Electrodynamics of moving dipoles: The case of the missing torque
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In a recent article, Bedford and Krumm [*“On the Origin of Magnetic Dynamics,” Am. J. Phys.
54, 1036 (1986)], examine in detail the interaction between a moving line of charges and a
magnetic dipole consisting of a conducting ring of current from the point of view of different
frames of reference. One particular orientation of the magnetic dipole leads to an apparently
paradoxical situation of a torque acting in one inertial frame but not in another. These authors
explain the situation by considering the rate of change of mass of the charge carriers and a wall
force that prevents them from accelerating in the direction of their motion. They also hint at an
intriguing analogy with some kind of inertial or fictitious force such as occurs in noninertial
frames. First, the general expression is derived for the torque on a moving magnetic dipole in any
orientation and the term representing the missing torque is explicitly revealed. Then the physical
origin of this torque is investigated in the particular case considered by Bedford and Krumm,
where the magnetic dipole consists of a small current-carrying conducting loop. It appears that, in
this case, the elusive torque arises from the interaction between the current carriers in the
magnetic dipole loop and the magnetic field due to the surface current generated by the motion of
the induced charges on the surface of the conducting loop.

L. INTRODUCTION

In a recent issue of this Journal, Bedford and Krumm'!
examine, from the point of view of different inertial observ-
ers, the origin of the torque acting on oriented magnetic
dipoles consisting of current-carrying conducting loops
above a moving line of charges.

In the rest frame of the magnetic dipole, the answer is, of
course, straightforward, the torque being given by
T = mXB, where m is the magnetic dipole moment and B
is the magnetic induction due to the moving line of charges
at the dipole location, which are assumed to be very small.

In the rest frame of the moving charges, only an electric
field apparently exists, and the torque on the loop cannot be
explained as a simple direct magnetic interaction. It turns
out that the explanation for the existence of a torque de-
pends on the orientation of the dipole. When the loop is
oriented with its dipole moment perpendicular to the line
shown in Fig. 1 of Ref. 1, the authors correctly find that the
torque arises from the asymmetry in the average line
charge density of the two relevant loop sides due to the
relativity of simultaneity. On the other hand, when the
magnetic dipole moment vector is parallel to the line, the
relativity of simultaneity cannot be invoked and the auth-
ors interpret the phenomenon in terms of a very different
mechanism. Their explanation calls for an additional term
in Newton’s second law in the form v, where 1 = d /dt

[mo/VT = (v%/c%) ] is the rate at which the mass of the
charge carriers is increased when they accelerate in the p
direction (axle of the dipole). See Fig. 2 of Ref. 1. As the
charges in the dipole accelerate in the y direction, their
mass is increased and a transversely directed force is re-
quired to keep the z component of their velocity constant.
This force is exerted by the wall of the loop and, by New-
ton’s third law, a force of equal magnitude is exerted in the
— z direction by the charges in the loop. According to
these authors, this is the way that the torque can be ac-
counted for. In addition, they seem to attach a particular
significance to what they refer to as a curious interplay
between geometry and dynamics, going as far as drawing
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some intriguing analogy between this type of interaction
and the fictitious or inertial forces that arise in noninertial
frames.

Electromagnetism is a fully relativistic, self-consistent
theory, whose point of contact with dynamics is basically
through the Lorentz force. Phenomena that are explain-
able in one inertial frame by means of interactions between
charges and currents, i.e., sources and fields, should also be
amenable to a similar explanation in another inertial frame
without requiring the introduction of the mass of the
charge carriers, even though, of course, relativistic me-
chanics is entirely compatible with electromagnetic theory.
As we shall show, the missing torque can indeed be ex-
plained within the confines of a model consisting of a con-
ducting loop, by means of the interaction between fields
and sources through the familiar Lorentz expression.

II. TORQUE ON MOVING DIPOLES IN
ELECTRIC AND MAGNETIC FIELDS

Consider an electric dipole with dipole moment p = g 81
and moving with a translational constant velocity v in the
lab frame S.If this dipole lies in a uniform combination of
electric and magnetic fields E and B, it will be subjected to
the Lorentz forces + ¢(E + vXB), which will give rise to
a total torque ¢ 81X (E + vXB). In the limit of a point
dipole, we have a torque T given by

