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Dear Kirk, 

You asked if I could explain how I arrived at figures 4 and 5 of my article “Why an 
Antenna Radiates.” I hope the following information will be useful. 

 

The Current Distribution  
My first task was was to compute the current distribution on the antenna. In the 1992 

era I didn’t have access to NEC software, so I worked this problem myself. I divided the 
dipole lengthwise into 101 equal segments of length SL , numbered from -50 to 50. I 
expressed the current i  on segment k as a quadratic function of the of the current )(kI  at 
the center of the segment and the distance kxx −  from the center of the segment: 
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I derived expressions for the coefficients )(1 kµ  and )(2 kµ  in terms of the currents at the 
centers of segments 1−k , k , and 1+k . This was done by writing equations stating that  
the current and its first and second spatial derivatives were continuous across the segment 
boundaries.  

I then developed an expression for the tangential component )(kE of the electric field 
on the surface of the antenna at the center of segment k . This field arises from the 
currents and charges on all 101 segments. In the resuting equations for all except the 
center segment, I set )()( kIkE ρ= , where ρ  is the ohmic resistance per unit length of 
the antenna conductor.  I assumed that the power source had emf SV and internal 
impedance SZ  and was distributed uniformly along the center segment. I set the field at 
the center of this segment equal to )0()0()/(/ IILZLV SSSS ρ++− .  There resulted a set 
of 51 linear equations in the 51 center currents )0(I  to )50(I . I used a desktop computer 
to solve these equations for the center currents by Gauss reduction. Values of i  between 
the segment centers were found, when needed, by cubic spline interpolation. 



During this and subsequent work I made extensive use of two formulas I had 
developed, one for the total vector electric field TE  and the other for the vector magnetic 
field B , which were valid at all points on and off the antenna. The formulas are 
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In these formulas,        81099793.2 ×=c , the speed of light 

27
0 4/10 cπε = , the permittivity of space 

7
0 104 −×= πµ , the permeability of space 

1−=j  

ω  is the angular frequency of the power source 

ωπλ /2 c=  

πλ 2/0 =r  

ds  is the element of surface area on the antenna 

1r  is the unit vector directed from the point of observation 
toward the element ds  

r  is the vector from the point of observation to the element 
ds  

r  is the length of the vector r  

0/ rru =    

σ is the surface charge density on the antenna (charge per unit 
area) 

i  is the vector surface current density on the antenna (current 
per unit path width) 

In the foregoing equations, some of the variables represent time-varying physical 
quantities that have phase as well as amplitude, such as the field E  and the surface 
charge density σ . These variables are complex numbers whose magnitude is the peak 
amplitude of the quantity and whose angle is the phase. In my work the phase of the 
power-source emf was used as the phase reference.       

Like a good engineer, I used rationalized mks units throughout. 

Some time I’d like to know how NEC4 carries out this analysis. 



 

The Charge Distribution 
The complex surface current density was now available throughout the antenna by 

interpolation between segment centers. Since it was always pointed in the x direction I 
could treat it as a scalar complex quanty, i . I computed the surface charge density σ  
from the equation of continuity,  
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The Coulomb Field 
One normally thinks of a coulomb field as an electrostatic field emanating from a 

distribution of non-varying charges. If the distribution consists of surface charges, the 
static coulomb field CE  is given by the inverse square relation 
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in which σ ′  is the distribution of  non-varying surface charge and the rest of the variables 
are as defined previously. My antenna has charge σ  that varies sinusoidally with time, 
but the above equation is still perfectly valid if I replace σ ′by the oscillating antenna 
charge σ . I have now defined the coulomb field of the antenna. This field is sinusoidal 
instead of electrostatic, but I can still call it the coulomb field, right? 

You might prefer to see the the antenna’s coulomb field defined as 
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in which I’ve introduced the phase retardation factor crje /ω− to include a propagation delay 
proportional to distance. But the coulomb field is a non-propagating field, and the 
definition I used doesn’t include a retardation factor. A sudden change in σ  results in a 
simultaneous change in the entire coulomb field. This seems contrary to Mr. Einstein’s 
teachings, but some well-informed authors have explained why there’s no contradiction.     
 
 
The Dynamic Electric Field 

I now had expressions and computer programs for the total electric field TE , the 
coulomb field CE , and the magnetic field B at all points, both on and off the antenna. I 

then defined another electric field, DE , which I needed for describing the flow of power 
from the antenna. In my article I called this field the dynamic electric field. It is given by 
the formula 

CTD EEE −=  



and it is what remains of the electric field after the coulomb field is subtracted off. The 
dynamic electric field is the field that is produced by electron acceleration in the antenna. 

