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Abstract—This paper presents an alternative vector analysis
of the electromagnetic (EM) fields radiated from thin circular-
loop antennas of arbitrary radius a. This method, which employs
the dyadic Green’s function in the derivation of the EM radiated
fields, makes the analysis more general, compact, and straight-
forward than those two methods published recently by Werner
and Overfelt. Both near and far zones are considered so that
the EM radiated fields are expressed in terms of the vector-wave
eigenfunctions. Not only the exact solution of the EM fields in
the near and far zones outside the region (wherer >a) is derived
by the use of the spherical Hankel function of the first kind,
but also the closed-series form of the EM fields radiated in the
near zone inside the region0 � r <a is obtained in series of
the spherical Bessel functions of the first kind. As an example,
a Fourier cosine series is used to expand an arbitrary current
distribution along the loop and the exact representations of the
EM radiated fields due to the loop everywhere are obtained in
closed form. The closed form reduces to those for the sinusoidal
current loop and further for the uniform current loop. Validity
of the approximate formulas is discussed and clarified. Error
analysis based on numerical computations of the radiated fields
is also given to show the accuracy of the limiting cases.

Index Terms—Closed-form solution, eigenfunction expansion,
electromagnetic radiation, loop antennas, vector-wave functions.

I. INTRODUCTION

T HIN circular-loop antennas carrying different forms of
the currents and their radiation characteristics have been

investigated by many researchers over the last several decades.
Literature is readily available for the circular loops located in
free-space [3]–[12] and immersed in layered media [13]–[15].
The radiation characteristics of the circular-loop antennas can
also be readily found from antenna textbooks [16]–[22].

As stated and reviewed in [1] and [2], many papers dealt
with the radiated fields in the far zone due to circular loops
with certain restrictions, e.g., the far field due to a uniform
current [3], the distant-field due to a sinusoidal current [4],
the approximate and exact far-zone field due to a hyperbolic
cosine current distribution of a small loop [5] and a larger loop
[6], and the far-field intensities due to a Fourier cosine series
current [10] and a traveling-wave current distribution [11].
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For the near-zone field, only a small amount of work [9] has
been reported in the literature due to the difficulty in evaluating
integrals analytically. Recently, Werner [1] employed the
Lommel expansion and the Euler’s identity to evaluate the
Hertzian potential integral and further express the electromag-
netic components in terms of the spherical Bessel functions
and the spherical harmonics. An arbitrary current is assumed
[9] at the beginning; but later a Fourier series is employed to
obtain general results in closed form and, finally, a cosine
current distribution and, further, a constant current density
are considered to specify the obtained general results. In the
meantime, Overfelt [2] assumed a constant current distribution
of the thin loop antenna and derived the series form of Hertzian
potential and, thereafter, the radiated near-zone field by means
of elliptic integrals. The two papers contribute significantly to
the exact evaluation of the electromagnetic radiated fields in
the near zone.

However, the results obtained [1], [2] are, as indicated
by Overfelt, valid only for the region where is the
radius of the loop. Also, the techniques presented in the
two papers is not so straightforward and general. This paper
aims at providing a more general, straightforward and simple
method to obtain the electromagnetic radiated fields in closed
form. Both the exact near fields without the restriction on
the observation point (i.e., valid for both and

) and the exact far field are obtained regardless of the
dimensions of the loop antennas. Also, the improper statement
of the validity of the approximate formulas to be deduced is
pointed out.

II. GENERAL FORMULATION OF

ELECTROMAGNETIC RADIATED FIELDS

Consider the geometry in Fig. 1 where the origin of the
spherical coordinates is located at the center of a thin circular-
loop antenna.

Similar to [1, Eq. (22)], the volumetric electric current
density may be expressed as

(1)

where is an arbitrary function of , and is the radius
of the circular loop. This current distribution radiates the
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Fig. 1. Geometry of a thin circular-loop antenna.

electromagnetic waves into the free-space. The equations for
determining the electromagnetic radiated fields are given as
follows [23], [24]:

(2a)

(2b)

where the subscript represents the volume occupied by
the circular loop and denotes the dyadic Green’s
function of the electric kind in free-space.

