Thus (V) depends on the time (as does V for a classical
elliptical orbit). If we now average over a sufficiently long
time, the time-dependent off-diagonal contributions to Eq.
(19) average to zero and we get Eq. (4), as promised.
[Note that the superposition (12) is assumed not to in-
clude any continuum states.]

For definiteness we considered the system to be a hydro-
genlike atom. More generally, although it is true that for a
single stationary bound state the quantum virial theorem
gives (2T') = (r-grad V'), this result does not hold at each

instant for a time-dependent superposition of stationary
bound states. Instead, one has (2T),, = (rgrad V'),,,
where, again, av means time average; this is the result that
should be compared with the classical virial theorem result
2T,, = (r-grad V),,.

'See, for example, J. B. Marion, Classical Dynamics (Academic, New
York, 1970), 2nd ed., p. 233.
2See, for example, L. 1. Schiff, Quantum Mechanics (McGraw-Hill, New
York, 1968), 3rd ed., p. 180.

Comment on “Displacement current—A direct derivation,”
by T. Biswas [Am. J. Phys. 56, 373-374 (1988)]

V. Namias®

Purdue University Calumet, Hammond, Indiana 46323

(Received 20 April 1988; accepted for publication 1 August 1988)

In a recent issue of the American Journal of Physics, T.
Biswas presents a derivation of the Ampére-Maxwell
equation which includes the displacement current, starting
from the Biot—Savart law.

The author first cites the standard argument that in or-
der to conform to the continuity equation, Ampére’s law
must have an additional term representing the displace-
ment current. He then argues that “... it often gives the
student a feeling that the displacement current is a correc-
tion term that does not directly result from the laws of
electrodynamics but is mathematically necessary to fix
Ampere’s law.” The author then proceeds to give a “di-
rect” derivation of Ampeére’s law as generalized by Max-
well, in the vacuum:

vxB=J3+2D (0

ot
from the Biot-Savart law.

Apparently, the author feels that the Biot—-Savart law is a
fundamental law of electromagnetism and that the student
would rather see the Ampére~Maxwell law (1) derived
from it.

The Biot—Savart law is far from being a fundamental law
of electromagnetism. In fact, the Biot-Savart law is so re-
stricted that it cannot, in all rigor, be applied to a single
moving point charge. The application of the law to this case
constitutes the so-called quasistatic approximation that is
acceptable so long as the velocity of the charged particle is
much smaller than the speed of light.

Certainly, it would not be logical to expect to obtain
from the Biot-Savart law

B(r) = Lo [ )X —r) 4 (2)
4 r—r,|?

which was originally based on observations of the static
magnetic fields produced by steady currents, a result of far
greater generality, valid for any time-dependent situation,
such as expressed by the Ampére-Maxwell law (1). It
would be just as unrealistic to expect to derive the laws of
the induced electric field (Faraday’s law) from the proper-
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ty of the electrostatic field that its circulation is zero.
Now, all the mathematical manipulations following Eq.

(3) of Biswas’ article are correct, and the important ques-

tion is to discover what in his derivation is basically at fault.
As we shall show, Eq. (7) in Biswas’ article,

9 [r=rp dv,=41rQ, (3)
aJ [r—r,? Jr

is the fly in the ointment.
First, we note that the above result will be zero unless p
depends on time. Thus we shall rewrite Eq. (3) as

d [ plrpt)(r—r1) dv =41raD(r,t). (4)
ot [r—r? : ar

The author, in writing the right-hand side of his Eq. (7),
argues that

JE:L)BEdU‘ (5)
Ir—r,|

is equal to (47e,)E = 47D, and considers the above inte-
gral as an expression of Coulomb’s law for distributed
charges.

Unfortunately, Coulomb’s law is only exactly valid un-
der static conditions, and thus for a p that does not depend
on time. Hence,

L [t —r) g, g | -
4rre, Ir—r)? '

is incorrect.

Indeed, taking the curl on both sides of (6) yields
V XE = 0, which is only the equation for electrostatics. In
a situation in which the distribution p(r,,t) varies with
time, one should properly find VXE = — dB/d, as re-
quired by Faraday’s law.

