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O NE of the fundamental axioms of Newtonian
dynamics asserts that the forces of action
and reaction between two particles are equal in
magnitude and opposite in direction. Its two
most important consequences are (i) the law of
conservation of the linear momentum of a group
of particles subject to no external forces, and
(ii) the conclusion that the forces between the
particles play no part in determining the motion
of the center of mass of a group of particles. The
law of action and reaction is not sufficient, how-
ever, to prove the law of conservation of the
angular momentum of a group of particles subject
to no external torques; we must assume in addi-
tion that the forces between two particles are
along the line joining them.

The laws of conservation of linear and of
angular momentum are so well verified by experi-
ments in mechanics that we cannot doubt the
validity of the axioms on which they rest, at least
insofar as time-average forces are concerned. Yet
we believe that the atoms of which matter is
constructed are composed of rapidly moving
charged particles, and the electromagnetic forces
between moving charged particles satisfy, in
general, neither the condition that the forces be-
tween two particles are along the line joining
them nor the condition that these forces are equal
in magnitude and oppositely directed. It is the
object of this paper to discuss the forces and
torques exerted by one charged particle on
another with special reference to the law of action
and reaction. We shall employ Gaussian units
(electrostatic units for electric quantities, in-
cluding current, and electromagnetic units for
magnetic quantities). Then the power to which
1/c appears as a factor (¢ is the ratio of the
electromagnetic to the electrostatic unit of
charge), determines the order of magnitude of a
quantity. Thus terms in a series that do not con-
tain 1/¢ will be designated as of zero order, those
in 1/c as of the first order of smallness, and those
in (1/¢)* as of the second order of smallness. In
our analysis we shall retain all terms through the
second order, but none of higher order.

TWO CURRENT ELEMENTS

The magnetic field intensity H caused by a
current element—an element of length AX of a

linear circuit carrying a current 7—at a field
point P at a vector distance r from the current
element, is generally specified by the formula

H=47A3Xr/cr. (1)

While this expression is often referred to as
Ampére's law, it is not the expression originally
proposed by Ampére. In fact, the original
Ampére's law,! while like Eq. (1) in that it yields
correct results for constan! currents in closed
circuits, does not specify correctly even the first-
order magnetic field of a current element. This
first-order field is given correctly by Eq. (1).
However, we know today that Eq. (1) is merely
the first term of an infinite series® in powers of
1/c. Nevertheless, this term alone yields an ex-
ceedingly accurate value of the field, owing to the
fact that the next term in the series happens to
have the coefficient zero, and therefore the error
in Eq. (1) is of the order of (1/¢)%. Since we are
interested here only in terms of the second and
lower orders, we can employ Eq. (1) without
modification.

A current element is usually thought of as a
charge ¢ moving along the circuit so as to consti-
tute a current, associated with a charge —e at
rest, so that the total charge is zero. For the
present, we shall dispense with the stationary
charge —e and confine our attention to a single
charge e moving with velocity v. Then, if p, is the
charge per unit length of the circuit, e=pyA\ and
i=pv. Hence ev=14), and we may write Eq. (1)
in the form

H=evXr/cr. (2)

To calculate the force exerted by one moving
charge on another we also need the formula for
the electric field intensity. The electric field of a
moving charge differs from the simple inverse-
square field of a charge at rest, the intensity at
the field point P being specified by
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1 See Maxwell, Electricity and magnetism, Part IV, chap.
II, for a detailed discussion of the original Ampére’s law.
2 Page and Adams, Electrodynamics, p. 175.
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F1c. 1. Two moving charges.

through second-order terms.? Here f is the ac-
celeration of the charge.

Now we are ready to calculate the forces be-
tween two moving charges, e;vy and e;v. (Fig. 1).
Let 112 be the vector distance of e; from ey, and
to)] = —1r12 | that of e; from e;. First we calculate
the magnetic forces Fi# on the current element
erv: and Fe¥ on esve. Using Eq. (2) and the
familiar formula,

1
Fl=—-evXH,
c

for the force on a current element ev in a magnetic
field H, we find
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Fl=—X
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where 7[ = |r12| = |ra1] ] is the distance between

the charges.