T=pXE +pX(vXB), (1)

where the electric dipole moment is measured in the labo-
ratory frame. Now, if we consider a magnetic dipole con-
sisting of two magnetic charges g* and — g* a distance 81
apart, the dipole moment of this configuration is
m = g* 81. If placed in the E and B fields, the magnetic
charges are subjected to the analog of the Lorentz force>*
F* = ¢* [B — (1/¢*)vXE] and correspondingly a torque
arises that consists of two parts,

T=mXB -~ mX[vX(E/)]. )
This result could have been obtained directly from (1) by
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/At rest in S

y'

Fig. 1. A plane of uniformly distributed
charges (x-z) at rest in the S frame. This
plane is moving with velocity — v with re-
spect to S”, the rest frame of a magnetic di-
pole whose magnetic moment is normal to
the plane of charges.

l«

velocity of S'
with respect to S

the substitution p—~m, E—~B, and B — E/c%.

As far as forces and torques due to external fields are
concerned,*® a system of magnetic charges is totally equiv-
alent to a small current loop, thus Eq. (2) also applies to a
current loop point dipole. The approach we have taken
here is merely a shortcut for quickly arriving at the result
(2).

Using the identity mX(vXE)=vX(mXE)
4+ (mXv) XE, we can write the magnetic torque on the
dipole in the form

r=mXB — (mXv)X(E/c*) —vX[mX(E/)].
3

The second term (vXm) X E/c? has the form of a torque
on an equivalent electric dipole moment p = (vXm)/c?,
and it represents a truly relativistic effect whose physical
origin can be shown to be a consequence of the relativistic
definition of simultaneity.

The third term is truly the “missing torque” for it repre-
sents the only contribution to the torque when B = 0and m
is parallel to v. Expressions (2) and (3) are general results
in the sense that they are applicable to any point dipole, no
matter how it is internally constructed. This important
equivalence is mentioned in a number of treatises on elec-
tromagnetism. The most extensive discussion on the sub-
ject can be found in the text by Fano et al.”

The point dipole could then be constructed from two
true magnetic charges (were they to exist), or from a cur-
rent running in a small conducting loop, or from charges on
rotating dielectrics. It could also be due to the orbital or
spinning motion of electrons. The physical origin of the
torque, i.e., the exact mechanism by which the torque
arises may not be easy to determine and may be different in
any of the above examples. Regardless, the final result must
always conform to Egs. (2) or (3), which are dictated by
more general arguments. Indeed, these equations are basi-
cally the result of the transformation properties of the elec-
tromagnetic fields and torques and could have been ob-
tained directly starting from the rest system of the dipole
and using the appropriate relativistic transformations.

The real challenge is then to discover the physical origin
of the different terms in the torque equation (3). For the
case of a dipole consisting of a current in a small conduct-
ing loop, which is the case considered by Bedford and
Krumm, we already know that the second term is related to
the notion of relativistic simultaneity, as shown by these
authors and as discussed in some standard treatises on elec-
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tromagnetism.”"'! We shall present in Sec. III a physical
explanatxon for the origin of the additional torque term
— (v/c*) X(mXE), which plays a major role when the
magnetic field vanishes and the magnetic moment is paral-
lel to the velocity of the dipole.

Before engaging in this discussion, we need to relate re-
sults from one inertial frame to another and, in particular,
we shall require the appropriate transformations for the
electric and magnetic field as well as for the electric and
magnetic dipole moments. As is well known, the transfor-
mation equations for the fields in passing from the labora-
tory frame S to the rest frame of the moving dipole S’ are

E' =y(E +vXB), Ely, 4)

E'=E, E|v, (5)
and

B' = y[B — (v/¢*) XE], Blv, (6)

B' =B, Bjyv, (7N

where we now assume that the velocity v is constant and, as
usual, y = 1/y1 — (v/¢)”.

A similar set of equations relating the unprimed to the
primed quantities is obtained by changing vinto — v. With
regard to the electric and magnetic dipole moments, there
are two different but equivalent formulations. In the first
formulation,” or four-vector representation,'” the electric
dipole is viewed as a system of two charges ¢’ and — ¢’
separated by a distance 81’ in the rest frame of the dipole.
The dipole moment in the rest frame of the dipole is defined
by

p= lim

g —oc. 6I'20
Since charge is invariant, we have ¢ = ¢’. On the other
hand, the length 81' must be transferred to frame S by the
appropriate contraction factors. We have 81 = 8l if 81'ly
and 8l = (1/y)8I' if 8l'||v. Hence, the transformation
equations for p are

p=p (plv), 9
(p[lv) . (10)