The dyadic Green’s function of the electric kind in free-
space was given earlier in terms of the spherical vector-wave
functions by Tai [23] and applied by Liet al. [24] recently.
The magnetic kind can be obtained by simply applying the
duality relations to the electric kind. It is found that the forms
of the dyadic Green’s functions of electric and magnetic kinds
are of the same form and given by

(3)

where ( for and for ) denotes the
Kronecker symbol, and the normalization coefficient is
given by

In (3), the vector-wave eigenfunctions are defined in the
spherical coordinates system as follows:

(4a)

(4b)

where , which takes the forms of the spherical Hankel
function of the first kind for the fields in the region

and the spherical Bessel function of the first kind
for the region , represents the spherical Bessel
functions of order , and is the associated Legendre
function. The notations and of the dyadic Green’s
function in (3) mean that the summation form of both even and
odd modes should be taken into account when the integral in
(2) is evaluated.

Substituting the current distribution in (1) into the integral
(2), we have the following general formula for the electromag-
netic radiated fields in the region :

(5a)

(5b)

where denotes the intrinsic impedance. The
spherical Bessel function of the first kind (i.e.,

is used in the vector-wave functions and
; the spherical Hankel function of the first kind [i.e.,

is used in the vector-wave functions
and ]. They are also used under the

same rule in the coefficients of the series EM fields, i.e.,

and and These coefficients are expressed
by

(6a)

(6b)

and the associated Legendre function and its first-order
derivative are given by

(7a)

(7b)
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In the above consideration, we did not include the observation
points exactly on the spherical surface of the loop radius. In
fact, the fields on the surface , except where ,
can be expressed by either and or and
where is assumed to be. At the points where and

, the fields consist of the aforementioned principal-
value contribution and the additional contribution due to the
singularity term of the dyadic Green’s function [i.e., the
first term of (3)]. This additional contribution can be easily
integrated and analytically obtained, but will not be calculated
since it is not practically needed here.

It can be seen from (5) that: 1) the expressions in (5)
are the general form of the radiated fields valid for any
current distribution; 2) once the current density is specified,
the intermediates (6) and therefore the fields in (5) can be
obtained in a closed form; 3) the field expressions obtained
in (5) are valid for any observation point, i.e., for both the
regions where and ; and 4) the fields in (5)
are given in compact vector form, which can reduce to the
scalar form, e.g.,

(8a)

(8b)

(8c)

and

(9a)

(9b)

(9c)

From the above procedure, we can see that the derivation of
the radiated fields is more general and straightforward than
that given in [1]. Also, the closed form for a given current
distribution is very compact, as seen from (5).

III. FOURIER SERIES CURRENT DISTRIBUTION

Since any current distribution can be expanded into the
Fourier series, to obtain the exact representation of the radiated
fields, we assume that [1]

(10)

With this current distribution, the intermediates in (6) reduce
to

(11a)

(11b)

since

It is noticed that the odd mode of and the even mode

of in (6) vanish so that the radiated fields are further
simplified to

(12a)
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(12b)

So far, the exact integration solution of the radiated fields
has been evaluated analytically and presented in terms of the
spherical Bessel functions and spherical harmonics. Numerical
computation of the similar summation of the spherical Bessel
and Hankel functions and the spherical harmonics in [25] and
[26] shows that the summation converges rapidly and that at
most 20 terms for the index should be taken usually.

IV. SINUSOIDAL CURRENT DISTRIBUTION

As a degenerate form of the Fourier series form representa-
tion, the current distribution of the circular loop is commonly
assumed to be a sinusoidal and varies along the circumference
of the loop. Let in the Fourier series expression except
for , we therefore have

(13)

The solution of the radiated fields can be easily obtained by
letting in (12). Substituting this relationship into
(12), we obtain

(14a)

(14b)

where the intermediates and are given by (11)
and the eigenvalue is replaced by . The components of the
electromagnetic radiated fields can be easily obtained from the
vector form in (14) by substituting the individual components
of the vector-wave functions in (4), respectively, into (14).