If the magnetic forces obeyed the law of action
and reaction, F/#+F;¥ would vanish. But,
instead,

€189
F1H+F2H=2_3(V2><Vl) Xr12) (4)
cr

which vanishes only when (@) v. is parallel to vy,
or (b) vi and v are both perpendicular to r12. So,
except in these special cases, the magnetic forces
between two moving charges do not constitute an

3 Reference 2, p. 173,
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equal and opposite pair satisfying the law of
action and reaction, but have a vector resultant
different from zero.

Next we calculate the electric forces F;# on
e;v; and F.Z on eqv, from Eq. (3) and the formula
FEZ=¢E, The zero-order terms form an equal and
opposite pair satisfying the law of action and
reaction, but the second-order terms do not. In
fact, we find for the resultant electric force,

e1€s fi-+H1,
F1E+F2E=—;[ - { — (f1+£2) 112

2¢ r
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Fv12—-0,2—3 +3 b (5)

r? r? 78

which does not vanish in general, although it is
zero in the special case fa= —f1, Vo= 2v;.

Evidently the total resultant force through
second-order terms, obtained by adding Egs. (4)
and (5), does not vanish in general. Therefore the
law of action and reaction does not hold for two
moving charges. This conclusion, however, should
occasion no surprise, for it is a well-known conse-
quence of the electromagnetic equations that the
so-called mechanical momentum of a system of
charged particles subject to no external forces
does not remain constant in time. On the con-
trary, the conservation law applies only to the
sum of the mechanical and the electromagnetic
momentums. This statement applies both to
linear and to angular momentum. Thus a photon
emitted from the sun subtracts from the me-
chanical momentum of the latter an amount
equal to its own electromagnetic momentum.

It is, therefore, of interest to calculate the
electromagnetic linear momentum of the field of
the two moving charges under consideration, in
order to show that its time-rate of increase, when
added to the sum of Eqs. (4) and (5), gives zero
resultant.

In Gaussian units the electromagnetic linear
momentum per unit volume is given* by
(1/4m¢)EXH. Consider a field point P (Fig. 1) at
a vector distance 1, from e;v; and rz2 from e;vs.
Let E,, H; be the field intensities caused by the
first current element, and E,, H; those caused by
the second. Then the electromagnetic linear mo-
mentum per unit volume is

1
4—{E1XH1+E1XH2+E2XH1+E2XH2} .
wC

¢ Reference 2, p. 272.
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Evidently the two terms in which the subscripts
are the same remain constant if the velocities of
the two charges do not change, and are respon-
sible for the electromagnetic masses of the indi-
vidual charges in accelerated motion. As we are
interested here only in the interaction of the one
current element with the other, we need retain
only the mutual terms, and calculate the portion
of the electromagnetic linear momentum per unit
volume represented by

1
gl=~“{E1XH2+E2XH1}- (6)
d7c

Since Eq. (2) for H is of the first order, we need
retain only the first term in Eq. (3) for E in order
to obtain g; through second-order terms. Thus

€169

gi=— X (Ve Xr)+ra X (viXr)}. (7)

4arc?r3py3

To obtain the total mutual electromagnetic
linear momentum G; we must integrate this ex-
pression over all space. To do this easily we
expand the triple vector products and introduce
spherical coordinates 7y, 8y, ¢ with O as origin and
OZ as polar axis. From the trigonometric relation
ro?=r>—2rry cos 8:+r:® we find,® for constant 7y,
that redro=r7 sin 8;d6;. Hence the volume ele-
ment dr=r:’sin 6,dridfd¢ may be written
dr=(rvs/r)dridrede in terms of 7y, rs, ¢ as vari-
ables. For 1 <r the limits of o are r —r,and 7474,
whereas for 1> r, 7, goes from r,—7 to r,4-». The
integration, which involves no difficulties, yields
the result

€18af V1 Vi-Yjolsg
Gi=—(—+-
2¢? 7 73
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The reader can show easily that the time
derivative of G;, when added to the sum of
Eqs. (4) and (5), gives zero resultant, thus
verifying the statement that the sum of the me-
chanical and electromagnetic linear momentums
remains constant in time. The fact that the
electromagnetic momentum changes when rys is
not constant (that is, when v, is not equal to vy)

® Of course 7 is not a variable for this integration.