It is, of course, possible to combine (9) and (10) into a
single, more general, transformation equation, but we shall
not need this more cumbersome form. Similarly, the trans-
formation of the magnetic dipole moment is most easily
obtained by considering the model of two magnetic charges

g ol. (8)

p=p/7
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g* and — g*' a distance 8I' apart, in their rest frame and
define

m= lim ¢*¥8l. (11)
g% o, 8'=0
We obtain in full analogy with the electric case,
m=m' (mlv), (12)
m=m'/y (mlv). (13)

It is also possible to derive the transformation equation
starting from the magnetic moment of an elementary cur-
rent loop of area SA’, using the corresponding definition
m = lim

f—e, 64’0
where /' is the current in the loop rest frame. Now we can
simply obtain the torques in both the S and S’ frames in
terms of the magnetic moments defined in the rest frame.
We have, of course, in the rest frame

o =m'XB’ .

i’ 5A/,

(14)

In the S frame, Eqs. (2) and (3) together with (12) and
(13) yield

r=m'XB—m'X[vX(E/c)], Blyv and mlv,(15)
= (1/p)(m'XB) — (1/y)vX [m' X (E/c?)],

Blv and m||v. (16)

Here, again, a more general and unique formula for any
orientation of B and v could have easily been obtained, but
it is much more cumbersome and will not be needed for our
purpose. It is important to note that in all the torque ex-
pressions, E and B represent the external electric and mag-
netic fields in which the dipole is located.

III. MAGNETIC DIPOLES IN THE FIELD OF
MOVING ELECTRIC CHARGES

Instead of a magnetic dipole in the field of a moving line
of charges considered by Bedford and Krumm, we shall
analyze a closely related but somewhat simpler system that
displays the same physical characteristics. We shall take as
a source an infinitely extended plane of charges (x-z
plane), moving at constant speed v along the positive z
direction. See Fig. 1. We chose an infinite plane instead of a
line so that we would not have to contend with the nonuni-
formity of the field of a line. The nonuniformity plays no
role in the discusssion, it only complicates the issue and can
be avoided by making the dipole small enough (even then,
forces may appear due to the nonuniformity of the fields).
We shall introduce two frames of reference: Frame S’ is the
frame in which the dipole is at rest. In this frame, the
charges in the plane are moving with speed v in the positive
Z' direction and gives rise to a surface current K'. Frame S'is
the frame in which the plane charges are at rest and, with
respect to it, the dipole moves with constant speed v in the

— z direction. Primed and nonprimed quantities refer to
these two frames, respectively. The initial specification is
merely a matter of convenience. We shall assume the fol-
lowing are given: the magnetic dipole moment m’ in its own
frame S, and the charge density ¢ in its own rest frame S.

A. Dipole moment normal to the plane of moving charges

To establish the notation and check the validity of the
formulation expressed by Eq. (15), we briefly consider this
case even though it is nof controversial.
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(1) In the S’ frame, we have m, =i'4’, where /' is the
current in the dipole whose area is 4. In this frame, the
source appears as a combination of electric surface charges
with density o’ and a surface current K’ in the 2’ direction.
They form a four-vector and values in different frames are
connected by the Lorentz transformation with v= — vk,

K!=K'=y(0+ov) =yov=10'v, (17)
d=yc+0)=y0. (18)

The magnetic field due to K' is readily obtained by Am-
pere’s law and only has one component (see Fig. 1), B},

= —1 ’,
Appzlying Eq. (14), ¥ = m’' X B’, we find at once
(19)
(2) Wenow view the same situation in the rest frame .S of
the moving charges. Here, the dipole moves with speed v
along the -- z direction. Clearly, thereis no magnetic field

B due to the sheet of charges. Thus B = 0. Using Eq. (15)
we now find for the torque,

T= —m'X (vx Ez)= —v(m’-Ez)
c c

! ! 1.7 ’
T, = um' K’ = um'o’'v =1 yu,omv.

+ (m'-v)Ez= —v(m'- —E—Z:) (20)
c ¢
Here, v= — vk, E=E, j= (0/2¢,) j. Hence, we obtain
at once
T, =l pomv. (21)

Comparing this result with that in the S’ frame, i.e., Eq.
(19), we find

LA—
T, =%Y7,.

