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Causality puts certain constraints on the change of the electromagnetic field due to the change in
motion of charged particles. Naive calculations of the electromagnetic energy and the work
performed by the electromagnetic fields which take these constraints into account might lead to
paradoxes involving the apparent nonconservation of energy. A few paradoxes of this type for the
simple motion of two charges are presented and resolved in a quantitative way providing deeper
insight into various relativistic effects in classical electromagnetic theory. ©2002 American Association

of Physics Teachers.
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I. INTRODUCTION

Starting from Einstein’s work on special relativity,1 it has
become clear that classical electromagnetic theory is con
tent with relativity, and no true paradoxes can be fou
However, several apparent paradoxes have been extens
discussed and these discussions have enriched our u
standing of electromagnetic theory. Some of these contro
sial topics include hidden momentum,2 Feynman’s disk,3 the
Trouton–Noble experiment,4 and the 4/3 factor for the self
energy of an electron.5 Here we discuss some examples
the simple motion of two charged particles which, when a
lyzed naively, lead to paradoxical conclusions. Our analy
is relevant to recent discussions of covariance in electrom
netic theory.6–10

We present our examples in the form of five paradox
the resolution of which is based on four different effects. W
present the paradoxes without giving hints to the effects
resolve them, and we ask readers who spot the effects im
diately to bear with us because they still may find the qu
titative resolution of the paradoxes interesting. The first t
paradoxes are based on the same effect. We present the
Secs. II and III and resolve them in Secs. IV and V. In S
VI we again analyze the setup of Paradox II and pres
Paradox III, which we resolve in Sec. VII. In Secs. VIII–X
we present and resolve the last two paradoxes and we s
marize our results in Sec. XII.

II. PARADOX I: GAINING ENERGY FROM
RETARDATION OF ELECTRIC FIELD

Two particles of chargeq are initially separated by a dis
tancel. We consider two ways of bringing the particles, in
tially and finally at rest, to a smaller distancel 2x ~see Fig.
1!.

~i! We move one particle the distancex toward the other
particle. The work required for this move is

Wi5Unew2Uold5
q2

l 2x
2

q2

l
. ~1!
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~ii ! We move both particles toward each other by the d
tancex/2. We move them simultaneously and fast enou
such that the motion of each particle ends before the sig
about this motion can reach the location of the other parti
In this case, the external work done should be the sum of
amounts of work performed by external forces exerted on
two particles calculated as if the other particle has
moved:

Wii5W11W252S q2

l 2x/2
2

q2

l D . ~2!

After the procedure is ended, we obtain the same situa
in both cases, but we applied less work when we moved b
particles:Wii,Wi.

We can obtain energy equal to the workWi back from the
system when we reverse process~i!, moving one of the
charges to the original separationl. We can repeat the cycle
consisting of process~ii ! and the reversed process~i! gaining
each time the energy:

Wi2Wii'
q2x2

2l 3 . ~3!

Of course, there must be an error in the above argument.
have not taken all relevant effects into account. Howev
before explaining this paradox, we present and resolve P
dox II, which is simpler to analyze and the resolution
which follows from the same effect.

III. PARADOX II: CONSERVATION OF ENERGY
FOR TWO STOPPING PARTICLES

Consider two particles of chargeq and massm located on
thex axis and separated by the distancel; they are moving in
thex direction with a constant velocityv. At time t150, we
stop the first particle and at timet25t we stop the second
particle ~see Fig. 2!. The timet is sufficiently small so that
signals about the change of the velocity of the first parti
cannot reach the second while it is still moving. We al
require thatt, the time of deceleration, is very small. The
requirements impose the following constraint:
1216rg/ajp/ © 2002 American Association of Physics Teachers
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c1v
. ~4!

Let us consider conservation of energy for this proce
The initial energy should be equal to the final energy plus
work done by the forces that the particles exert on exte
systems:

Ein5Efin1W11W21W̃, ~5!

whereW1 and W2 are the work of the forces that the pa

ticles exert during the process of stopping;W̃ is the work
performed by the second particle moving with velocityv
during the time that the other particle is at rest. Of course
work is performed when both particles are at rest, and the
work vanishes during the time when both particles are m
ing with velocity v.

For a relativistic analysis, we include the rest mass ene
Thus, the final energy of the system is

Efin52mc21
q2

l 2x
, ~6!

