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The Two-Capacitor Problem Reconsidered 
Raymond P. Mayer, John R. Jeffries, and George F. Paulik 

Abstract- The two-capacitor problem involves connecting a 
charged capacitor to an uncharged capacitor and accounting for 
the difference in energy between the initial and equilibrium states. 
Heat due to electrical resistance in the connecting wires is usually 
cited for the energy loss. In this paper, the wires are assumed 
to be perfectly conducting and without electrical resistance. The 
circuit then behaves as a loop antenna and radiates energy in the 
form of EMR All loss of energy in the system can be accounted 
for through EMR considerations. Examples illustrate the rate of 
decay of the current in the circuit. 

I. INTRODUCTION 
circuit analysis problem involving two capacitors is A common to a variety of electrical engineering and physics 

texts (e.g., [1]-[4]). A capacitor, C1, is given a charge, Qo, 
and then connected to an uncharged capacitor, CZ, as shown in 
Fig. 1. After the switch is closed, the two-capacitor circuit is 
assumed to approach an equilibrium in which both capacitors 
are at the same potential. A short calculation reveals that the 
initial energy, Q;/ZCl, is greater than the equilibrium energy, 
(C1/(C1 + C2))&;/2Cl, and one is asked to account for the 
missing energy. The generally accepted explanation states that 
energy is lost through heat due to electrical resistance in the 
connecting wires and that there is also the possibility of an 
energy loss through electromagnetic radiation (EMR) [4] and 

This points out an ambiguity in the two-capacitor problem. 
For example, no resistance is indicated in Fig. 1 yet the 
explanation assumes an electrical resistance in the connecting 
wires. It is clear that Fig. 1 is not to be regarded as a 
valid circuit diagram but instead as a schema of physical 
components. It should be analyzed only after accounting for 
the effects present in the circuit when the switch is closed. 
Such an analysis is made in [5] after introducing inductance 
and electrical resistance elements to Fig. 1. 

This paper presents an analysis of the two-capacitor circuit 
without adding an electrical resistance, i.e., the wires are 
perfectly conducting. Zero resistance wires are not unreal- 
istic considering the phenomenon of superconductivity. An 
inductance element is introduced to take into account the self- 
inductance, L,  of the circuit as in [5]. The resulting LC circuit 
would behave as a simple harmonic oscillator. However, this 
is not physically correct as the circuit would never approach an 
equilibrium and would never lose energy. This contradicts the 
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Fig. 1. The two-capacitor problem as typically presented. The first capacitor 

is charged and then is connected to the second by means of a switch. 

fact that such an alternating current would induce an oscillating 
magnetic dipole and emit energy via EMR [6]-[9]. 

In an attempt to resolve this apparent contradiction, the 
circuit is modeled as a loop antenna with an alternating 
current which decays as EMR is emitted. To represent the 
effect of energy loss via EMR, a radiation resistance element, 
R r a d ,  is added to the circuit diagram. The resulting LCR,,d 
circuit allows one to account for the difference in energy 
between the initial and equilibrium states solely through EMR 
considerations. A short calculation using "standard" values [5] 
for L and C illustrates the radiated power and decay of the 
current. 

11. ANALYSIS 

As is generally done in elementary circuit analysis problems, 

Al)  Switches close instantaneously without arcing and 

A2) Connecting wires and circuit elements do not add 

A3) Capacitors are ideal and without dielectric. 
A4) The current is uniform throughout the length and 

cross section of the connecting wire. 
At the instant the switch in Fig. 1 is closed, charge will 

begin to pass from one capacitor to the other and a current, 
I ,  will be present in the wires. In passing from a state 
of zero current to a state of nonzero current, the changing 
current induces a changing magnetic flux linkage, which in 
turn induces a back EMF given by (-L)dI/dt, where L is 
the geometric self-inductance of the circuit. In antenna circuit 
analysis, radiated energy is often regarded as equivalent to 
a fictitious I2  R heat dissipation. Accordingly, the circuit is 
assumed to contain a radiation resistance, &ad, such that 
12Rrad is equal to the power of the radiated energy [6]. With 

it is assumed that: 

there is no arcing between the capacitor plates. 

electrical resistance to that otherwise specified. 
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regards to Kirchhoff's rules, an Rrad term is treated the same 
as an electrical resistance R term. The current in the resulting 
LCR,,d circuit satisfies the following well-known initial value 
problem: 

I (0 )  = 0, 
d I  Qo 
-(O) = - 
dt LC1' 

where C = ClC2/(Cl + C2). 
Let c denote the speed of light. A loop antenna with 

diameter, d, driven harmonically at an angular frequency, w, 
emits EMR of wavelength X = 2ac/w and has a radiation 
resistance given by [6]-[9] 

Rrad = 1 . 2 5 ~ ~ ( d w / c ) ~ .  (2)  

Formula (2) is valid provided that: 
A5) d is much greater than the cross section of the wire. 
A6) d is less than X/47r. 

A7) The circuit in Fig. 1 is in the shape of a circular loop. 
A8) Formula (2) is valid for "undriven" underdamped 

circuits. Assumption A8) seems reasonable since (2) is inde- 
pendent of the magnitude of the current, and the current in an 
underdamped circuit oscillates as it decays. 

The only difficulty encountered in the use of (2) in studying 
(1) is the fact that w is unknown. Experience indicates that in 
many circuits radiation resistances are very small, which would 
suggest that w M WO = (LC)-1/2. The following argument 
shows that this is indeed the case in the presence of certain 
easily verifiable assumptions. 