(22)

The transformation of the torque can be obtained from the
transformation of the force and thus depends on the orien-
tation of the force. In this case, whether we view the mag-
netic dipole as a system of magnetic charges or as a small
current loop, the forces as well as the moment arms are
perpendicular to the direction of motion of the dipole. See
Fig. 2(a). The transverse forces in the S frame are related
to those in the S’ frame by'*~'> F = F’/y, whereas the mo-
ment arms are unchanged, hence,

T. =TV

is the expected torque transformation and is in accordance
with the results expressed by Eq. (22). We shall not discuss
the physical origin of this torque, which, as already stated,
is fairly well explained in the literature on the subject.

B. Dipole moment paraliel to the velocity of the moving
charges

This is the controversial case that prompted the new in-
vestigation.

(1) In the frame S’ of the dipole, the torque is simply
given by v = m’ X B'. See Fig. 3.

Sincem’ = m’kand B' = — | y,K"'i, we find

7, = —Jum'K'= —um'o'v= —uyomv.
(23)

(2) In the S frame, there is no magnetic field due to the
plane of charges and thus it would seem that we cannot
account for a torque in this situation. Formally, the answer
is simple. Introducing B = 0, the external magnetic field in
Eq. (16), we find at once the “missing torque”:
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Fig. 2. (a) When the magnetic moment is perpendicular to the velocity,
the forces responsible for the torque are transverse for both the magnetic
charge dipole and the current loop. (b) When the magnetic moment is
along or opposite the velocity, the forces responsible for the torque are still
transverse for the magnetic charge dipole but parallel and antiparallel to
the velocity for the current loop. A reaction torque from the support
exactly counterbalances the magnetic torque in the current loop by sup-
plying the reaction forces F; and — F. The same reaction forces, when
applied to the system of magnetic charges at right, give rise to a rate of
angular momentum in the laboratory frame.

T= ——va (m’x E)

¥ &
1 ,. y E 1, E
=—(mv)———m'(v .
¥ ey &
(24)
Here, we have m’' = m'k, v= — vk, and E = (0/2¢,)j.
Hence,

7, = — (1/Y)m'(W/A)E, = — (1/2y) pym'vo . (25)

The forces giving rise to a torque in a magnetic charge
system dipole are transverse to the velocity. See Fig. 2(b).
Hence, the forces in the S and S’ frames are related by
F = F'/y. The moment arms are along the velocity and also
suffer a contraction: d = d'/y. The torque Fd obeys the
transformation

At rest in S'

y'

Fig. 3. The magnetic dipole moment is now parallel to the velocity of the
electric charges in the (x-z) plane.
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T, =T,/7. (26)
This result is confirmed by expressions (23) and (25) for
the torques in different frames.

Thus the torque is fully accounted for by Eq. (16),
which holds exactly for the monopole model. The origin of
this torque directly comes from the velocity-dependent
term in the analog of the Lorentz force for magnetic
charges.

In the case of a magnetic dipole consisting of a current in
a conducting loop, as investigated by Bedford and Krumm,
the physical origin of the “missing torque” — (1/
ye?)vX (m’' X E) is far less obvious. A careful analysis of
both external and internal fields will shed some light on the
mechanism responsible for this torque in the current loop
model.

We observe that in S, as well as in S, the electric field E,
of the plane of charges causes charges to be induced at the
surface of the loop. As these induced charges move with
speed v along — z, they generate a magnetic field B, in S
(butnotinS"), and an electric field E;. As we shall see, it is
the interaction between the magnetic field created by the
induced charges and the current carriers of the magnetic
dipole that is responsible for the torque in the S frame.

Consider a thin conducting loop of arbitrary shape lying
in the x’y’ plane of its rest frame S''. See Fig. 4. Let o/ be the
induced surface charge density on the outer surface of the
loop. These induced charges create their own electric field
E/ that distorts the original electric field E! due to the plane
of charges. The actual electric field in .S’ is the resultant of
these two and its line of force will be normal to the outer
surface of the loop. Now, at all points within the conduct-
ing loop, in its own rest frame, we must have on account of
the electrostatic equilibrium condition, E; + E! = 0. This
condition determines the distribution of induced charges
on the surface of the loop.'®

These induced charges o} are at rest in S and do not give
rise to a magnetic field in that frame: B, = 0. From the
point of view of S, however, the electric field E; certainly
exists and there is also a magnetic field B; due to the surface
current K, created by the motion of the induced charges on
the dipole. We shall show that this magnetic field B; in the
S frame is uniform at all points within the loop. If these
induced charges are indeed responsible for the torque in the
S frame, then it should be possible to deduce its value by
considering these charges as the sources of the magnetic
field in the §' frame.