143

requires that the forces of action and reaction
between the two moving charges should #ot be
equal in magnitude and oppositely directed.
Otherwise the total momentum could #ot remain
constant in time,

Next we calculate the torque or moment about
an arbitrary point C (Fig. 1) of the force F,¥+F,#
on ¢;v; and of the force Fo# +F,%F on esvs. De-
noting the position vectors of the two charges
relative to C by R, and R», we have for the sum
of the torques of the magnetic forces,

€162
Ry XFrf 4+ Ry XFoff =— [ R X {Vi X (Vs X112) }
cr
+R2X{V2X(V1Xr12)}]v (9)

and for the sum of the torques of the electric
forces,

RiXFF+4+Ry XFE
€162 f1

= [R1X‘ —~+(~'f1‘1’12+2'12
2¢? r

V1'1'122 | §P [ f,
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V2'I'122 I .
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Evidently the resultant torque, obtained by
adding Eqgs. (9) and (10), does not vanish in
general, indicating that the mechanical angular
momentum of the pair of moving charges does
not remain constant in time. We conclude that
this lack of balance is due to the presence of a
changing electromagnetic angular momentum,
which we proceed to calculate.

Relative to the point C the position vector of
the field point P is Ri4r;=R,-4r.. Hence the
mutual electromagnetic angular momentum per
unit volume is

g.=Ry+r1) Xz

Integrating over all space, we find for the
total mutual electromagnetic angular momentum
about C,

€183 115XV,
G’a:RIXGl+ 3
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F16. 2. The Trouton-Noble experiment.

which can be put in the more svmmetrical form,

€16y Vi ViTIielie
Go=—A Ry ———
2¢? v 73
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+RiX (—+——3—~) } (1)
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Comparing with Eq. (8) we see that the portion
of the linear momentum involving the velocity v1
of the first particle is to be considered as located
at the second particle, and wice versa. The time
derivative of G, added to the torques of the
forces on the two current elements specified by
the sum of Egs. (9) and (10), gives zero resultant,
in accord with the law of conservation of the sum
of the mechanical and electromagnetic angular
momentums. Neither one of these two types of
angular momentum alone is constant in time in
the general case, even though no external torques
are operating.

It is worthy of note that both G; and G are of
the second order. This is because H contains no
zero-order term. Therefore the law of action and
reaction fails to hold only by terms of the second
or higher orders.

Finally, we must extend our analysis to cover
the case of two conventional current elements, in
each of which there is associated with the charge
e moving with velocity v an equal and opposite
stationary charge —e. Since the net charge of
each current element is zero, the electric force on
it vanishes. Therefore the entire resultant force is
given by Eq. (4).

The zero-order electric field of each current
element is zero at the instant when the moving
charge coincides with the stationary charge of
opposite sign. At this instant the mutual electro-
magnetic linear momentum G, vanishes. How-
ever, G; does not remain zero as these charges
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separate, and therefore the time derivative of G,
does not vanish, in general. For let us designate
the coordinates of the two current elements
by (x1, v1, 21), (x2, ¥s, 22), respectively, so that

o= i(xz _’xl) +j(y2—y1) +k(zz—*21)
and
72= (X2~ X1 (Y2 — ¥+ (22 —21)%

Now, when we differentiate the r;; and r ap-
pearing in Eq. (8), where both e; and es; are
moving charges, we must differentiate both sets
of coordinates. But in the case of the complete
current elements which we are now discussing,
the expression for the mutual electromagnetic
linear momentum contains, in addition to the
right-hand member of Eq. (8), the term

€182 /V; Vi TioT19
(220
262\ r r?

in which e, is a moving charge and —es a stationary
charge, and the term

€16y f Ve Vo Tiolio
SS(B ),

202\ r ré
in which es is moving and —e; is stationary. In
differentiating the first of these terms we must
hold %2, ¥», 25 constant, and in differentiating the
second, &1, ¥1, 21. The final result is the same as if,
in differentiating Eq. (8), we differentiated only
the xa, Vs, 22 contained implicitly in ry2 and
inside the first parentheses, and only the x1, y1, 21
inside the second parentheses. This gives, for the
time-rate of increase of G;, the negative of Eq. (4),
confirming the conservation of the sum of
the mechanical and the electromagnetic linear
momenturms.

