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Abstract. Two-dimensional periodic rectangular checkerboard media are considered in the
situation where mean fluxes are prescribed across the structure. The closed-form solution is obtained
in the general case where the checkerboard is constructed using four rectangular cells, each having
a different, constant resistivity; this four cell structure then repeats doubly periodically to cover the
whole plane. This general solution is then used to calculate the effective properties. Thus this four-
phase checkerboard encapsulates many limiting and special cases; as a starting point we develop a
concise closed-form solution to a basic problem involving four joined quarter planes each of a different
resistivity. Subsequent manipulations yield solutions to problems posed in increasingly convoluted
domains while retaining the essentially simple structure found for joined quarter planes.
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1. Introduction. The calculation of effective parameters for composite struc-
tures is a topic of wide relevance in many branches of engineering, geology, and physics.
Hence there has been a long scientific history associated with the subject, with many
different avenues that have been explored. Asymptotic results and theorems for special
cases can be found in Bruggeman [5], Keller [14, 15, 16], Dykhne [8], and Mendelson
[21]; related to this are recent network resistance analogies, Borcea and Papanicolaou
[4] and Borcea [3], and numerical work using integral equations, Gautesen [9]. There
are also other numerical schemes, such as, complex power series (Milton, McPhedran,
and McKenzie [23]) or other expansion methods (Helsing [10], Hui and Bao [11], and
Cheng and Greengard [6]). In addition considerable efforts have been spent on ob-
taining effective medium approximations or establishing upper and lower bounds for
the effective properties (Torquato [29]).

Here we shall concentrate upon one avenue, namely, closed-form solutions to
checkerboard composites with the aim of deducing exact formulae for the effective
resistivities. This approach is of wide utility because not only do these provide
benchmark formulae, but they also yield insight into the underlying mathematical
structure; this can be embodied into asymptotic schemes, for instance, for highly
differing conductivities; see Keller [16].

Perhaps surprisingly (even for two-phase media) closed-form solutions, and the
corresponding formulae for the effective parameters, for this class of problems are
not easy to find. There are classical analyses by Rayleigh [28] and Maxwell [20]
and much more recent work for square (Berdichevski [2]) or rectangular (Obnosov
[26, 27]) checkerboard structures and for biperiodic cylindrical inclusions (Mityushev
[24]). Specializing to perfectly conducting or resisting inclusions leads to massive
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simplifications, and then much more progress can be made (Lehner [19] and Kozlov
and Vucans [17]).

But beyond this there are few results. It may be that the doubly periodic nature
of the boundary value problems has provided an obstacle to further studies; we aim
to overcome this here, at least for this specific geometry.

The current paper is, in part, a continuation of the studies by [2, 26, 27], but
we introduce the novel concept that much of the analysis can be sidestepped using
conformal mappings at an early stage; thus we progress much further and generate
solutions for four-phase checkerboard media subjected to a prescribed constant applied
field at infinity. Given these solutions we can then evaluate formulae for the effective
resistivities, which turn out to have a simple form.

2. Formulation. We consider electrostatic problems in four-phase continuous
isotropic linear media whose solution can be represented in terms of a vector field that
is both solenoidal and irrotational; in addition to electrostatics this also encompasses
several physical scenarios in magneto-statics, heat flow, hydrology, and elasticity. In
each phase, distinguished by the subscript k, where k = 1, . . . , 4, we define a vector
field wk = (wkx, wky) of the horizontal and vertical components wx, wy such that
both

∇ ·wk = 0, ∇×wk = 0.

It is most convenient to utilize complex variables, that is, z = x + iy and wk(z) =
wkx − iwky. In each sector, Wk (k = 1, . . . , 4), analytic functions wk(z) are defined.
Since we have eigenproblems the results depend crucially upon the singularity behavior
at each vertex; from physical considerations these functions have, at most, integrable
singularities there. The continuity boundary conditions between each phase are that
the normal components of wk are continuous across each boundary and that the
tangential components of ρkwk are similarly continuous; the constant parameters ρk
correspond to a phase property of each medium. For ease of analysis these parameters
are taken to be real in the remainder of this paper; this is not a restriction upon the
basic method. In the periodic and biperiodic problems we ultimately consider, we
take a constant prescribed field at infinity to be the applied forcing.

One could, for instance, take ρ to be the electrical resistivity of a medium; ρ =
1/σ, with σ as the conductivity. Then taking the vector w = σE, with E being
the electric field, the usual continuity equations across differing phases leads to the
boundary conditions above. We choose to work with the resistivities, rather than
the conductivities, for analytic convenience; nonetheless one can rapidly translate
our results into effective conductivities if one so requires. We briefly describe the
connection with the more conventional notation using the electric field in Appendix
C.

3. Analysis. We begin by considering the four joined quarter plane geometry
shown in Figure 1, which is the simplest basic geometry consisting of four different
phases. In keeping with our earlier complex notation it is clear that we require a
solution of the following boundary value problem:

Im[i(ρ1w1 − ρ2w2)] = 0, Im[w1 − w2] = 0 on 0 < x < ∞,(3.1)

Im[i(ρ4w4 − ρ3w3)] = 0, Im[w4 − w3] = 0 on −∞ < x < 0,(3.2)
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Fig. 1. Four joined quarter planes each of different resistivity.