The correct expression of the dynamic electric field is

considerably more complicated. It can be obtained from
E= —v$-24, (1)
ot

where
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-1 f Pty 4 (8)

477'60 r—r|

J(r l;t ) d

417 [r—r|

and t* =t — (1/¢)|r —r,| is the retarded time.
The above potentials satisfy the Lorentz condition

V-A 4 (1/¢)*(3¢/3t) = 0, and one can show that this con-
dition is fulfilled if the densities of charge and current satis-
fy the equation of continuity. Thus we find, in general,

(9

9 o
ot 4

1 V p(rl:t*) dvl .

J(r,t*) dv,
47re, r—r,]

Ir—r

E= —
(10)

We observe that even if the retardation effects are neglected
(and then of course the derivation cannot claim to be ex-
act), the electric field is still not given by Eq. (6). In this
case, replacing ¢ * by ¢, one finds

D=¢FE= (——1—) wd
47T lr_rl'3

[3d(r,0)/dt] dv,

[r—r

=

Thus, even the quasistatic electric field is not given by (6).
An additional integral over the time derivative of the cur-
rent distribution must be included.

In conclusion,

fp(r,,t)(r—r.) dv
dr e —r,? '
can only represent D if p is strictly constant, and in this case
dD/dt = 0, showing that the Biot—Savart equation, follow-
ing the steps of Biswas up to his Eq. (7), leads to
VXB = ugd, as it should.

This example shows how very cautious one must be in
interpreting certain electrodynamic expressions in their in-
tegral form.

) Deceased. At the time of Professor Namias’ death, this note had been
tentatively accepted, pending a few minor modifications; the necessary
final revisions were made by the editor. Please address all correspon-
dence concerning this article to: P. D. Gupta, Chemistry and Physics
Department, Purdue University Calumet, Hammond, IN 46323.

Note on “Field versus action-at-a-distance in a static situation,” by N. L.
Sharma [Am. J. Phys. 56, 420-423 (1988)]

D. J. Griffiths

Physics Department, Reed College, Portland, Oregon 97202

(Received 9 June 1988; accepted for publication 5 July 1988)

In a recent article' N. L. Sharma presents a variation on
the “Feynman disk paradox.”? Sharma considers a uni-
formly magnetized charged conducting sphere. When the
charge is drained off (by touching a grounding wire to the
south pole) the sphere begins to rotate, in apparent viola-
tion of conservation of angular momentum. The point of
the “paradox” is to demonstrate that even static electro-
magnetic fields can carry angular momentum—in this in-
stance, the angular momentum initially stored in the fields
is

L, = %IUOQGZ/M,

where M is the magnetization, Q is the charge, and a is the
radius of the sphere. Sharma demonstrates that this is pre-
cisely the angular momentum picked up by the sphere
when it discharges. (As the current flows over the surface
to the south pole, it experiences a magnetic force in the
azimuthal direction; it is the torque associated with this
force that causes the sphere to rotate.)

Now, the angular momentum density stored in the elec-
tromagnetic fields,

e;r X (EXB),

can be removed either by turning off E (discharging the
sphere) or by eliminating B (demagnetizing the sphere),
and my purpose here is to note that you get the same an-
swer either way, although the mechanisms are entirely dif-
ferent. Suppose that instead of draining off the charge we
heat up the sphere, so that (passing through the Curie tem-
perature) it gradually loses its magnetization. The magnet-
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ic field inside the sphere is uniform:
=3pMz (r<a);
as B decreases, it will induce an azimuthal electric field, in
accordance with Faraday’s law:
E= — —;—,uorsin 6%& (r<a).
This2 field exerts a torque on the surface charge o= Q/
47ra”:

sz (rXE)odS !

~ L e %4 sin® 6 d6

2 »dM
= e—— a- —
9 HoQ dr
which causes the sphere to rotate. The final angular mo-
mentum is evidently

Lmech = %U,OQCI2M,

the same as the angular momentum originally stored in the
fields.

2

'N. L. Sharma, Am. J. Phys. 56, 420 (1988). A similar model was dis-
cussed by E. M. Pugh and G. E. Pugh, Am. J. Phys. 35, 153 (1967) and
R. H. Romer, Am. J. Phys. 35, 445 (1967). See alsoR. H. Romer, Am. J.
Phys. 53, 15 (1985). For further references, see T.-C. E. Ma, Am. J.
Phys. 54, 949 (1986).

’R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on
Physics (Addison-Wesley, Reading, MA, 1964), Vol. II, p. 17-5.
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