Recall that in the calculation for the torque through Eq.
(3) or (16), only the external fields are to be considered. In
this interpretation, the induced charges are part of the ex-
ternal sources, and the external fields here consist of two
parts, that due to the induced charges and that due to the
plane of charges. We write in the S frame,

Bexl = Bi + Bx (27)

and since the charges in the plane do not move in S, we have
B, = 0. Thus

Bext = Bi ‘ (28)
We also have
Eex( = Ei + E.\' 4 (29)

where E,, the field of the plane of charge, is known and
equal to 0/2¢, j.
Correspondingly, in the rest frame of the loop,
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B, =B/ +B; (30)
and, since, as stated B! = 0, we have

B, =B. (31)
Finally,

E, =E +E =0 (32)

on account of the electrostatic equilibrium condition. v
Now all the primed fields are related to unprimed fields
by the transformation equations (4)—(7). We now find

E.. = y(E, —VXB(,) = —yvXB{, (33)

B, = ¥7[BL + (V/)XE,, | = 7B, =7B. (34)
In addition,

B, =y[B, — (v/)XE,] = —y(v/A)XE,  (35)

and thus the total external magnetic field in the § frame,
which is also equal to B, is given by

B, =B, = — V¥ (v/¢’) XE,. (36)

Since E, is uniform, so is B,,,, but only within the loop
where the electrostatic condition (32) holds. Also, from
Egs. (33) and (35), we obtain

\MI; > -
: o o 1
—_— b P
]
__,x <l
-e Vd x Bl IP
1 L~
+~1H=
| ] B,
/_,/— y 1
v
1]
/(

=

/ — ‘ !
i
AN

N
A

- ®
' s
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Eext = - VVX( - 7?"2— XE:)

2
=—V;[v(v-E_‘.) —E?] = — r E,. (37
C

2
c
Inserting B.,, and E,,, into the general expression (16) for
the torque in the S frame yields after some algebraic reduc-
tion

2
T= lz[ —v(m"E,) + (m"V)E, (1 —~ i’;)
4 c

v2
+ Z m’(V'E‘,)]

== —1—2 (V"nll)Ex .
ye

Since v= —vk and E = (0/2¢,)j, we find 7,
= — 57' Hoom'v, which is the same result as Eq. (25).

Thus this interpretation, which attributes the origin of
the magnetic field responsible for the torque in the § frame
to the motion of the induced charges and their surface cur-
rents, seems justified. It is illuminating to calculate the

torquein the.S frame directly using the Lorentz force. Con-

~ eV x B; (Lorentz force on

charge carrier )

-~ -
-~

~—a
-

Fig. 4. The magnetic dipole, as a conduct-
ing loop with induced charges on its pe-
riphery creating an electric field E; in S’
and both an electric field E; and a magnet-
ic field B; in S. In frame S, we have E;
+ E; =0, at all points within the con-
ducting loop. The field B, in the lab frame
is uniform inside the loop. The charge car-
riers of the neutral current in the right and
left segments of the loop are subjected to
the Lorentz force — ev, XB,.
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sider, for example, a rectangular loop of aread ' = @'b”’ and
carrying a current i’ in its rest frame. Figure 4 shows such a
loop moving with velocity v in the — z direction. Also
shown are the induced charges moving with velocity v and
distributed in such a way as to have E; + E! = 0. The mag-
netic field they create as seen from the .S frame is uniform
within the loop and is given by Eq. (36): B,
= — ¥2(v/c¢*) XE,. The drifting electrons that are the
charge carriers of the neutral current move with velocity v/
around the loop. The ones in the right segment experience
the Lorentz force F = — ev, XB,, where v, is measured in
the § frame. We have v, = v,/ since the velocity is trans-
verse to the motion of the loop. Thus the force on one elec-
tronis (1/y)ev,B, and is directed along — v. The left seg-
ment will experience the same force per electron in the
opposite direction and the carriers on the top and bottom
segments will not be subjected to any force. Hence, a net
torque appears that is equal to 7 = Fa = (1/y)ev,B,a for
each electron. Suppose there are N carriers in the right
segment, then the total force on that section is

(1/¥)Nev), B, = (1/y)(N/V')V'ev, B,
= (I/)V'(n'evy)B,,

where V'isthe volume of thesegmentandn’ = N /¥ "inthe
rest frame. Now, n'ev; =J' = {'/s', where s’ is the cross
section and V' =s'b’'. The force is then given by
(1/9)b ' B,. The total torque on the loop is directed along
— y and is equal to

T, = — (1/¥)(@b')i'B, = — (1/y)m'B,

y

= —y(m'/WE, = — (y/2) poom'v . (38)

This result can easily be generalized to apply to a loop of
arbitrary shape.