It was illuminating to separate DE  into two components, one in  phase with B and the 
other 90 degrees out of phase: INDRADD EEE += . I called RADE  the radiation field 
because it carries real (unidirectional) power from the surface of the antenna out into the 
surrounding universe. I called INDE  the induction field; it carries energy in alternating 
directions with a net flow of zero. The induction field plays a role in the transfer of 
energy back and forth between the stored electric and magnetic fields that alternately 
surround the antenna.  

 

Power Flow 

The Poynting vector, which is equal to the complex vector cross product BET × , 
gives the instantaneous power density (the power per unit area) flowing past any point. 
The power flows in the direction of  the Poynting vector with a power density equal to the 
instantaneous magnitude of the Poynting vector. The Poynting vector lies in any plane 
that contains the axis of the antenna, as does the electric field vector. The magnetic field 
vector is perpendicular to that plane. The direction of power flow is perpendicular to the 
electric field vector and to the magnetic field vector. 

I evaluated and plotted the power flow, averaged over one rf cycle, in various spatial 
regions. I found that in the far field (more than a few wavelengths from the antenna, 
where the radiation field predominates) the plot was as expected―the power flow was 
generally away from the antenna and its average value was in accord with the well-known 
directional radiation pattern of a dipole antenna. So far, so good. 

In the near field I got an entirely different story. The power flow plots were difficult 
to understand. All the flow lines ended on the power source instead of on the body of the 
antenna as one would like. It was as if the antenna itself was playing a minor part in the 
activity. This was a most unsatisfying result. I then decided to plot the power flow 
attributable to each of the three electric fields―coulomb, induction, and 
radiation―individually. The whole picture suddenly came into sharp focus after I found 
that each of the electric fields by itself plays a simple and well-defined part in the game. 
Only when the three fields are jumbled together does the game become disorganized. 

You asked about figures 4 and 5 of the article. Figure 4, the map of the coulomb 
field, is a computer-generated plot based on numerical evaluation of the above formula 
for the field. The plot is exactly as generated by the computer, without any fudging on my 
part to support a point of view (as some may have imagined). You mention difficulty in 
accepting the fact that the field lines don’t meet the antenna at right angles. It’s true that a 
civilized electrostatic field is always perpendicular to any conducting surfaces. If it 
weren’t, it would drag free electrons along the conducting surfaces until until the field did 
come in at right angles. The difference here is that the charges which produce my 
coulomb field are oscillating sinusoidally in strength, and the phase of the oscillation 
varies along the antenna, as you implied in your current distribution at the top of page 2 
of your letter. In any event, my coulomb field has to be off perpendicularity in order to 



drag each free electron to and fro and thereby expend on it the same amount of energy 
that it’s radiating. The field lines also have to lean away from perpendicularity enough to 
propel the free electrons through any ohmic resistance that is present in the conductor. 

 

More on the Poynting Vector 
Now at last to figure 5 showing the the flow of power in the coulomb field. You broke 

the Poynting vector into more than one part. I did too, but in a different way. If P  is the 
total complex Poynting vector, we have 
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)()()( BEBEBE RIC ×+×+×=  
 

RIC PPP ++=  
 

where the three P s are the Poynting vectors associated with the three electric fields. For 
the part of P associated with the coulomb field we have 
 

BEP CC ×= . 

 
It was the time average of this vector that I evaluated and plotted in figure 5. 
 
 
Validity Tests 

I applied several cross checks to test the validity of my rather unorthodox 
conclusions. 

One was to compute the input impedance of the antenna from the center current and 
the source voltage. I did this for a wide range of input frequencies and compared the 
result with that published by Schelkunoff. The agreement was good. 

Another check was to re-do the entire analysis, this time assuming that the antenna 
contained a dense distribution of free electrons and positive ions. I used the fields of the 
vibrating electrons and the ions rather than the continuums of charge and current that I 
assumed for my article. The results of the two methods agreed precisely. 

Still another check was to test the power balance in various ways. For example, I 
used the computed Poynting vector BER × of the radiation field to find the power 
radiated from the entire surface of the antenna, including the center segment. This power 
agreed with the power flowing into the antenna from the power source. A variation of this 
test was to compare the power radiated from a given 10-cm section of the antenna’s 
surface with the power “sprayed” onto that same section of the antenna by the coulomb 



field. Obviously these two amounts of power must be equal, for otherwise that section 
would quickly become either extremely hot or extremely cold! 

 

Thank you, Kirk, for your interest in my article. I hope this explanation will serve to 
clarify the methods I used in preparing it. 

  
Sincerely, 

 

 

Ken Macleish 

 

 

 
 
 
 

 

 

 

 

  

 



 

    

 