Im[i(w4 − w1)] = 0, Im[ρ4w4 − ρ1w1] = 0 on 0 < y < ∞,(3.3)

Im[i(w2 − w3)] = 0, Im[ρ2w2 − ρ3w3] = 0 on −∞ < y < 0.(3.4)

This can be approached several ways, two of which are discussed in detail in Appendix
A; one, using complex variable methods, leads elegantly to a neat formulation, while
the other, based upon transform methods, is simpler to apply but yields less elegant
results. In either event, the general solution emerges as

wk(ζ) = αAk(λ)ζ
λ + βAk(λ)ζ

−λ, k = 1, . . . , 4,(3.5)

with the Ak(λ) defined as

A1(λ) =
ρ2 − i signσ2

√
σ3/σ1

ρ1 + ρ2
, A2(λ) =

ρ1 − i signσ2

√
σ3/σ1

ρ1 + ρ2
,

A3(λ) = e
iπλ

[
ρ4 − i signσ2

√
σ3/σ1

ρ3 + ρ4

]
, A4(λ) = e

−iπλ

[
ρ3 − i signσ2

√
σ3/σ1

ρ3 + ρ4

]
.

(3.6)

As it stands these are eigensolutions that are chosen to have integrable singularities
at the origin. In subsequent sections the real constants α and β are to be determined
in each physical example from prescribed applied mean fluxes across the four cells
or four semi-infinite strips. These solutions contain several parameters that we give
here:

σ1 = ρ1 + ρ2 + ρ3 + ρ4, σ2 = ρ1ρ3 − ρ2ρ4,(3.7)

σ3 = ρ1ρ2ρ3 + ρ1ρ2ρ4 + ρ1ρ3ρ4 + ρ2ρ3ρ4,(3.8)

cosπλ = 1− 2∆2, ∆2 =
σ2

2

σ1σ3 + σ2
2

.(3.9)
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Fig. 2. The geometry for a periodic four-phase system of four semi-infinite strips in the phys-
ical, z, plane.

For any reader referring back to earlier papers, say, [26], we should note that our
present definition of λ is twice that as used there and differs from it in signσ2. The
full details regarding how these parameters emerge from the analysis is contained in
Appendix A. This solution is vital to the following sections; we shall conformally map
more geometrically involved domains into this and/or take advantage of the simple
structure we have found.

4. Periodic media. As an initial step we shall consider singly periodic media
where we have four semi-infinite strips each of vertical height h that periodically
repeat; this is shown schematically in Figure 2.

To utilize the four joined quarter plane solution given above, it is necessary to
conformally map this semi-infinite arrangement into the four quarter planes while
ensuring that all the continuity conditions and the periodicity are maintained. The
mapping ζ(z) = tanh(πz/2h) does precisely this by mapping the points which were at
±∞ in the physical plane to ±1 in the ζ plane; the function is clearly periodic. The
continuity boundary conditions are important; clearly along the paths from 0 to ±∞
and from 0 to ±ih we require the periodicity conditions to hold, and the mapping
places these along the real or imaginary axes such that the solution derived for four
joined quarter planes deals correctly with this issue. For the solution to be periodic
with the continuity conditions holding along the lines ±ih to ±ih±∞, we also require
these lines to be mapped to adjoining pieces of the real axis; this is also done by this
mapping.

One could avoid this conformal mapping argument by asking oneself to deter-
mine the periodic function such that the horizontal boundaries of the strips map to
adjoining sections of the real axis and vertical boundaries to the imaginary axis; the
only functions to do this are tanh(πz/2h) and of course its inverse coth(πz/2h). The
inverse also appears naturally as we have ζ±λ in the basic quarter plane solution.

Thus in the ζ plane we recover precisely the four quarter plane solution, (3.5),
but with ζ(z) as the tanh function; hence we can directly utilize our solution to the
four joined quarter planes.

The real constants α, β which appear in the solution (3.5) must now be determined
using given flux conditions. That is, the mean fluxes a and b through the sides of
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each periodic arrangement are given as

a =
1

2h

∫ h

−h

Re[wk(0, y)]dy, b =
1

2l

∫ l

−l

Im[wk(x, 0)]dx as l → ∞.(4.1)

Given these mean fluxes we then need to relate these to the constants α and β that
appear in (3.5). The integrals in (4.1) can be done explicitly using the results in
Appendix B, and it is found that

a =
(α+ β)

2
, b = − (α− β)

2
sign (σ2)

√
σ3/σ1

(ρ3 + ρ4 + ρ1 + ρ2)

(ρ1 + ρ2)(ρ3 + ρ4)
,(4.2)

and thus we can determine α and β as

a± b
signσ2

(σ1σ3)
1
2

(ρ1 + ρ2)(ρ3 + ρ4)

with α taking the negative sign and β the positive.
It is convenient to evaluate each vertical and horizontal integral along the axes,

and there is no loss of generality in doing so. The subscript k takes the appropriate
value depending on which phase we are in, and wk has the arguments (x, y) associated
with the physical problem.