Fig. 1. Space–time diagram of the motion in the two processes:~i! one
particle moves,~ii ! two particles move.

Fig. 2. Space–time diagram of the motion of the two particles.
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wherex is the change in the separation between the char
x5vt.

When a particle moves with constant velocity, the to
force exerted on it is zero. Therefore, the force it exerts on
external system is equal to the electromagnetic force
other particle exerts on it. Because the distance between
particles isl in the laboratory frame, in the Lorentz frame
which the charges are at rest, the distance between themg l
~where g[1/A12v2/c2). In the reference frame in which
the charges are at rest, the force is given by Coulomb’s l
and the Lorentz transformation between the force in thx
direction in the rest frame and the force in the laborato
frame isFx5Fx8 . Hence, the forces the particles exert on t
external systems are

F1x52F2x5
q2

~g l !2 . ~7!

Thus, the workW̃ is

W̃52
q2x

~g l !2 . ~8!

Therefore, Eq.~5! for the conservation of energy becomes

Ein52mc21
q2

l 2x
1W11W22

q2x

~g l !2 . ~9!

The initial energyEin obviously does not depend onx. Due
to causality, the workW1 andW2 do not depend onx either.
Therefore, Eq.~9! represents a paradox: it must be true f
all allowed values ofx, but it cannot, because the tw
x-dependent terms do not balance each other.

IV. RESOLUTION OF PARADOX II: INTERFERENCE
OF RADIATION

Because of the constraint~4!, the process of stopping
charged particles cannot be arbitrarily slow. Therefore,
should expect a significant contribution due to radiati
which we have not taken into account. During the process
stopping, the magnitude of the acceleration of the charge
a5v/t. According to the Larmor formula, the total energ
radiated by a single charge during the whole process of s
ping is

R15R25
2

3

q2a2

c3
t5

2

3

q2v2

c3t
. ~10!

It is easy to see that thex-dependent term in Eq.~9!, which
we have to balance, is much smaller thanR1 andR2 . How-
ever, everything that happens in the close vicinity of t
charges cannot depend onx, and, in particular, the radiation
that each charge emits does not depend onx, so how can the
radiation energy balance thex dependent terms in the equa
tion of conservation of energy? The effect is due to the
terference of the radiation. The total radiated energy is

Rtot5R11R21Rint . ~11!

The interference term depends onx and restores the balance
Next we will show this effect in detail.

In our quantitative analysis we show that the leadi
x-dependent term of Eq.~9! is canceled by the leading
x-dependent term ofRint . We expand thex-dependent terms
of Eq. ~9! and find

q2

l 2x
2

q2x

~g l !2 5
q2

l
1

v2q2x

c2l 2 1
q2x2

l 3 1••• . ~12!
1217A. Kislev and L. Vaidman
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Due to the constraint~4!, we have

vt!x,
lv

c1v
. ~13!

Therefore, we will considerx to be the same order of mag
nitude aslv/c. In this caseq2v2x/c2l 2!q2x2/ l 3, and the
leading term that has to be canceled due to the radiation

q2x2

l 3 . ~14!

The radiation of the stopping charge propagates insid
spherical shell of widthct, and the energy fluxS is given
by11

S5
q2a2 sin2 u

4pc3r 2 r̂ , ~15!

wherer is the radius of the shell andu specifies the direction
relative to thex axis. Because we have two accelerat
charges, the radiation fields due to the two charges inter
in the region of the overlap~see Fig. 3!. A complete overlap
takes place at an angleu defined by

sinS u2
p

2 D5
ct

l 2vt
5

cx

v~ l 2x!
. ~16!

Because the width of the shells isct, the overlap vanishes
once the deviation exceeds

du5
ct

~ l 2x!sinu
, ~17!

which is obtained by equatingct to the differential of the
difference between the paths of the two fields:

ct5dF ~ l 2x!sinS u2
p

2 D G5@~ l 2x!sinu#du. ~18!

Because the amplitudes of the fields in the region of
overlap are approximately equal, the total energy radiate
the direction of the overlap is twice as much, due to
interference, than if the two charges were radiating se

Fig. 3. Electromagnetic radiation of the two stopping particles. The are
constructive interference of the radiation field is painted in black.
1218 Am. J. Phys., Vol. 70, No. 12, December 2002
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rately. At the interval@(u2du),(u1du)#, the overlap in-
creases and then decreases linearly. Therefore, the inte
ence term of the radiation energy is

Rint52
q2a2 sin2 u

4pc3r 2 2pr sin~u! r tE
2du

du du2ufu
du

df

5
q2v2 sin2 u

c2~ l 2x!
. ~19!