Comparing the torque in the rest frame [Eq. (23)] to
the result in Eq. (38) in the S’ frame, we find

(39)

Here, inspection of Fig. 3(b) at left shows that the forces
are not transverse to the velocity, hence ¥ = F’. The mo-
ment arms are transverse and unchanged. Hence the prop-
er torque transformation is 7, = 7, and is confirmed by
(39).

Upon comparing Eq. (25) for the torque on a system of
magnetic charges t,, and Eq. (38) for the torque on a cur-
rent loop 7 obtained directly from the Lorentz force, we
find that they agree with each other except for a factor of
. Specifically,

T =Y Ty - (40)

Thus it would seem that the equivalence discussed in Sec. 11
is only valid up to first order in (v/c) and that it may be
possible to distinguish between the two cases if the experi-
menter could detect second-order effects. A subtle argu-
ment will demonstrate that the equivalence is exact in spite
of the apparent discrepancy.

In order to assure the rotational equilibrium of the cur-
rent loop, a reaction torque p{ must be supplied by the
support. in such a way as to balance the magnetic forces
exactly. See Fig. 3(b). In the rest frame of the loop we have

(41)

R
Ty_Ty'

. +p.=0
and in the S frame
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T+ pL=0. (42)
Hence,
PL= —TL= —1T( (43)

on account of (39). If, instead, we have a system of magnet-
ic charges with the same m’, held in equilibrium in their rest
frame by the same torque p}, = p{, then the rest frame
equilibrium equation is

T + Py =0. (44)

Inthe S frame, the rotational equilibrium is #ot given by t,,
+ pa = 0, but by the equation

dL

T —
M+ Pu dr’
where d L/dt is the rate of change of the angular momen-
tum of the system. Even though the system does not rotate,
there is in S a rate of change of angular momentum due to
the support forces directed along and against the velocity
and giving rise to a corresponding energy flux for each side
equal to Fp-v. The rate of mass increase per side is
(Fg*v)/c* and the angular momentum of the right segment
increases at a rate d(Muvr)/dt = (dM /dt)vr, where M is
the mass of the right segment and r = a/2. Thus the total

rate for both sides is

(45)

dL 2(Fgev) ( (1) 5
2R Ty Z )= v/c)”. 46
dr e 2 P ( ) (46)
The equilibrium equation (45) becomes
Ty + Par = PuV/C
or
P = — 7’21'M . (47)
On account of (40) and (43), we find
Py = —TL =pPL - (48)

Since the experimenters in both frames only measure the
reaction torque, they will find, according to (48), no differ-
ence between the reaction torques to be supplied in each
case.

The above explanation was first put forward by Laue
in his discussion of the relativistic lever. His argument can
be found in the classic treatise by Tolman, ' as well as in the
standard textbook by Panofsky and Phillips.®
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SOLUTION TO THE PROBLEM ON PAGE 105

The goof’ was in taking moments about the point of con-
tact at the floor. There are two “‘safe” places to take mo-
ments: the c.m., and a point at rest in the inertial frame. The
sliding contact point is neither! For the cylinder, rolling
without slipping, the contact point is momentarily at rest.
So Eq. (3) is valid. But Eq. (3’) is wrong—disastrously!

Here is a correct derivation. Eqs (1) and (2 ) are cor-

rect. Also, we have z= R cos 6, giving 2 = — 6'R sin 0
and
z"= —6"Rsin 60— 0"R cos 6. €))]

Insert Egs. (7) and (2') into (1'). Take the stick to be
uniform with I, = mR?/3. Use “natural” time units
= (R /g)"" and dimensionless time 7 =¢/t,. Let d /
dr =". That gives

0”—[51118 6'2sm6c086]/(‘+sm 9), (8)

which can be solved numerically. We want to verify the
“intuitively obvious” result that when 6, goes to zero, the
time to reach any finite @ goes to infinity. Therefore, take
6<1and 6'<1 in Eq. (8), which-then becomes 6 ” = 36
For release with initial values, § = 6, and ' = 0, this has
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the solution 8= 6,cosh[(3)"?>r]. For large r with
(3)'2r> 1, this becomes 26 = 6, exp[ (3)'/*7], i.e.,

7= (3)""1In(26/8,). (9)

For example, take 8 = 0.1 rad and 6, = 0.0001 rad to get
7 = 4.39. Keeping 6 constant at 0.1 rad, every further de-
crease in §, by a factor of 10 increases ¢ by adding 1.33
natural units. Thus ¢ goes slowly (logarithmically) to infin-
ity as g, goes to zero. That agrees with intuition. You can
now collect your bet.