We are now in a position to be able to calculate some effective parameters. The
effective resistivities (these are the reciprocal of the conductivities) along the x and y
axes are

ρy =
1

2hb

∫ h

−h

Im[ρkwk(0, y)]dy,(4.3)

ρx =
1

2la

∫ l

−l

Re[ρkwk(x, 0)]dx as l → ∞.(4.4)

Evaluating these integrals (see Appendix B) one finds that

ρx =
ρ1ρ2

(ρ1 + ρ2)
+

ρ3ρ4

(ρ3 + ρ4)
, ρy =

(ρ3 + ρ4)(ρ1 + ρ2)

(ρ1 + ρ2 + ρ3 + ρ4)
.(4.5)

Other effective parameters, such as an effective resistivity tensor, can be deduced. In
the complex notation we evaluate

ρ =

∫
W

ρkwk(z)dA
/∫

W

wk(z)dA.(4.6)

It turns out that

ρ ≡
(

aρx − ibρy
a− ib

)
,(4.7)

with W =
∑

k Wk, and ρk, wk take their respective values in each Wk. That is, we
in some sense average over the area of the four strips. The resulting complex ρ is
ρ = ρxx − iρxy = ρyy + iρyx, where ρij are the components of an effective resistivity
tensor.
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Fig. 3. The geometry for a doubly periodic four-phase checkerboard in the physical plane.

The effective energy dissipation is

D =
1

4lh

∫
W

ρk|wk(z)|2dA = a2ρx + b2ρy.(4.8)

Many special and limiting cases can be deduced from these, and the formulae for ρ
and D are also valid for the doubly periodic domains, but we shall not dwell upon
the special cases for the periodic geometry here.

5. Doubly periodic. The situation that we now face is a doubly periodic
checkerboard of four cells, each potentially a different phase; a schematic is shown
in Figure 3. The individual cells, the Wj , have width l and height h. Perhaps sur-
prisingly there is also a function in this geometry that behaves just as the hyperbolic
tangent did for singly periodic media; not surprisingly it involves Jacobi elliptic func-
tions which are themselves doubly periodic.

For periodic media we asked ourselves to determine a singly periodic function
mapping horizontal boundaries to adjoining segments of the real axis in the ζ plane,
so that continuity at the top and bottom of each cell was maintained. Now we search
for a doubly periodic function that, in addition, maps the vertical boundaries to the
imaginary axis in the ζ plane; thus we again have the basic four quarter plane solution,
but now with ζ replaced by this function. It is found that

ζ(z) =


1− cn

(
2K(m)z

l |m
)

1 + cn
(

2K(m)z
l |m

)



1
2

(5.1)

is the required function; the cn are the Jacobi elliptic cosinus functions; see, for
instance, Lawden [18]. An alternative argument based upon conformal mappings
appears in Craster [7]; formally one can map the rectangular region consisting of four
cells into a four quarter plane structure using the elliptic sinus

sn

(
K(m)z

l
|m

)
.
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But importantly this does not map the vertical boundaries correctly, and a further
manipulation of this is required that leads to (5.1). One noteworthy feature of this
mapping is that we get a two-sheeted Riemann surface, but the continuity conditions
are still satisfied correctly as formal substitution into the final form will readily reveal.
Also appearing in this formula are the complete elliptic integral of the first kind,K(m),
and the parameter m. This parameter is implicitly defined via K(m)/K(1−m) = l/h
and explicitly builds the aspect ratio of each cell into the analysis. Note that m = 1
is the limit where we recover the semi-infinite strips, and the tanh function natu-
rally reemerges. The really noteworthy point is that the complicated Markushevich
approach utilized in earlier papers is not required.

It is also worthwhile noting that one can obtain accurate asymptotic representa-
tions for m as

m ∼
{
16 exp(−πh/l) for h � l
1− 16 exp(−πl/h) for h � l,

(5.2)

and these are useful in geometries with large aspect ratio.
To fully determine the solution (3.5) we need α and β. To find these we prescribe

the mean fluxes through the four cells, a and b, which are defined using

a =
1

2h

∫ h

−h

Re[wk(0, y)]dy, b =
1

2l

∫ l

−l

Im[wk(x, 0)]dx.(5.3)

These integrals are evaluated using results from Appendix B as

a =
(α+ β)

2σ(1−m)
,(5.4)

and

b = − (α− β)

2σ(m) cos πλ
2

sign (σ2)
√

σ3/σ1

[
(ρ3 + ρ4 + ρ1 + ρ2)

(ρ1 + ρ2)(ρ3 + ρ4)

]
.(5.5)

Solving these we finally obtain α, β as

aσ(1−m)± bσ(m)signσ2

[
(ρ1 + ρ2)(ρ3 + ρ4)

(ρ1 + ρ4)(ρ2 + ρ3)

] 1
2

,

with α taking the negative sign and β the positive.
An important parameter in these formulae is σ(m) defined as

σ(m) =
2
πK(m)

Pλ
2 − 1

2
(1− 2m) ;(5.6)

also appearing are the Legendre function of the first kind Pν(1 − 2m), and K(m) is
the elliptic integral discussed earlier. The ratio σ(m)/σ(1 − m) is ubiquitous in the
expressions associated with effective parameters and is

σ(m)

σ(1−m)
=

l

h

Pλ
2 − 1

2
(2m− 1)

Pλ
2 − 1

2
(1− 2m) ;(5.7)

the geometric dependence is encapsulated in the l/h terms and, of course, in m, and
the material dependence in each phase is encapsulated in λ.
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It is perhaps noteworthy that there are two special angles of the flux for which
the solution defined via (3.5), (3.6), (5.1) has singularities at two diagonal off vertices
of each phase Wk and vanishes at two others.