If we use sin2 u 512sin2(u2p/2) and Eq.~16! and expand
to lowest order in the parameterx/ l'v/c, we obtain:

Rint5
q2v2

c2~ l 2x!
2

q2x2

~ l 2x!3 '
q2v2

c2l
2

q2x2

l 3 . ~20!

Thus, we see that up to orderv2/c2, the x dependent term
~14! is canceled. This reasoning resolves Paradox II.

Another paradox of energy nonconservation for a syst
of two charged particles when radiation is neglected has b
considered in Ref. 12, but the resolution of their paradox
taking into account radiation was shown only qualitatively13

V. RESOLUTION OF PARADOX I

The radiation energy~10! is much larger than the term~3!
which we have to compensate. However, we would like
have a quantitative resolution of this paradox that shows h
the missing term~3! arises from the calculation of the radia
tion energy. To obtain a quantitative result we specify h
we perform the processes described in Sec. II.

In case~i!, we accelerate particle 1 for a small timet until
it reaches velocityv. Then it moves the distancex with
constant velocity. Finally, it stops in the same manner a
was accelerated. In case~ii !, both particles reach speedv and
stop at timet after going the distancex/2. The timet is short
enough such that during its motion, each particle cannot
ceive a signal about the motion of the other particle. Thu

t!t5
x

2v
,

l

c1v
. ~21!

In case~i! the same amount of radiation energy is crea
due to the acceleration and due to the stopping of the par
and, therefore, it is twice the amount given by the Larm
formula ~10!:

Ri5
4

3

q2v2

c3t
. ~22!

In case~ii ! there are four events in which the velocity of
particle is changed by amountv and, therefore, there are fou
spherical shells of radiation field of widthtc ~see Fig. 4!.
The radiation energy is four times the Larmor energy~10!
with a correction due to interference. The interference is d
to the radiation emitted during the acceleration of the t
particlesRaa, the deceleration of the two particlesRdd, the
acceleration of the first and deceleration of the secondRad,
and the acceleration of the second and deceleration of
first Rda. These four terms can be calculated in the same w
as we have calculated the interference of the radiation en
of two stopping charged particles in Sec. IV.

Because the accelerations of the particles are perfor
simultaneously, the direction of the interferenceRaa is u
5p/2. This is the direction of maximal power of radiatio
energy, see Eq.~15!. The range of the angles for which the

of
1218A. Kislev and L. Vaidman
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is interference is given by Eq.~17! and, thus, similarly to the
derivation of Eq.~20!, we find that the interference term du
to simultaneous acceleration is

Raa52
q2v2

c2l
, ~23!

where the minus sign~destructive interference! occurs be-
cause particles accelerate in opposite directions. The se
term of Eq.~20! does not appear because simultaneity co
sponds tox50 in the notation of Sec. IV. The interferenc
term due to simultaneous deceleration is the same,Rdd

5Raa.
The interference between acceleration of the first and

celeration of the second particle takes place in the direc
û1 defined by

sinS u12
p

2 D5
ct

l 2vt
, ~24!

and the interference between acceleration of the second
ticle and deceleration of the first particle takes place in
direction û2 defined by

sinS p

2
2u2D5

ct

l 1vt
. ~25!

Now we can use Eq.~19! again, taking into account that th
particles stop after going the distancevt5x/2. We make an
appropriate approximation and obtain:

Rad5Rda5
q2v2

c2l
2

q2x2

4l 3 . ~26!

If we sum all the contributions, we find that the radiatio
energy for process~ii ! is

Rii5
8

3

q2v2

c3t
2

2q2v2

c2l
12S q2v2

c2l
2

q2x2

4l 3 D
5

8

3

q2v2

c3t
2

q2x2

2l 3 . ~27!