V. UNIFORM CURRENT DISTRIBUTION

Uniform current distribution of the loop antenna, i.e.,
where is a constant, represents the simplest

case of the circular-loop antenna radiation. This assumption
is valid and accurate enough for the circular-loop antennas
which are electrically small in size. With this assumption, the
exact solutions can be easily obtained, as dealt with in the
past by Balanis [21], Stutzman and Thiele [19], Elliott [17],
Kraus [20], and more recently by Werner [1] and Overfelt [2].

A. Exact Expressions in Terms of Spherical Harmonics

In fact, this case can be considered as a particularly special
case of either the Fourier series, where only the first term
exists; or the sinusoidal case, where the parameter .

Therefore, we do not need to repeat the preceding derivation.
Instead, we just specify the parameter in the previously
given formula (14). Substituting into (11), we can see
that both and are zero such that the electromagnetic
fields in (14) are further simplified. Thus, we finally have the
radiated fields expressed as

(15a)

(15b)

where, with the reduction to as

(16a)

(16b)

Since in the vector-wave functions, the components
of the radiated fields can be expressed by taking the scalar
form of (15) as

(17a)

(17b)

and

(18a)

(18b)

(18c)

It should be emphasized that (17) and (18) are the exact
solutions of the electromagnetic radiated fields in the regions

and , respectively. Also it is noted that there is no
any restriction on the dimension of loop antennas.

B. Simplified Components

Electrically Small Loop: For the electrically small loop
(that is, we have [27]

(19a)

(19b)
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Therefore, the solution for this case can be found instantly
from the general solutions in (17) and (18) by taking the first
term of the summation (i.e., assuming only)

(20a)

(20b)

(20c)

since

and

To confirm the correctness of the above formulation, we
make use of the following formula [28]:

(21a)

so that

(21b)

By taking only the first two terms for , these two
functions reduce to the following forms:

(22a)

(22b)

With the substitution of (22) into (20), the general formulas in
(17) and (18) reduce to the following well-known results:

(23a)

(23b)

(23c)

except that the sign of the imaginary symbolis changed due
to the different time dependence chosen.

As shown in the form given previously in (20), the results
given in (23) are validonly in the outer spherical region where

. The radiated fields in the inner spherical region where
are given by the fields and in (20). However, this

validity wasnot realizedin the past, as stated by Banalis [21,

p. 169] that “the fields radiated by a small loop, as given by (5-
18a)–(5-19b) [in fact, (23a) and (23b)] are valid everywhere
except at the origin.”

C. Simplified Components

Far-Zone Fields: To obtain the far-zone results, we may
make use of the following approaches (see [23, p. 217] or
[27]):

(24a)

(24b)

Also, the following recurrence relations are needed for further
reduction [23, p. 205]:

(25a)

(25b)

Furthermore, we have by letting in (25) and thereafter
canceling the term

(26)

By substituting (26) and (24) into the general form of the
radiated fields in (17) and (18), we have

(27a)

(27b)

(27c)

(27d)

It is given by Flammer [29] (for one form with plus sign) and
by Li et al. [30] (for the other form with minus sign) that

(28)

Therefore, (17)–(27) again reduce to the well-known com-
ponents form of the far-zone electric and magnetic fields as
follows:

(29a)

(29b)

(29c)

(29d)
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(a)

(b)

Fig. 2. Three-dimensional normalized patterns of near zoneE�-component andH�-component as a function of� for various values ofr: (a) E�
field pattern. (b)H� field pattern.

which were given by Balanis [21] and again obtained from the
far-zone approximation by Werner [1]. Instead of in either
[21] or [1], the paper assumes the time dependence so
that again the forms presented here take the conjugate forms
of [21] and [1].