Now that we have the full solution, wk, we can determine the effective parameters
from the integrals

ρy =
1

2hb

∫ h

−h

Im[ρkwk(0, y)]dy and ρx =
1

2la

∫ l

−l

Re[ρkwk(x, 0)]dx,(5.8)

and, after some effort, and using results from Appendix B, the following forms emerge:

ρx =
σ(1−m)

σ(m)

[
(ρ2 + ρ3)(ρ4 + ρ1)

(ρ1 + ρ2)(ρ3 + ρ4)

] 1
2
(

σ3

σ1

) 1
2

,(5.9)

ρy =
σ(m)

σ(1−m)

[
(ρ1 + ρ2)(ρ3 + ρ4)

(ρ2 + ρ3)(ρ4 + ρ1)

] 1
2
(

σ3

σ1

) 1
2

.(5.10)

Apart from the relative simplicity of these formulae, there are a couple of noteworthy
features, the first being that rotating the four-cell structure through a right angle and
appropriately renumbering the phases allows one to deduce ρx from ρy and vice versa.
Secondly there is a simple relation for their product, that is, ρxρy = σ3/σ1, and this
should be useful in any numerical work. The results for ρ and D follow from those in
(4.7), (4.8), (5.9), (5.10).

Given that our final solution for the wk contains an implicit definition for m
together with Jacobi elliptic functions, and our resistivity formulae also contain m
and Legendre functions, one might query whether these are numerically awkward to
evaluate. The value of m is rapidly found using standard root-finding algorithms, and
the special functions are defined in symbolic manipulation packages such as Mathe-
matica, or alternatively they all have integral representations that can be evaluated
using Gaussian quadrature. Some example numerical evaluations for two and three
phases can be found in [7, 27] and in [13].

5.1. Special cases. There are numerous special cases that can be of interest,
and we shall present the results of some of them here. These fall into two classes:
geometrical special cases—square checkerboards with h = l, cells of large aspect
ratio—and those with some phases equal.

5.1.1. Symmetry about one diagonal: ρ2 ≡ ρ4. This special case maintains
some symmetry, namely, in each four-cell grouping about y/h = x/l; see Figure 4.
If, furthermore, ρ1 = ρ3, we have a chessboard structure as recently analyzed by
Obnosov [26], for which

ρx =
σ(1−m)

σ(m)

√
ρ1ρ2, ρy =

σ(m)

σ(1−m)

√
ρ1ρ2.(5.11)

This rectangular checkerboard is the most often studied arrangement, and several
useful theorems (Keller [15], Mendelson [21], and Dykhne [8]) and numerical results
(Gautesen [9]) have appeared for it.

If ρ1 = ρ2 = ρ4, then we have isolated rectangular inclusions, also recently studied
by Obnosov [27], and then

ρx =
σ(1−m)

σ(m)
ρ1

√
ρ1 + 3ρ3

ρ3 + 3ρ1
, ρy =

σ(m)

σ(1−m)
ρ1

√
ρ1 + 3ρ3

ρ3 + 3ρ1
.(5.12)
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Fig. 4. Symmetry about one diagonal.

Our analysis in the present paper departs from that in [26, 27] at a crucial point,
that is, we do not tackle the formidable Markushevich conjugate Riemann boundary
value problems in the doubly periodic domain; we avoid this by utilizing conformal
mappings directly. This latter approach is advocated in [7], but that paper is limited
in that it concentrates only upon ρ2 = ρ4, as the pleasant form of the basic four
joined quarter plane solution presented here in Appendix A was, at that time, not
forthcoming. Thus those results are restricted, and for ρ2 = ρ4 one has that

ρx =
σ(1−m)

σ(m)

(
ρ1[ρ1ρ3 + ρ1ρ2 + ρ1ρ3 + ρ2ρ3]

ρ1 + 2ρ2 + ρ3

) 1
2

,

ρy =
σ(m)

σ(1−m)

(
ρ1[ρ1ρ3 + ρ1ρ2 + ρ1ρ3 + ρ2ρ3]

ρ1 + 2ρ2 + ρ3

) 1
2

;(5.13)

these do not highlight the remarkably simple and elegant forms of the general rep-
resentations in (5.9), (5.10). All of these formulae have ρx and ρy identical, except
for the σ(1 − m)/σ(m) terms, and this must be so as rotation of the basic four-cell
structure through a right angle indicates. Each of these special cases can be further
specialized to allow one or, in the later case, two phases to be perfectly resistive or
conducting, that is, ρ = 0,∞ and further simplifications ensue.

5.1.2. Two equal neighboring phases: ρ1 = ρ4. Thus we now have three
phases, one of which becomes an infinite strip of height h, whereas the remaining
phases retain their block structure; this is shown in Figure 5. Here

ρx =
σ(1−m)

σ(m)
ρ1

(
2[ρ2 + ρ3][ρ1ρ2 + ρ1ρ3 + 2ρ2ρ3]

[ρ1 + ρ2][ρ3 + ρ1][2ρ1 + ρ2 + ρ3]

) 1
2

,

ρy =
σ(m)

σ(1−m)

(
[ρ1 + ρ2][ρ3 + ρ1][ρ1ρ2 + ρ1ρ3 + 2ρ2ρ3]

2[ρ2 + ρ3][2ρ1 + ρ2 + ρ3]

) 1
2

.(5.14)

Notably we have lost the simple rotational symmetry evident in the preceding section.
A useful further limiting case is to allow ρ2 = ρ3 so that we recover a trivial situation
of alternating strips; this situation also arises in the next section, and we discuss it
there.
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Fig. 5. Two equal neighboring phases.