Fig. 4. Electromagnetic radiation of the two charged particles which
simultaneously accelerated toward each other and after timet stopped, case
~ii !. The shadowed area signifies destructive interference and the
painted in black signifies constructive interference.
1219 Am. J. Phys., Vol. 70, No. 12, December 2002
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Now we are able to analyze Paradox I taking into acco
the radiation energy. In case~i! the work performed by the
external forces should include the radiation energy~22!.
Thus, instead of Eq.~1!, we obtain:

Wi5Unew2Uold1Ri5
q2

l 2x
2

q2

l
1

4

3

q2v2

c3t
. ~28!

In case~ii ! we have to calculate the work taking into a
count the causality argument: each particle ‘‘does not kno
that the other particle moved. Therefore, the work against
field and the radiated energy should be calculated as if
other particle had not moved. The work is twice the amo
of work in case~i! with the change ofx→x/2. Thus, instead
of Eq. ~2!, we obtain:

Wii5W11W252S q2

l 2
x

2

2
q2

l
1

4

3

q2v2

c3t D . ~29!

Clearly we cannot gain energy by constructing a mach
with a cycle of process~ii ! and reversed process~i!. The
work required for the reversed process~i! is

Wĩ5
q2

l
2

q2

l 2x
1

4

3

q2v2

c3t
. ~30!

Thus, the work during the whole cycle is

Wtot5Wĩ1Wii5
q2

l
2

q2

l 2x
1

4

3

q2v2

c3t

1S q2

l 2
x

2

2
q2

l
1

4

3

q2v2

c3t D
'2

q2x2

2l 3 1
4q2v2

c3t
. ~31!

This work is greater than zero, because the radiation term
much larger than the gain in the potential energy, as can
seen explicitly using Eq.~21!. However, even if we collect
the radiation energy, we still cannot gain energy. Indeed,
total radiation energy is

Rtot5Ri1Rii5
4

3

q2v2

c3t
1

8

3

q2v2

c3t
2

q2x2

2l 3

5
4q2v2

c3t
2

q2x2

2l 3 . ~32!

Our calculations have shown~up to orderv2/c2) that during
the complete cycleWtot5Rtot . This reasoning completes th
analysis of Paradox I.

VI. PARADOX III: ANOTHER LOOK AT THE
CONSERVATION OF ENERGY FOR TWO STOPPING
PARTICLES

Let us return to Paradox II in which two moving particle
stop at different times. We have resolved one apparent c
tradiction concerning the conservation of energy, but
have not checked if there are other difficulties. We ne
present another problem that appears in plausible but n
calculations.

The equation of conservation of energy~9! should be cor-
rected by adding the radiation energyR:

e

ea
1219A. Kislev and L. Vaidman
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Ein52mc21
q2

l 2x
1W11W22

q2x

~g l !2 1R. ~33!

Our approach to finding the initial energy is to find the to
energy of the charges in their rest frameE0 and multiply it
by the factorg:

E5gE0 . ~34!

In the rest frame of the moving particles the distance
tween the particles isg l . Therefore, the total initial energy i

Ein5gS 2mc21
q2

g l D . ~35!

We now consider the situation in which particle 2 sto
just before information about the stopping of particle 1 c
reach it. This situation corresponds to

x5vt5
v l

c1v
. ~36!

For this choice ofx there is no interference between radiati
fields from different particles. Indeed, the overlap of the
diation fields takes place only in the directionu5p, and in
this direction the amplitude of the radiation field vanish
~see Eq.~15!!. Therefore,

R5R11R2 . ~37!

We substitute Eqs.~35!–~37! into Eq. ~33! and obtain the
following equation of conservation of energy for two pa
ticles:

2gmc21
q2

l
52mc21

q2

l S 11
v
cD1W11W2

2
q2

l S v
c

2
v2

c2D1R11R2 . ~38!

We can test the consistency of Eq.~38! with the equations
of conservation of energy for each particle:

gmc25mc21W11R1 , ~39a!

gmc25mc21W21R2 . ~39b!

If we subtract Eq.~39! from Eq.~38!, we find that the energy
at the end of the process is larger than the energy at
beginning by a factor

q2v2

lc2 . ~40!

We have obtained another paradox.