VI. NUMERICAL RESULTS

As stated, the radiated fields and in the near and far
zones in the spherical outer region radiated due to the
loop antenna carrying a uniform current are given by (20).

Error analysis of the approximate results such as those in
(23) for an electrically small loop and in (29) for the far-
field approxmiation have already been carried out numerically
by Werner [1] and Overfelt [2] based on the exact series
expression. Therefore, this paper will not repeat it. However,
the near fields and in the spherical inner region
radiated due to the uniform current loop given by (20) were
not reported elsewhere. Also, they were sometimes mistaken
to be and in (23). To gain an insight into these near
fields, this paper will present the antenna-plane and -plane
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Fig. 3. Normalized electric(E� component with respect tor = a) and
magnetic(H� component with respect tor = 0) fields inside the spherical
region r <a against the radial distancer.

patterns based on the exact results in (20), together with an
error analysis.

Consider a circular loop of radius . If the loop
dimension is very small, the antenna pattern is, as can be
seen from (20), just a sinusoidal or cosine pattern. However,
when the loop size becomes larger, e.g., , it is
no longer this type of patterns. Under this approximation, the
field components and are approximated as

(30a)

(30b)

since

where and are assumed.
Its near-field patterns of and

in (30) due to such a loop of radius are normalized
and plotted in Fig. 2. It is seen that the antenna pattern varies
with the radial distance for . Due to the symmetry of the
pattern, only the range for the spherical polar angle

is considered. At the center of the loop, both patterns are of
the sine functional shape. When the observation point is quite
close to the loop, both the -plane and -plane patterns of
the loop become complicated.

Both the electric ( component) and magnetic ( compo-
nent) fields in the inner spherical region are computed
numerically and shown in Fig. 3 as a function of the radial
distance by using (20). The electric field is normalized to the
field value at and the magnetic field to that at .
It is seen that the electric field is zero at the origin while the
magnetic field is at the maximum in the inner region. This is
physically true, as can be confirmed by theBiot–Savart law.
From this variation, it is definitely sure that (23) cannot be
used to represent the fields inside the sphere since both
electric and magnetic fields in (23) approach infinity as .

Fig. 4. Relative error of the electric(E� component) and magnetic(H�

component) fields inside the spherical regionr <a.

To show the difference between the actual fields in (20)
and the assumed near fields in (23), Fig. 4 depicts the vari-
ation of the relative error of both electric and magnetic field
components and in the region where . In the
computation, the angle is assumed since this plane
is of particular interest. It is seen that the error of the
component increases tremendously at an observation point
near the loop although the continuity of the component exists
where the error is zero. At and

the relative error of is about 0, 34, 86, 161, 325,
and 624%. The relative error of the magnetic field component

varies with slowly compared to the electric field. At
and the relative error of

is about 141, 157, 181, 223, 296, and 442%. When is
used to represent inside the region , however, a very
large error is present everywhere. At a point around origin, the
relative errors of both and approach infinity. It should
be pointed out that the first term of (17) is used to calculate
the error since it is more accurate than the approximated
formulas (20).

VII. CONCLUSIONS

This paper presents an alternative method for obtaining
electromagnetic radiated fields due to circular-loop antennas
of arbitrary radius. The method is more general, compact and
straightforward, as compared with the recent two methods
published. In particular, the results are valid for the regions
of both and . With this method, the closed-form
solution of radiated fields due to circular loops which carry
the current distribution can be obtained as long as

the function is integratable analytically. To

show how the exact results are obtained, a general current
distribution that is expanded into the Fourier cosine series
is considered. Then, two applications are made where the
exact fields everywhere due to a sinusoidal and a uniform
loop current distributions are derived. Finally, the method is
confirmed by applying it to obtain the exact results for the
uniform current distribution, and the well-known approximate
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results by asymptotic expansions (i.e., the far fields due
to loops of any dimension and the radiated fields due to
electrically small loops). Numerical error analysis is carried
out and antenna patterns of the near fields where are
plotted and discussed.
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