5.1.3. Aspect ratio independence: ρ1ρ3 = ρ2ρ4. At first sight it is not
clear what this case physically means, and it does not arise in section 5.1.1 except as
a completely degenerate trivial case, that is, ρk = ρ1 for k = 1, . . . , 4. Nonetheless it
is an interesting subcase as now λ = 0 and the term σ(1 − m)/σ(m) = 1; hence the
dimensions h and l play no role in ρx, ρy. Thus

ρx = ρ1
(ρ2 + ρ3)

(ρ1 + ρ2)
, ρy = ρ3

(ρ1 + ρ2)

(ρ2 + ρ3)
.(5.15)

It is noteworthy that ρxρy = ρ1ρ3 = ρ2ρ4.
A further case of this is when ρ1 = ρ4 and ρ2 = ρ3; this doubly periodic example

now coincides with a simple arrangement of periodic alternating strips whose effective
resistivities are trivially

ρx =
2ρ1ρ2

(ρ1 + ρ2)
, ρy =

(ρ1 + ρ2)

2
.(5.16)

Similarly ρ1 = ρ2 and ρ3 = ρ4 leads to

ρx =
(ρ1 + ρ3)

2
, ρy =

2ρ1ρ3

(ρ1 + ρ3)
;(5.17)

it is reassuring to recover these limiting results from our full analysis. In general,
though, it is interesting to note that there are these additional nontrivial arrangements
of phase combinations with ρ1ρ3 = ρ2ρ4 that lead to effective parameters independent
of the aspect ratio; this independence can also be deduced using [12].

5.1.4. Highly contrasting phases. If two of the phases along the diagonal of
each four-cell structure are considerably larger than the others, say, ρ1, ρ3 � ρ2, ρ4,
then ∆ ∼ 1, λ ∼ 1 and hence the crucial ratio σ(1−m)/σ(m) ∼ l/h, and one simply
obtains

ρx ∼ l

h

[
ρ1ρ3(ρ2 + ρ4)

(ρ1 + ρ3)

] 1
2

, ρy ∼ h

l

[
ρ1ρ3(ρ2 + ρ4)

(ρ1 + ρ3)

] 1
2

.(5.18)

If we have a two-phase medium with ρ1 = ρ3, ρ2 = ρ4, then the analogous limiting
value also emerges from the numerical and asymptotic approaches of Gautesen [9] and
also Keller [16]. Formulae found in this high-contrast limit also have the added ad-
vantage that they can be used in three-dimensional asymptotic studies for four-phase
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cubes in a similar manner to that advocated in [16]. Effective properties for compos-
ites consisting of highly contrasting phases are awkward to evaluate numerically [11],
and these results should be valuable checks upon such studies.

5.1.5. Square checkerboards. So far we have concentrated upon rectangular
cells of arbitrary aspect ratio; if we specialize to h ≡ l, that is, square cells, then
m = 1/2 and the ratio σ(1−m)/σ(m) = 1. Thus

ρx =

[
(ρ2 + ρ3)(ρ4 + ρ1)

(ρ1 + ρ2)(ρ3 + ρ4)

] 1
2
(

σ3

σ1

) 1
2

,(5.19)

ρy =

[
(ρ1 + ρ2)(ρ3 + ρ4)

(ρ2 + ρ3)(ρ4 + ρ1)

] 1
2
(

σ3

σ1

) 1
2

,(5.20)

and these provide the generalization of the classical Dykhne [8] formulae to four-phase
checkerboard composites; this four-phase result is conjectured in Mortola and Steffé
[25].

5.1.6. High aspect ratio asymptotics. As noted earlier there are nice asymp-
totic formulae for the critical parameter m when either h � l or h � l, (5.2); thus
we can determine the ratio σ(m)/σ(1−m) as

σ(m)

σ(1−m)
∼ cos(πλ/2)

[
1− l

πh

(
2γ + 2ψ

(
1

2
+

λ

2

)
+ π cot

[
π

(
1

2
+

λ

2

)]
+ 4 log 2

)]
(5.21)

for h � l. Thus asymptotic representations of the effective parameters can be deter-
mined as, for instance,

ρx∼ (ρ1 + ρ4)(ρ2 + ρ3)

(ρ1 + ρ2 + ρ3 + ρ4)

[
1− l

πh

(
2γ + 2ψ

(
1

2
+

λ

2

)
+ π cot

[
π

(
1

2
+

λ

2

)]
+ 4 log 2

)]−1

+ O(exp(−πh/l)) for h � l.(5.22)

In (5.22) the parameter γ is Euler’s constant and ψ is the Psi function defined in the
usual manner (Abramowitz and Stegun [1]). Similarly if h � l, one finds that

ρx∼
[

ρ1ρ2

(ρ1 + ρ2)
+

ρ3ρ4

(ρ3 + ρ4)

][
1− h

πl

(
2γ + 2ψ

(
1

2
+

λ

2

)
+π cot

[
π

(
1

2
+

λ

2

)]
+ 4 log 2

)]