'"The erroneous result, Eq. (5') and its derivation, were shown to me by a
famous physics professor who shall remain anonymous. I exclaimed, It
has to be wrong!” He insisted, “No, it's right!”” So we bet. He lost. We still
don’t know the original source of this momentous error. Has the reader
seen it before? Is it, we fear (ar hope?), in some textbook?

Frank S. Crawford

Physics Department and
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720
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NOTES AND DISCUSSIONS

Comment on “Electrodynamics of moving dipoles: The case of the missing
torque,” by V. Namias [Am. J. Phys. 57, 171 (1989)]

D. Bedford and P. Krumm

Department of Physics, University of Natal, Durban, Natal, South Africa

(Received 29 June 1987; accepted for publication 29 April 1988)

In the second part of his article,' Namias seeks an expla-
nation for the torque on a magnetic dipole moving in the
direction of its axis above a charge sheet. He ascribes this
torque to magnetic forces on the dipole current, the mag-
netic field being produced by surface charges on the loop
induced by the external electric field. This explanation is
certainly not general since it will clearly not apply in cases
where the dipole is made of nonconducting materials, e.g.,
one or more charges fixed to a rotating dielectric. More-
over, even in the case he treats, we believe his explanation
to be inadequate.

For Namias, the role of the external electric field in the
explanation is solely to induce the required surface charge
distribution on the loop (see Ref. 1, Fig. 3). Suppose we
reproduce this distribution by fixing charges to a dielectric,
and reproduce the neutral current by counterrotating posi-
tively and negatively charged dielectric loops. His analysis
would imply that such a magnetic dipole arrangement
moving in a region of no external field would experience a
torque; which is clearly false. Indeed, the magnetic forces
on the currents that he holds to be responsible for the
torque exist in this case, and the lack of torque is to be

accounted for! The mechanism described in our article’
does this, as a careful consideration of the motion of the
current carriers in the internal electric field of the dipole
assembly shows. Furthermore, the reintroduction of the
stationary charged sheet, which now leaves the charge dis-
tributions on the dielectrics unaltered, results in a torque,
which can be accounted for only by a consideration of the
motion of the current carriers in the external electric field.

Finally, in our view, the way to treat the case of a con-
ducting loop is to ignore internal force pairs that are equal
and opposite by Newton’s third law (the magnetic force he
describes is one member of such a pair) as is normally done
in mechanics, and to consider the forces exerted by the
external field only. Work is done by this field on the current
carriers within the conductor, positive work on one side of
the loop, negative on the other, and as shown in Ref. 1, Fig.
3; this is what gives rise to the torque.

'V. Namias, Am. J. Phys. §7, 171 (1989).
’D. Bedford and P. Krumm. Am. J. Phys. 54, 1036 (1986).

A discussion of the dielectric model of Bedford and Krumm [Am. J. Phys. 57,

178 (1989)]

Victor Namias®

Department of Chemistry and Physics, Purdue University Calumet, Hammond, Indiana 46323°
(Received 25 March 1988; accepted for publication 29 April 1988)

In an attempt to refute my explanation for the origin of
the missing torque,' Bedford and Krumm? have devised an
argument that, in my opinion, is not valid. In my discus-
sion, the role played by the external electric field due to the
plane of charges is essential. These authors present a model
in which the external field is eliminated and the exact same
distribution of induced charges is reproduced artificially,
so to speak, by fixing them on a dielectric Ioop. They then
also reproduce the neutral current by means of counterro-
tating positively and negatively charged dielectric loops.

This arrangement, of course, does not give rise to any
torque. They conclude that my analysis, which would im-
ply that such a magnetic dipole arrangement moving in a
region of no external electric field would experience a
torque, must be erroneous. Contrary to this statement, my

178 Am. J. Phys. 57 (2), February 1989

analysis when applied to their model does yield a zero
torque in all cases as expected.

Let us examine the situation from both the point of view
of the rest frame S’ and the S frame, using the general
expression for the torque in the respective systems [Eqs.
(14)—(16) in Ref. 1]. In the rest frame ', we have B' = 0
and thus 7" = 0. In the S frame, we can attack the problem
in two different ways, just as was done in my article.