APPLICATIONS

An example of the theory developed, which is
of great historical interest, is illustrated in Fig. 2.
Here we have two equal and opposite charges
moving with the same constant velocity v in a
direction not at right angles to the vector distance
12 between them. Evidently G; is constant in
time, and therefore the forces between the
current elements are equal and opposite. This is
not true, however, of the torques, for

dG.

e v-r12v X112

- 1

dt c? &
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and therefore there exists an equal and opposite
torque on the moving charges, to wit,

222

L£=—-cos # sin § (12)
c*r

in the sense of increasing 8.

The arrangement in Fig. 2 is eflectively that
used in the Trouton-Noble® experiment, which
excited much interest during the last generation,
the charges being spread over the positively
charged plate AB and the negatively charged
plate CD of a parallel plate condenser. Trouton
and Noble concluded from Eq. (12) that a
charged condenser carried along by the earth in
its motion around the sun would turn until its
plates are parallel to the direction of motion, a
phenomenon which is obviously at variance with
the relativity principle. The fallacy in this
reasoning lies in the neglect of the torque of the
forces exerted on the condenser plates by the
insulating separators necessary to keep the plates
from approaching each other under their mutual
electric attraction. The relativity principle, com-
pletely confirmed by the null result of the experi-
ment, demands that these forces show the same
aberration as the electromagnetic forces.

Next consider two charged particles, moving
around their common center of mass under their
mutual forces, such as the electron and the
proton constituting a hydrogen atom. We shall
suppose that the wvelocities attained are small
enough so that we can neglect the variation of
mass with velocity. The zero-order force is the
inverse-square Coulomb force of attraction (or
repulsion), and under such a force the two par-
ticles would revolve about the center of mass
with constant angular momentum. We shall
show that, when account is taken of second-order
terms, the mechanical angular momentum does
not remain constant, but, in the case of an
(approximately) elliptical orbit, oscillates be-
tween a minimum at perihelion and a maximum
at aphelion.

Take the center of mass as origin, and denote
the position vectors of the two particles, of mass
and charge m,, e; and ma, e, respectively, by r;
and re. Let 7 be the distance between the two
particles, and 8 the angle in the plane of the orbit
which the line joining them makes with some
fixed line. From Eq. (11) we calculate the
electromagnetic angular momentum about the

® Proc. Roy. Soc. 72, 132 (1903).
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FiG. 3. Two complete circuits.
center of mass, finding
elezirJXvﬁerVl%
2¢? r
But ll']XVgl = lr2XV1! = —71720, and, if 12 iS the
reduced mass, #1171 =mry=pur. Hence
€162 7173 6182#2
= ———f=— re (13)
¢t 7 e

in the sense of increasing #. Now, so far as the
zero-order motion is concerned, 720 =/ (a positive
constant), and

eeou® b
Gom —— 7 (14)

Cimaymy

If the charges are of opposite sign, the zero-
order force is an attraction, and G, is positive,
attaining its maximum value when the particles
are nearest together. Therefore, since the sum of
the mechanical and the electromagnetic angular
momentums must remain constant, the me-
chanical angular momentum is a minimum when
the particles are closest together. In the case of
an elliptical orbit, the mechanical angular mo-
mentum oscillates between a smallest value at
perihelion and a largest value at aphelion. On the
other hand, when the charges are of the same
sign, so as to make the zero-order force a re-
pulsion, G, is negative, and therefore the electro-
magnetic angular momentum is an (algebraic)
minimum and the mechanical angular momentum
a maximum at the position of nearest approach.
Since the zero-order mechanical angular mo-
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F1G. 4. Motion of electrons in perpendicular fields.
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mentum is pk in either case, Eq. (14) may be
regarded as expressing the electromagnetic angu-
lar momentum in terms of the zero-order me-
chanical angular momentum and the separation 7
of the particles. 1f we pass over from the two-
body problem to the corresponding one-body
problem by making one of the masses infinite, G,
vanishes, as expected.

As our next example we shall calculate the
mutual electromagnetic linear momentum of two
complete circuits I and 2, Fig. 3, which we shall
designate by the subscripts 1 and 2. Here we are
concerned, not with the mutual momentum of
two elements of the same circuit, but only with
that of pairs of current elements such that one
element of each pair is part of one circuit and the
other is part of the other circuit.