+ O(exp(−πl/h)) for h � l.(5.23)

It is evident that in the appropriate limits we recover those found in section 4. One
additional noteworthy feature, after inspecting higher terms, of these formulae is
that for a four-cell structure 2l × 2h these provide upper and lower bounds upon ρx;
importantly these are not just the crude bounds we would get from using the semi-
infinite strip results but build in the geometric dependence. Similar results are found
for ρy; these results are surprisingly accurate over a wide range of h and l; a numerical
example appears in [7].
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6. Concluding remarks. The underlying idea that we present here is that one
can begin with a conceptually simple situation, four joined quarter planes, and that
subsequent manipulations of this lead us to the solution of much harder geometries
from which we can then deduce the effective resistivities. In particular we have con-
centrated upon rectangular checkerboard media which, for two phases, have been
a much studied model geometry. As demonstrated here, formulae for the effective
parameters can be deduced that incorporate explicitly the geometrical and phase de-
pendence. The final formulae for the effective resistivities along the axes (5.9), (5.10)
are surprisingly simple in structure and encompass many special and limiting cases;
these provide valuable benchmarks for any numerical or future analytical studies.

Many special cases occur, some limiting cases where we recover known results,
and also others; for instance, we identify a limit whereby four phases exist, but the
effective resistivities are geometrically independent. It is also shown how results for
the checkerboard can be used to recover those for long thin alternating strips of
material.

It is perhaps worthwhile comparing our approach with those numerical schemes for
checkerboard geometries that are based upon series expansions using eigensolutions for
four joined quarter planes. Thus far these calculations have been for two phases (see,
for instance, [10]), although they also include parallelogram as well as rectangular
checkerboards, and are based upon the results deduced by Keller [16]. They use
an infinite series representation with an infinite number of eigenvalues, whereas we
have used two eigenvalues ±λ. That our solution involves merely two eigenvalues
is due to the constraint of having integrable singularities at each vertex while we
simultaneously satisfy both continuity conditions on the lines emanating from the
vertex and periodicity at the edges of each cell. The series approach also has the
physical constraint, but the quarter plane eigensolutions do not satisfy the continuity
and periodicity conditions at the edges of the four-cell checkerboard structure, and
thus an expansion together with simultaneous equations is required. The mapping
procedure we use here sidesteps this, and we have, in effect, managed to sum the
series that these numerical methods produce.

The effective resistivity formulae we have deduced are the first rigorous closed-
form results to be deduced for four-phase model composites. As such they confirm
conjectures in Mortola and Steffé [25] regarding the form of the effective parame-
ters for square checkerboards and relations between the parameters for rectangular
checkerboards; very recently their conjectures have independently been proved to be
correct by Milton [22] using different methods. It is envisaged that the formulae de-
duced herein will not only be useful as benchmarks, but will also provide elementary
bounds on parameters and in further asymptotic studies.

Appendix A. The solution for four joined quarter planes. A simple, and
importantly also concise, closed-form solution of the basic four quarter plane problem
is essential for use in the text. There are two main approaches; first we use complex
variables directly, which turns out to be more technically involved, but ultimately
leads directly to a simple solution. Alternatively one can adopt a transform-based
approach which for some simpler limiting cases is quicker, and we briefly discuss this
at the end of this appendix.

We recall that this structure is composed of four quadrants Wj each with so-
lution wj (see Figure 1), each of which has a different constant resistivity, ρj , with
j = 1, . . . , 4; the quadrants are numbered clockwise, with unity as the positive quad-
rant. In terms of complex velocity conjugate function w(z) = dω/dz the boundary
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conditions are that

Im[i(ρ1w1 − ρ2w2)] = 0, Im[w1 − w2] = 0 on 0 < x < ∞,
Im[i(ρ4w4 − ρ3w3)] = 0, Im[w4 − w3] = 0 on −∞ < x < 0,
Im[i(w4 − w1)] = 0, Im[ρ4w4 − ρ1w1] = 0 on 0 < y < ∞,
Im[i(w2 − w3)] = 0, Im[ρ2w2 − ρ3w3] = 0 on −∞ < y < 0.

(A.1)

The solutions of this boundary value problem, wj(z), should have integrable singu-
larities at z = 0, as should the function wj(1/z). To place this in a more malleable
form we introduce the functions uj(z) for j = 1, . . . , 4 as

u1(z) = w1(z), u2 = w2(z), u3(z) = w3(−z), u4 = w4(−z),(A.2)

which are defined and holomorphic in the positive quadrant W1. Thus now we need
only concentrate upon the first quadrant W1. Using (A.2) we can rewrite boundary
conditions (A.1) as follows:

Im[i(ρ1u1 − ρ2u2)] = 0, Im[u1 + u2] = 0 on 0 < x < ∞,
Im[i(ρ4u4 − ρ3u3)] = 0, Im[u4 + u3] = 0 on 0 < x < ∞,
Im[i(u4 − u1)] = 0, Im[ρ4u4 + ρ1u1] = 0 on 0 < y < ∞,
Im[i(u2 − u3)] = 0, Im[ρ2u2 + ρ3u3] = 0 on 0 < y < ∞.