VII. RESOLUTION OF PARADOX III: LORENTZ
TRANSFORMATION FOR ELECTROMAGNETIC
ENERGY

Paradox III arises from the error that we made in the c
culation of the initial energy. Equation~34! is, of course,
correct when the system is an elementary particle. It als
true for a compositeisolated system, but the two charge
moving with constant equal velocities are not an isola
system. We have to consider the whole system, the cha
together with the external system that keeps the distance
tween the charges unchanged. Note the similarity with
Poincare´ observation that there must be nonelectromagn
1220 Am. J. Phys., Vol. 70, No. 12, December 2002
l

-

n

-

s

he

l-

is

d
es
e-
e
ic

stresses in a model of a charged particle, and that th
stresses solve the problem of covariance of the energy
momentum for such a model.14

To obtain the correct transformation of the electroma
netic energy from the rest frame to the moving frame,
consider two charges connected by a rigid rod. The energ
the whole system, charges and rod, transforms accordin
Eq. ~34!. Therefore, the anomalous term in the transform
tion of the electromagnetic energy equals the negative of
anomalous part in the mechanical energy of the rod. T
latter is easier to calculate and we will do it now.

To calculate the expression for the transformation of
energy of the rod, we express the energy as a volume inte
of the energy density* udv and use the Lorentz transforma
tion for the energy density, the component of the ener
stress tensorT00:

u5g2S u81
v
c2 Sx82

v2

c2 sxx8 D , ~41!

whereS is the energy flux ands is the stress tensor. Th
transformation of the energy due to the first term leads to
usual expression~34!; the energy density is multiplied byg2,
but due to the Lorentz contraction the volume is multipli
by the factorg21. The second term does not contribute b
cause the energy flux in the rest frame vanishes. Theref
only the last term contributes to the anomalous term. T
tension in the rod prevents the charges, separated by
distanceg l , from moving; therefore, it equalsq2/g2l 2. Thus,
in the rest frame of the rod, the stress tensor componen

sxx8 5
q2

sg2l 2 , ~42!

wheres is the cross section of the rod. Therefore, the con
bution to the energy in the laboratory frame due to the t
sion of the rod is

2
g2v2

c2 E sxx8 dv52
g2v2

c2
sxx8 ls52

v2q2

c2l
. ~43!

The correction to the electromagnetic energy is the nega
of Eq. ~43!, and, therefore, the total initial energy is~instead
of Eq. ~35!!:

Ein5g2mc21
q2

l S 11
v2

c2D . ~44!

The correction cancels the unbalanced term~40! and resolves
Paradox III.

VIII. PARADOX IV: ACCELERATING PARTICLES
FROM REST

Let us now consider the simultaneous acceleration of
charged particles from rest to velocityv. In the frame of
reference moving with velocityv, this process is the dece
eration of the particles from velocityv to rest that we ana-
lyzed above. However, the transformation from one frame
another might be a difficult task, and, as in many oth
examples,15–17 an analysis in a different Lorentz frame a
lows one to see new physical phenomena; in our cas
provides yet another possibility of making an error leading
a paradox.
1220A. Kislev and L. Vaidman
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The equation of conservation of energy for the two p
ticles that takes into account the radiation energy~compare
with Eq. ~5!! is

Ein5Efin1W11W21W̃1R11R21Rint . ~45!

The initial energy of the particles is

Ein52mc21
q2

l
. ~46!

Because the final state of the particles~motion with velocity
v and separationl ) is identical to the initial state of the
particles in the setup discussed in Sec. VII, the final ene
Efin is equal to the right-hand side of Eq.~44!.

Because the charges start to move together, it seems
the net work is done only during the acceleration interv
that is,

W̃50. ~47!

The radiated energy during the acceleration should be
same as in the process of stopping~see Eq.~20!!. For simul-
taneous accelerationx50, and hence the interference term

Rint5
q2v2

c2l
. ~48!

The equations of conservation of energy for each particle

mc25gmc21W11R1 , ~49a!

mc25gmc21W21R2 . ~49b!

Then, by substituting for all the terms in Eq.~45! and sub-
tracting the single-particle equations~49!, we find that the
energy at the end of the process is larger than the in
energy by a factor

2q2v2

lc2 . ~50!

We have reached another paradox.

IX. RESOLUTION OF PARADOX IV: RETARDED
FIELDS

The error we made in Sec. VIII is more transparent.
appears in the sentence stating that the only net work of
charges is done during the acceleration interval. It is true
in the case of particles moving with constant velocity, the
work of moving charges vanishes. However, at the beginn
of the motion, the fields in the vicinity of the charges a
different from the field of the uniformly moving charge
each particle feels thestaticfield of the other particle~that is,
as if it has not moved! until the signal from the motion of the
other particle can arrive.

