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Jackson1 recently discussed the charge density on a thin
straight wire. He described Maxwell’s variational result, his
own asymptotic result for any axially symmetric body,2 and
the work of some other authors. We wish to point out a
method for obtaining the complete asymptotic expansion of
the charge density due to Handelsman and Keller.3 They con-
sidered the electrostatic potentialF(x,r 2,«) around an axi-
ally symmetric conducting body in an applied axially sym-
metric potentialF0(x,r 2,«). Herex is the distance along the
body axis, with the body length as the unit of length,r is the
distance from the axis, and« is the square of the ratio of the
maximum radius of the body to its length. For a body with
flat or pointed ends, they assumed thatF5F0 plus the po-
tential of a charge of density2 f (x,«) along the body axis
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Suppose thatF is a constant, sayF5b, on the body surface,
the equation of which isr 5«1/2R(x). Then on the surface,
Eq. ~1! becomes
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where S(x)5R2(x). They solved the integral equation~2!
asymptotically for« small, corresponding to a slender body,
and obtained the asymptotic expansion of the charge density
f ,
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The expansion coefficientsf nm(x) were determined recur-
sively.

For a body at potentialb51 with no applied field (F0

[0), the first two terms in Eq.~3! are given in Ref. 3, Eqs.
~4.3! and ~4.4!,
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The chargeQ(«), the integral of2 f , is the capacity of the
body,

Q~«!52E
0

1

f ~x,«!dx

5
21

log«
2

1

~ log«!2 E
0

1

@ log 41 logx1 log~12x!

2 logS~x!#dx1¯

5
21

log«
2

1

~ log«!2 F log 4222E
0

1

logS~x!dxG
1¯ . ~5!

The ratio of the charge density2 f (x,«) to the total charge
Q(«) is, from Eqs.~4! and ~5!,

f ~x,«!

Q~«!
511

1

log« F log
4x~12x!

S~x!
22 log 212

1E
0

1

logS~x!dxG1¯ . ~6!

Equation~20! of Ref. 2 is equivalent to Eq.~6!, and includes
the next term. For a thin circular cylinder or wire,S(x)51,
so the integral in Eq.~6! equals zero. Then Eq.~6! reduces to
Eq. ~3! of Ref. 1 when we setx5(z11)/2, f (x,«)
52cl(z), andL52 log«. When the body has smooth ends,
the charge distribution2 f (x,«) in ~1! does not extend up to
the ends. For example, for a prolate ellipsoid of revolution,
f (x,«) is nonzero between the two foci of the ellipsoid, and
f is zero outside them. It is an interesting problem to derive
this result, and to findf , by considering the exact solution
for the ellipsoid and continuing it analytically into the inte-
rior of the ellipsoid. The continuation is singular on the axis
between the foci and regular outside them. The strength of
the singularity at the pointx on the axis determinesf (x,«).
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