(A.3)

A matrix notation is now utilized such that

Im[UK1]=0, x > 0; Im[UK2]=0, x < 0,(A.4)

where U(ζ) is a vector defined as

U(ζ) =
[
u1(

√
ζ), u2(

√
ζ), u3(

√
ζ), u4(

√
ζ)
]

(A.5)

in the upper half of the ζ plane, C
+, and K1,2 are the matrices

K1 =




i ρ1 1 0 0
−i ρ2 1 0 0
0 0 −i ρ3 1
0 0 i ρ4 1


 , K2 =




−i ρ1 0 0
0 0 i ρ2

0 0 −i ρ3

i ρ4 0 0


 .(A.6)

Due to (A.4) the vector-function

V(ζ) =

{
U(ζ)K1 for Im(ζ) > 0,

U(ζ)K1 for Im(ζ) < 0
(A.7)

is the analytical continuation of the function U(ζ)K1 into the lower half-plane across
the positive part of the real axis. Thus, for ζ = ξ, where ξ is real, we have V+(ξ) =
V−(ξ) for ξ > 0 and

V+(ξ) = V−(ξ)T for ξ < 0,(A.8)

where

T = K
−1

1 K2K
−1
2 K1.(A.9)

In addition, the solution of the problem (A.8) has to satisfy a symmetry condition,

V(ζ) ≡ V(ζ) ∀ζ ∈ C \ (−∞, 0],(A.10)
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due to the representation (A.7), and in the vicinity of origin in accordance with (A.5)

vj(ζ), vj(1/ζ) = o(
√

ζ)(A.11)

for all components vj of V. It is clear that

K−1
1 =




−i
ρ1+ρ2

i
ρ1+ρ2

0 0
ρ2

ρ1+ρ2

ρ1

ρ1+ρ2
0 0

0 0 i
ρ3+ρ4

−i
ρ3+ρ4

0 0 ρ4

ρ3+ρ4

ρ3

ρ3+ρ4


 ,

K−1
2 =




i ρ4

ρ1+ρ4
0 0 −i ρ1

ρ1+ρ4
1

ρ1+ρ4
0 0 1

ρ1+ρ4

0 −i ρ3

ρ2+ρ3

i ρ2

ρ2+ρ3
0

0 1
ρ2+ρ3

1
ρ2+ρ3

0




and correspondingly

K−1
1 K2 =




−1
ρ1+ρ2

i ρ1

ρ1+ρ2

−1
ρ1+ρ2

−i ρ2

ρ1+ρ2
i ρ2

ρ1+ρ2

ρ1ρ2

ρ1+ρ2

−i ρ1

ρ1+ρ2

ρ1ρ2

ρ1+ρ2
1

ρ3+ρ4

i ρ4

ρ3+ρ4

1
ρ3+ρ4

−i ρ3

ρ3+ρ4−i ρ3

ρ3+ρ4

ρ3ρ4

ρ3+ρ4

i ρ4

ρ3+ρ4

ρ3ρ4

ρ3+ρ4


 .

Using this last representation, one finds the eigenvalues, µ, of the matrix (A.9)
as the roots of

det(K−1
1 K2 − µK−1

1 K2) = 0,(A.12)

which is equivalent to det(T − µE) = 0. It is not difficult to show that (A.12) has
two coincident roots equal to −1 and two complex conjugated roots

µ1,2 = e
±iπλ =

σ1σ3 − σ2
2

σ1σ3 + σ2
2

± 2i |σ2|
√

σ1σ3

σ1σ3 + σ2
2

,

where 0 < λ ≤ 1. Here

σ1 = ρ1+ρ2+ρ3+ρ4, σ2 = ρ1ρ3 −ρ2ρ4, σ3 = ρ1ρ2ρ3+ρ1ρ2ρ4+ρ1ρ3ρ4+ρ2ρ3ρ4.

The earlier papers of Obnosov [26, 27] and Craster [7] primarily use a different notation
involving a function ∆ that is linked to the present notation via

µ1,2 = e
±iπλ = 1− 2∆2 ± i 2|∆|

√
1−∆2,(A.13)

where, in general,

∆2 =
σ2

2

σ1σ3 + σ2
2

=
(ρ1ρ3 − ρ2ρ4)

2

(ρ1 + ρ2)(ρ2 + ρ3)(ρ3 + ρ4)(ρ4 + ρ1)
.(A.14)

Let H be the matrix which brings matrix T into canonical Jordan form. Hence the
function

V =WH
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satisfies boundary condition

W+(ξ) =W−(ξ)T0 for ξ < 0,(A.15)

with T0 as the diagonal matrix

T0 =




−1 0 0 0
0 −1 0 0
0 0 e−iπλ 0
0 0 0 e+iπλ


 .