At first we shall consider the case where the
electric field of the moving charge is not neu-
tralized by that of an equal stationary charge of
opposite sign. Replacing e; and e; in Eq. (8) by
de; and des, and using the relation vde=1d, we
obtain, after integrating Eq. (8) over circuit 2,

1 dez rxgrlzde-z
dG[ —_—“——[ del‘hf "——+d61V1 g f e
2c? 2 7 2 rd
d. Tia-dXarye
+de1i2f —+deﬂ.2f M}.
2 7 2 73

Now, for the integration around circuit 2,
das=dri;. Hence, using the identity

T dryz rie-drpsris
=)

7 7 73

Iya-ddatse dag
ﬁ r3 - r '

which enables us to combine the last two inte-

we have
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F1c. 5. Magnetized and charged sphere,

grals in the expression for dG;. Integrating next
over circuit I, and proceeding in the same
manner with the first two integrals, we obtain
finally for the electromagnetic linear momentum
of the two circuits,

’L.1 dezd;\q ig deldlg
Gz=~9 ff +- ff . (19)
[ 1 2 ¥ [ 2 1 r

So long as the currents are constant, G; is con-
stant in time, and therefore the forces of action
and reaction between the two circuits are equal
in magnitude and opposite in direction.

Finally, if the moving charge in each circuit is
associated with an equal charge of the opposite
sign at rest, as in the conventional current circuit,
the static electric field is everywhere zero, and
consequently both G; and its time derivative
vanish. Therefore the law of action and reaction
is valid for two such circuits carrying constant
currents.

In closing we shall mention two other examples,
the details of which will be found in our Electro-
dynamics. Consider a charged parallel plate
condenser (Fig. 4), with plates perpendicular to
the Y-axis, placed in a uniform magnetic field
parallel to the Z-axis. Let electrons be liberated,
say photoelectrically, from the upper negatively
charged plate. Under the action of the combined
fields they will describe cycloidal paths as indi-
cated, and at the bottom of these paths will have
acquired linear momentum in the X-direction. It
can be showrr easily that the mechanical linear
momentum so acquired is exactly accounted for
by the loss of electromagnetic linear momentum
in the X-direction due to the weakening of the
electric and magnetic fields by the displacement
and motion of the electrons.
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Finally, consider a sphere (Fig. 5) which is
uniformly magnetized in the direction SN and at
the same time carries a uniformly distributed
positive electric charge on its surface. In Fig. 5
the lines of magnetic force are indicated by full
lines, and the lines of electric force by broken
lines. Evidently the electromagnetic field pos-
sesses angular momentum about the SN-axis in
the positive sense. Now, suppose a negative ion,
initially at rest, approaches the sphere under the
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electric attraction exerted by the latter. Owing to
the deflecting force of the magnetic field, it will
acquire angular momentum about the SN-axis in
the positive sense, which it may communicate to
the sphere upon impact. It can be shown without
difficulty that the mechanical angular momentum
so acquired is equal to the electromagnetic
angular momentum Jost as a result of the
weakening of the field of the sphere by the
attachment of the negative ion.

A Demonstration Laboratory for Advanced Dynamics
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HE Lagrangian treatment of analytical
dynamics has long been a powerful tool in
the hands of the physicist. Owing to its many
advantages in treating applied problems involv-
ing not only mechanical systems but electrical,

Fic. 1.

electromechanical and others, the Lagrangian
method is fast becoming an evervday tool in the
hands of the engineer and applied scientist. [t
seems certain that in due time, perhaps very
shortly, it will constitute an important part of
the working equipment of every
well-trained engineer. Thus the
question as to how best to present
this subject to advanced engineers
and graduate students of physics
presents a pedagogic problem that
deserves careful consideration.

Now analytical dynamics can be
treated from either of two quite
different points of view:

(1) Tt can be regarded as an
abstract mathematical subject in
which generalized coordinates are
just so many variable “parame-
ters;” degrees of freedom and de-
grees of constraint merely connote
certain mathematical relations:; a
nonholonomic system is one of
those mathematical abortions in
which occur certain differential re-
lations that cannot be integrated;
the Lagrangian function and gener-
alized forces are but convenient
mathematical definitions; and so
on. Or

(2) it can be presented from a
physical point of view in which care
is taken to give the terms and
mathematical relations employed
simple and easy-to-recognize physi-