(1) The dipole system consists of the sprayed charges on
the dielectric and the rotating charges giving rise to the
neutral current. Such a system is in a zero external source
field and, consequently, E=0 and B=0in Eq. (16),
where only the fields external to the system must be used.
We conclude 7 = 0.

(2) The dipole system consists of the rotating charges
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only making up the neutral current. The sprayed charges
have been distributed and adjusted exactly so as to recreate
the electric field E;, the same as that due to the induced
surface charges on the surface of the conducting loop. In
this point of view, the field E; can be considered external to
the dipole. Since there is no plane of charge, we have now
E, =0and B, =0, as well as E; = 0 and B; = 0. Here, we
also have B; = 0.
Thus, in this model, Eqs. (27)—(32) are replaced by

BextzBi+Bs=Bi’ (n
E.. =E, +E =E,, (2)
B, =B/ +B =B/ =0, (3)
E,. =E/ +E =E]. (4)

Using the transformation equations for the fields, we find
now

E, = y(E; — vXB]) = VE], (5)
B, = y[B; + (v/¢) XE]] = y(v/¢?) XE; . (6)

Since the fields in (5) and (6) are now external, we can
introduce them in the equation of the torque in the S system
(16) and obtain

r=m'X[vXE!] —vX[m'X(E;/c¢?)] (N
= (1/2) [v(m"E]) — (mV)E; — (vE/)m’
+ (vm")E;] =0,

as expected. Thus the role of the external field is not solely
to induce the surface distribution on the loop, as claimed by
Bedford and Krumm. Elimination of the original plane of
charges by mimicking the charge distribution on the loop is
not sufficient; one must, in addition, assure that the total
electric field inside the loop is zero in its rest frame. In their
dielectric model, the rotating dielectric charges responsible
for the dipole moment lie in an electric field E; and there is
no way to annul this electric field exactly unless an external
source electric field E! is introduced, which is such that
E; + E.=0. As a result, their dielectric model is not
equivalent to a conducting loop with induced charges due
to an external source. Therefore, their argument against
the explanation of the missing torque in terms of an interac-
tion between the magnetic field of the surface currents gen-
erated by the induced charges and the charge carriers of the
dipole does not seem to be valid.

“ Deceased.

» Please address all correspondence concerning this publication to P. D.
Gupta, Chemistry and Physics Department, Purdue University Calu-
met, Hammond, IN 46323.

'V. Namias, Am. J. Phys. 57, 171 (1989).

’D. Bedford and P. Krumm, Am. J. Phys. 57, 178 (1989).

Experiments in two dimensions using a video camera and microcomputer

E. Keshishoglou and P. Seligmann

Physics Department, Ithaca College, Ithaca, New York 14850

(Received 18 June 1987; accepted for publication 26 February 1988)

The kinematics and dynamics of two-dimensional mo-
tion are commonly investigated in the teaching laboratory
using an air table equipped with either a camera for strobo-
scopic photography or with spark recording equipment.
Both these methods of data acquisition have disadvantages
as discussed by Decker and Jeffery,' who used videotaping
techniques to record data. We offer an alternative ap-
proach, which utilizes a television camera—-microcomputer
interface to achieve high precision and has the additional
advantage of producing a real-time display of a two-dimen-
sional trajectory. The apparatus is, therefore, suitable for
lecture demonstrations as well as regular laboratory use.

A television camera’ with an 8.5-mm focal length lens is
mounted above a standard Ealing-Daw air table.’ Pucks
have been altered to hold a center-mounted 6-V minilamp
and a nickel-cadmium battery. The puck’s position coordi-
nates are determined by measuring the relationship
between the intensity blip on the television camera’s video
output (produced by the light bulb) and the television
camera’s horizontal and vertical synch pulses. The x-y po-
sitions are determined once each camera frame and the
data are displayed by a plot on the computer’s screen and is
stored in memory. The electronics consists of a set of
counters used for recording x position, y position, and time,
a master clock, and appropriate logic and signal-condition-
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ing circuitry.* Interfacing requires two 8-bit parallel input/
output ports; we have used both Apple IIe and S-100 mi-
crocomputers. The apparatus determines the vertical coor-
dinate to an accuracy of 2 cm, the horizontal coordinate to
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Fig. 1. Circular motion: raw data of the trajectory of a puck moving under
the influence of a constant central force.
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