Finally, the general solution of the Riemann boundary value problem satisfying the
condition (A.11) is

W = (0, 0, c1ζ
λ/2, c2ζ

−λ/2),(A.16)

where the branches of analytic functions above are fixed by the condition | arg ζ| ≤ π,
and c1,2, at this stage, are arbitrary complex parameters. Hence, the final solution of
the problem (A.4) or, equivalently, (A.3) is a linear combination of two functions ζλ/2

and ζ−λ/2. As these functions are linearly independent, the initial problem (A.1) has
a particular solution of the form

wk1(z) = Ak(λ)z
λ, k = 1, . . . , 4,(A.17)

with λ defined via (A.13) for some complex constants Ak; the second subscript on
wk1 denotes that this is the first of two possible particular solutions, Additionally,
it is clear that if wk1(z), k = 1, . . . , 4, is a solution of our problem (A.1), then so
is wk2(z) = wk1(1/z) = Ak(λ)z

−λ, k = 1, . . . , 4. This occurs as the branch of the

function zλ is fixed by the condition | arg ζ| < π and hence 1/zλ = z−λ.
To summarize, the general solution of the problem (A.1) is

wk(z) = C1Ak(λ)z
λ + C2Ak(λ)z

−λ, k = 1, . . . , 4,(A.18)

with arbitrary real constants C1, C2.
However, it is also crucial to determine the parameters Ak(λ) in (A.18). To

achieve this aim we next use properties of the function ν(z) = zλ:

ν(z) ≡ ν(z), ν(−z) =

{
e−iπλν(z), Im(z) > 0,
eiπλν(z), Im(z) < 0,

ν(−z) =

{
e−iπλν(z), Im(z) > 0,
eiπλν(z), Im(z) < 0.

In accordance with the properties of the vector in (A.5) with components defined via
(A.2), (A.17) then holds with the representation

U(ζ) = ζλ/2
(
A1, A2, e

−iπλA3, e
−iπλA4

)
= ζλ/2U0.(A.19)

Due to (A.4)

Im[U0K1]=0, Im[eiπλ/2U0K2]=0,

or equivalently {
U0K1 −U0K1 = 0,
eiπλU0K2 −U0K2 = 0.
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Thence

U0

(
K1K

−1
1 K2K

−1
2 − eiπlE

)
= 0 or U0K1

(
T − eiπλE)

K−1
1 = 0.

Here matrix T has the form (A.9), and E is the unit matrix. As K1 is a nonsingular
matrix, we get (

T ′ − eiπλE)
K ′

1U
′
0 = 0,(A.20)

where the prime denotes transposition. Thereby the column vector V′
0 = K ′

1U
′
0 is

the eigenvector of matrix T ′ corresponding to its eigenvalue µ1 = exp[iπλ]. This is
found after utilizing the symbolic manipulation packages in Mathematica [30] as

V′
0 =

(
signσ2

√
σ3/σ1, 1,−signσ2

√
σ3/σ1, 1

)′
.

Finally using (A.19) and the equality U0 = V0K
−1
1 , we find the Ak(λ) as

A1(λ) =
ρ2 − i signσ2

√
σ3/σ1

ρ1 + ρ2
, A2(λ) =

ρ1 − i signσ2

√
σ3/σ1

ρ1 + ρ2
,

A3(λ) = e
iπλ

[
ρ4 − i signσ2

√
σ3/σ1

ρ3 + ρ4

]
, A4(λ) = e

−iπλ

[
ρ3 − i signσ2

√
σ3/σ1

ρ3 + ρ4

]
.

(A.21)

This is the closed-form solution to the joined quarter planes that we utilize in the
text.

An alternative approach that is simpler for reduced cases of the above is to note
that the problem is harmonic, and thus we expect solutions of the form wk = Ak(λ)z

λ

(k = 1, . . . , 4) and their conjugates. The aim is to identify λ as an eigenvalue and
also the general form that the constants Ak(λ) must take. Utilizing the boundary
conditions in (A.1), we deduce a system of algebraic equations for the Ak together
with an equation for λ as

4∆2(1 + cosλπ) = (1− cos 2λπ).(A.22)

The solutions are cosπλ = 1−2∆2 with ∆2 given by (A.14); the Ak(λ) also emerge as
(A.21) but after considerably more algebra and also with the advantage of hindsight.

Appendix B. Useful integrals. These integrals are evaluated in [26] and are
useful herein:

1

h

∫ h

0

(
tanh

πiy

2h

)±λ

dy =
e±iπλ/2

cos(πλ/2)
,

1

l

∫ l

0

(
tanh

πx

2h

)±λ

dx = 1(B.1)

as l → ∞,

1

h

∫ h

0

ζ±λ(iy)dy =
e±iπλ/2

σ(1−m) cos(πλ/2)
,(B.2)

1

l

∫ l

0

ζ±λ(x)dx =
1

σ(m) cos(πλ/2)
,(B.3)
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where ζ is the function defined in (5.1). We also use several other integrals that can
be found in [26], in particular those associated with the dissipation. For purposes of
brevity we refer the reader there for details.

Appendix C. Notation. Our complex notation is, at first sight, slightly differ-
ent from the standard approach. This short appendix connects the two viewpoints.

The governing equations for the electric field E are

∇.(σE) = 0, ∇×E = 0,(C.1)

with the conductivity, σ, constant in each homogeneous region. At an interface we
have no jump in the tangential component of the field or the normal component of
the current density leading to

[[σEn]] = 0, [[Et]] = 0,(C.2)

where the [[ ]] denote jumps in a quantity and the subscripts t, n denote tangential
and normal components, that is, E = (En, Et). As σ is constant in each cell we can
define a potential φ such that E = −∇φ and thus ∇2φ = 0, so φ is harmonic, and
this motivates the complex variable approach.

We choose to use a vector w = σE, and thus

∇.w = 0, ∇× (ρw) = 0,(C.3)

with ρ as the resistivity, constant in each cell. The vector w has interface conditions

[[ρwt]] = 0, [[wn]] = 0.(C.4)
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