Let us calculate the contribution to the work due to t
forces between the particles. Particle 2 moves in the st
field of particle 1 during the timet5 l /(c1v) after which it
feels the field of moving particle 1, which isq/g2l 2. Simi-
larly, particle 1 moves in the static field of particle 2 durin
the timet85( l /c)2v, after which it feels the field of mov-
ing particle 2. After timet8, there is no contribution to the
net work due to the forces between the two particles. U
1221 Am. J. Phys., Vol. 70, No. 12, December 2002
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time t8, particle 1 covers the distancex85vt8 in the static
field of particle 2. Therefore, the contribution to the wo
from particle 1 is

q2

l
2

q2

l 1x8
5

vq2

cl
. ~51!

The work performed by particle 2 until timet8 has two
parts. Until timet, it is

q2

l
2

q2

l 2x
52

vq2

cl
. ~52!

Between timet and t8, it feels a constant field so the contr
bution to the work is

2
q2

g2l 2 v~ t82t !52
2v2q2

c2l
. ~53!

If we sum all the contributions, Eqs.~51!–~53!, we find that
the net work performed by the particles during the moti
with constant velocity is

W̃52
2v2q2

c2l
. ~54!

This term cancels the unbalanced term, Eq.~50!, and restores
the balance in the equation of conservation of energy.

X. PARADOX V: ACCELERATING PARTICLES
MOVING IN PARALLEL

Let us consider the acceleration of two charged partic
lined up along they axis~transverse configuration! instead of
along thex axis ~longitudinal configuration!. The particles
accelerate simultaneously from rest to the velocityv in thex
direction. The expression for the initial energy is again giv
by Eq. ~46!. However, the final energy is different:

Efin5gS 2mc21
q2

l D . ~55!

Indeed, in the rest frame of the moving particles, the dista
between them isl. In this case the electromagnetic energy
transformed in the usual way as in Eq.~34! because the
energy of the composite system of charges and the rod
necting the charges is transformed according to Eq.~34!, and
the energy of the rod with the tension in they direction is
transformed according to Eq.~34!. The anomalous behavio
of the rod in the previous case followed from the presence
thesxx component of the stress tensor, which vanishes in
present transverse configuration.

The interference term of the radiation energy also is mo
fied. In the longitudinal configuration, the interference~the
overlap of the radiation fields! takes place in the direction
that have an angleu5p/2 relative to the direction of the
acceleration. In the transverse configuration, the interfere
is in the directions perpendicular to they axes, and the angle
u attains all values. Therefore, the intensity of the radiat
fields is not always maximal, and instead, it is proportion
to sin2 u ~see Eq.~15!!. Averaging overu reduces the inter-
ference term relative to that of the longitudinal configuratio
Eq. ~48!, by a factor of 2:
1221A. Kislev and L. Vaidman
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v2q2

2c2l
. ~56!

During the uniform motion the charges do not exert forc
in the direction of motion, but in the transition period, wh
the charges move in the static field, there is a small com
nent of the force in the direction of motion. The particl
move in the static field during the timet which satisfies

ct5Al 21t2v2. ~57!

The solution of Eq.~57! is ct5g l . Therefore, the total work
that the two particles perform is

W̃52S q2

l
2

q2

g l D . ~58!

Of course, the single-particle equations of conservation
energy remain the same. Thus, if we include all the con
butions to the conservation of energy equation~45! and sub-
tract Eq.~49!, we find:

q2

l
5

gq2

l
1

2q2

l S 12
1

g D1
q2v2

2c2l
. ~59!

We again find a contradiction: The energy at the end of
process is larger than the initial energy. If we calculate up
second-order inv2/c2, we find three contributions. The in
crease in the potential energy contributesv2q2/2c2l , the
work of the static fields during the transition period contr
utesv2q2/c2l , and the interference of radiation contribut
v2q2/2c2l . All terms together contribute

2v2q2

c2l
. ~60!

We have reached another paradox.

XI. RESOLUTION OF PARADOX V: THE WORK OF
THE RADIATION FIELDS

The effect we missed in Sec. X is probably the most sub
one. We have not taken into account the work of the rad
tion field. The electric field at the pointr ~relative to the
charge! due to the radiation of the chargeq moving with
accelerationa, is11

E5
q

c2r
r̂Ã~ r̂Ãa!. ~61!