In order to use (2) in analyzing (l), one assumes: 

The underdamped solution of (1) is 

I ( t )  = ( Q ~ / L C ~ W ) ~ ( - ~ ~ ~ ~ / ~ ' ) ~  sin (wt), t 2 0, (3) 

where 

w = ((LC)-l - (R,ad/2L)2)1/2. (4) 

Note that w appears in the Rrad term via (2). Thus, squar- 
ing both sides one sees that w2 is a (positive) root of the 
polynomial 

p(x) = (25w4dsC/64Lc8)w;z4 + x - w;. (5)  

The derivative, p', is a cubic with one negative real root and 
p' is positive at values greater than this root. Since p ( 0 )  < 0, 
it follows that p has precisely one positive root. At x = w:, 

p(w;) = (257r4d8/64L5C3cs)w; = w$/4Q2. (6) 

Here Q = (1/R,,d)(L/C)1/2 is the quality factor of a circuit 
in which Rrad is given by (2) with w = W O .  Since p(w2)  is 
positive it follows that 

0 < w2 < WO". (7) 

Observing that p ' ( x )  > 1 for z > 0, it follows from the mean 
value theorem that 

0 < WO" - w2 < p(w;) - p(w2) = w;/4Q2. (8) 

TABLE I 
CURRENT HALF-LIFE, TI/.,, DAYS 

Loop Diameter Capacitance 
d, meters Ci, PF 

100 10 1 
0.1 7900 79 0.79 
1.0 

10.0 
2500 25 0.25 
570 5.7 0.057 

Q >> 1 in (8) implies that w2 E w:. Also, (7) and Q 2 1/2 
are sufficient to ensure that the circuit is underdamped, and 
when d < c/2wo, A6) is satisfied. Thus, if one assumes a 
circuit with 

A9) d < C / ~ W O ,  
A10) Q >> 1, 

then w WO. 

111. EXAMPLE 

In this section, an example is provided which illustrates the 
behavior of a two-capacitor circuit based on the preceding 
analysis. 

Under assumptions A4) and A5), a wire with cross-sectional 
radius, T ,  in the shape of a circular loop has a self-inductance 
given by [8] 

L = ( p o i )  (In (:) - 1.75). (9) 

Here po is the absolute permeability of free space. Following 
[5], the capacitors have a capacitance of 100 p F  each and d 
and T for the wire are 1 x 10-lm and 5 x 10-4m, respectively. 
Then C = 50 p F ,  L = 3.1 x 10W7H and A9) and A10) are 
satisfied, so w M WO = 2.54 x 105s-' and Rrad = 6.3 x 
ohm. The current is 

I ( t )  = (1.27 x 105)Qoe-1.0X10-9tsin ((2.54 x 105)t), 
t 2 0. (10) 

The power radiated by the circuit at time t is 

12(t)Rrad = (1 x 1 0 - ~ ) ~ ; ~ - ~ x ~ ~ - ~ ~  sin2((2.54 x 105)t). 
(11) 

Integrating the expression in (11) over time accounts for the 
difference in the initial and equilibrium energies, a standard 
result for LCR circuits [4] which is necessarily true for 
LCR,,d circuits by virtue of the definition of Rrad elements. 
Note, however, the extremely slow process of decay for this 
example. The time, Tip, for the amplitude of the current to 
decay to one-half of its maximum value is approximately 

T112 = 2Lln2/Rr,d. (12) 

With the above values for L and Rrad, T1p = 6.8 x 108s 
or about 22 years. Similarly, one can show that it takes about 
11 years for the circuit to radiate away half of the energy 
difference between the initial and equilibrium states. Table 
I provides a brief survey of T1/2 values for various two- 
capacitor circuits which satisfy the assumptions made earlier. 
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IV. CONCLUSION 
The two-capacitor problem as typically presented is ambigu- 

ous. Assumptions Al)-A5) and A7)-A10) allow one to model 
the problem to account for energy loss through EMR using 
elementary circuit analysis techniques. These assumptions also 
represent a certain sacrifice of physical realism. Assumptions 
Al)-A4) are standard and provide good results in many low 
frequency, low voltage, low current situations. With regards 
to A4), however, in zero or low electrical resistance circuits 
the current may not be uniform throughout the cross section 
of the wire, being confined largely to the surface even at 
low frequencies. For example, superconducting wires transport 
current only on their surface [ l l ] .  This does not effect the 
formula for Rrad, but it is necessary to modify the formula 
for the geometric self inductance r101: 

L = (Po:) (In (:) - 2.00). 

In the example, this has the effect of reducing 
from 3.1 x 10-7H to 2.9 x 10-7H. 

Considering the other assumptions, A5) and 
nical but not unreasonable; they are used in 
approximating integral expressions that lead to 

the induction 

A7) are tech- 
deriving and 
formulas (2),  
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(9), and (13). Assumption A9) is analogous to a Hertzian 
dipole approximation and hence a reasonable consequence 
of A4). Assumption A10) is technical for the approximation 
w E WO but it can also be viewed as a consequence of A4) 
when one considers the dependence of Q on d. Assumption 
AS) is most critical. There is no a priori reason to believe that 
formula (2) for a driven circuit should be valid for the one 
considered here. However, arguing from Maxwell’s equations 
[lo] has demonstrated that A8) with w z WO does provide a 
good approximation for this circuit. 

Note that in the cases considered here the radiation resis- 
tances are many orders of magnitude smaller than the electrical 
resistances which would be present if the wires consisted of a 
conductor such as copper. The wire in the first example would 
have a resistance of about 8 x ohms [5]. This reflects the 
fact that radiation resistance effects are usually negligible in 
the presence of electrical resistance or other forms of energy 
loss. 

If the scope of the two-capacitor problem is expanded 
to include circuits in which the above assumptions are not 
reasonable, then the problem becomes more complex. It should 
be recognized that the EMR losses presented here make only 
a small contribution towards the complete understanding of 
such circuits. 
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