
higher time derivatives can be neglected.

Let .
F(i—s)=F@)—sF@)+- - -. (5.22)
Then from (5.11) we have
ma(t)=F@O)+F@O)+---, (5.23)

where 7=2¢2/3m.

If we had used the integral form of the Dirac equa-
tion, which contains the boundary condition at ¢= o,
we would have

1 00
ma(t)=- / F(t+s)ee/ds, (5.24)
TJo
and if F is given by (5.22), we then find that the result
of (5.24) is identical with (5.23).

Had we taken (5.22) to one order higher, the result
of (5.24) would no longer agree with that of (5.11);
however, the difference would be a term proportional
to the radius of the particle, which the Dirac equation
has ignored.
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VI. SUMMARY

We have derived the monopole equation of motion for
a charged particle (3.17 and 3.13) which retains the
self-interaction and the structure-dependent terms.
Upon taking the nonrelativistic limit, we obtained a
linear integral equation for a(f) [Eq. (4.11)] from which
the nonrelativistic Dirac equation can be derived.

In Sec. V, we have shown that the undesirable
features of the Dirac equation are not present in the
alternative equation. From Secs. VA and VB, we
have that exponential runaway solutions and pre-
acceleration do not occur if m'>0. Although we have
not shown that all solutions of (4.11) are stable, we
have shown that they are stable under the following
conditions. If a(f) and external forces are zero for a
period of time extending into the past such that K, as
given by (5.12), vanishes, then the solution of (4.11) is
given by (5.15), since the homogeneous solutions of
(4.11) are absent. Then as shown in Sec. VC, if p is
bounded by (5.21), the solution of (4.11) will never
“runaway’’ when arbitrary forces are applied.

This is a property which the Dirac equation (4.16)
does not share, because one can apply a force which will
“excite” the runaway solution. Although it can be
eliminated by imposing boundary conditions at ¢= o,
when that is done, a preacceleration is introduced.

The condition of 7'>0 is automatically satisfied by
those distributions where T',% is positive-definite in all
Lorentz frames, and thus it is not an unreasonable
condition. This can be seen by integrating 7',%* in an
arbitrary frame and then requiring that the integral of
the internal stresses vanish in the rest frame of the
particle.

Although the alternative and the Dirac equation are
quite different, we have shown in Sec. VD that when
the external forces are sufficiently slowly varying, the
solutions of the integral form of the Dirac equation
agree with those of (5.11), up to a term proportional to
the radius of the particle, which the Dirac equtaion has
ignored. Although the exact solution of (5.11) depends
on the shape of the charge density, in the limit of
slowly varying forces, the solution is relatively insensi-
tive to the exact shape and is dependent only on the
total charge.
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