For our configuration, the field is

E52
qa

c2l
x̂. ~62!

This field exerts a force during the timet during which the
particle moves a distancetv. If we take into account tha
a5v/t, we find that the force of the radiation field chang
the energy of each particle by

Wrad52
q2v2

c2l
. ~63!

Both particles lose energy in this way, and, therefore, we l
2v2q2/c2l . This loss of energy cancels the unbalanced te
1222 Am. J. Phys., Vol. 70, No. 12, December 2002
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Eq. ~60!. Note that in the longitudinal configuration, th
work of the radiation fields vanishes because the radia
fields at the locations of the particles vanish.

XII. CONCLUSIONS

We have analyzed some relativistic features of class
electromagnetic theory and demonstrated quantitatively
relevance of several effects due to the conservation of
ergy. These effects are~i! the interference of radiation fields
~ii ! the anomalous transformation of energy,~iii ! the retarda-
tion of the electric field, and~iv! the work performed by the
radiation field. Paradoxes I and II were caused by neglec
the interference of radiation fields~i!. Paradox III was based
on the anomalous transformation of energy~ii !. Paradox IV
was based on field retardation~iii !. Finally, Paradox V was
based on a surprisingly significant effect of the work p
formed by the radiation fields.

We provided quantitative resolution of the paradoxes up
second order inv/c. Is it a simple task to demonstrate co
servation of energy to a higher order inv/c? It is not difficult
to expand the algebraic expressions we have to a highe
der, but such an expansion is not enough. We have used m
approximations, in particular, the expressions for the rad
tion of the charged particles are correct only in the appro
mation of small acceleration and small velocities. Inde
Eq. ~10! cannot be universally correct, because it says tha
reducingt, the time of stopping the charged particle, we c
obtain an unlimited amount of radiation energy: clearly w
should not get more energy than the initial kinetic energy
the particle. Higher order calculations of the equation of co
servation of energy are an elaborate task that goes bey
the scope of this paper.

We believe that presenting the effects in the form
paradoxes helps to achieve a deeper understanding o
subject. Obtaining quantitative resolutions of paradoxi
situations bolsters our confidence in applying the equation
conservation of energy for indirect calculations of vario
effects.
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BEGINNINGS OF RADAR

In the 1930’s, microwave research was heavily cloaked in secrecy and was simultaneously
being developed under wraps in military and industrial laboratories in America, England, France,
and Germany. The basic principle, that, radio waves had optical properties and could ‘‘reflect’’
solid objects, had been demonstrated in 1888 by the German scientist Heinrich Hertz. A working
device for the detection of ships, based on his experiments, was tested in the early 1900’s. But
little was done to exploit the discovery, even though as far back as 1922, Guglielmo Marconi had
urged the development of short radio waves for the detection of obstacles in the fog or darkness.
It was not until the 1930’s, when airplanes came of age as a military weapon—a threat made
terrifyingly real by the damage inflicted by German and Italian bombers on Spain between 1936
and 1938—that the technology of radar finally began to be developed in earnest. Most of the
countries exploring radar concentrated their early efforts on ‘‘the beat method,’’ or the Doppler
method, which used ordinary continuous radio waves and required at least two widely separated
and bulky stations, one for transmitting and one for receiving. Airplanes that penetrated between
the transmitter and receiver were detected by the Doppler beat between the direct signal~from the
transmitter to the receiver! and the signal scattered by the target~which traveled a longer route
from the transmitter to the plane and then to the receiver!. Unfortunately, the equipment was fairly
limited in its effectiveness. The sharpness of the system’s vision—its ability to distinguish sepa-
rately the echoes from two targets close together and at the same distance from the radar—
depended on the sharpness of the radar beam. For a given antenna, the beam width was propor-
tional to the wavelength and would become sharper as the wavelength decreased. Loomis realized
that if sharp radar beams were ever to be produced by an antenna not too large to carry in an
airplane, they would have to develop a generator of much shorter wavelengths than was then
known. It was speculative, to be sure, but the unexplored microwave spectrum promised not only
to allow radar sets to become much smaller and more portable, but also to prove better at locating
low-flying aircraft and to be able to distinguish targets with far greater accuracy.
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