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I. SCOPE which characterizes how fast the wave changes its phase. So
the field propagating along thedirection is proportional to
Imagine that you are taking a quick walk and you are ingikz—az/2—iwt
fact traveling faster than light. This is what has been Now let us consider that the electric field is a nondecaying

achieved in a recent experiment by Lene Hau and hef,=0) wave packet with a range of frequencies w(Kk):
co-workerst In that experiment, the group velocity of a

pulsed laser was effectively reduced to about 1 mile per hour it
(0.45 m/3 in a cold, laser-dressed sodium atom cloud. In an E(Z,t):J dk A(k)e , (6)
earlier experiment, the same group had successfully slowed
the group velocity of light to 38 miles per hott7 m/g ina  whereA(k) is a narrow function peaked &t=k,. We can
similar systent. then expando(k) as

Propagation of light in a medium is a well-studied subject
even though there have been some very tough questions,
such as the group velocity exceeding the speed of light in
vacuum® Five years ago, it was demonstrated for the first

time that the speed Of. Iight can be reduced significér'nny;} if it is well behaved, that is, a smooth function around the
cold atom cloud that is in a state called electromagnetically ' |

induced transparendf What has made the experimental dJiven WaVE vegtorﬁo. I only_ the zerr]oth- and first-order

work of Hauet al. so unique is that the orders of magnitudeterrns are kept in the expansion, we have

in the reduction of speed of light, which cannot commonly _ o

be accomplished by increasing the index of refraction, is E(z,t)ze'[kovg“"“‘o)]tf dk A(k)elkzikvgt

achieved instead by the extremely rapid variation of the in-

dex with the frequency, and the elimination of light absorp- :ei[kovg—w(koﬂtE(z_Ugt,o), (8)

tion at resonance frequency—a quantum phenomenon result-

ing from the coupling and interaction between lasers andvhere

electrons at different atomic levels. Here we would like to

highlight some basic understanding of this exciting phenom- v :d_"’

enon. 9 dk

From the Maxwell equations for a propagating electro-

magnetic wave with angular frequenayand complex wave s termed the group velocity of the wave latk, because

vector « in a nonconducting medium, we hdve the packet acts if it is traveling in space with such a velocity
K2= pew?, (1) without changing its shape, with an overall phase change.

Using Eq.(3), we obtain

do
w(k)Zw(ko)‘F(k—ko)ﬁ +0[ (k—ko)?], (7)

k=Ko

(€)

k=kg

where u is the magnetic permeability anglis the electric

permittivity of the medium. If we assume thatis real and _ Up 10
u Y97 T+ (w/n)(dn/dw)
=k+i—=, 2 ] )
K '2 @ Note that we have assumed thmais a function ofw through

k. We can consider the group velocity to be the velocity of
the wave packet, that is, the velocity of the energy and in-
formation contained in the packet, if the linear term in the

ck / e above Taylor expansion is the dominant term. However, the
=—=Re ,
Mo€o

wherek is the real propagating wave vector andis the
absorption coefficient, we have

n= ” 3 meaning of the group velocity can change if the wave packet
becomes incoherent. Care must be taken when the angular
a=20Imue, (4)  frequency of the wave is near a resonancelafdw< 0.2
Quantum mechanically, the resonance occurs when the
with ¢=1/\uq€q being the speed of light in vacuum apg  frequency of light matches the energy difference between
and €9 the vacuum permeability and permittivity, respec-two allowed quantum levels in the system and is typically
tively. In most cases, we haye=pu,, a condition that is accompanied by strong absorption under normal circum-

assumed here. From the above relation, we find the phas#ances. This is why normal matter that can be well approxi-
velocity of the wave, mated by a two-level model can never slow the light very

much. For laser-dressed atom clouds, the coupling and inter-

b= o ¢ (5) action between a three-level atom and two lasers can drasti-
Pk n’ cally alter the behavior of the system, including effectively
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eliminating the absorption at the resonance frequency andherewqy=n,|p,o%/% o with |p,g being the coupling dipole
therefore creating electromagnetically induced transparenc¥trength betweef®) and|0) and wg=2|(,,| the Rabi angu-

as shown in the problems given here. lar frequency betweel2) and |1).
II. PROBLEMS C. The slowest light
A. Coherent population trapping In the recent experiment, Hau and co-workers have suc-

. : — cessfully reduced the group velocity of light in a cold, laser-
The key to keeping the group velocity at the vicinity of a ressed sodium atom cloud to 1 mile per hoar5 m/s.:

resonance frequency meaningful lies in the properties of thp%_ach sodium atom can be approximated well by a three-level

laser-dressed atomic cloud. Without such an effect, absor system. Assume that the permittivity of such a laser-dressed

tion would be too strong to have any transmitted light. Co
Consider that each atom in the medium has three Ievels"’}tom cloud is given by Eq(19) and the frequency of the

The presence of a couplinglressing laser .= w,— w,) probe Iasr—ir ©/2m) is near the resonance frequeney,/27
and a probe laser{= w,— wo) causes a mixing of the three =5.1x 10**Hz for sodium atom Estimate the number den-

sity of the atom cloud needed in order to ha
levels,[0), [1n, and |2 - Z0.45mis. A that the Rabi angular f S about
The Hamiltonian of such a system is =0.45m/s. / ssume that the Rabi angular frequency is abou
wr=3.5X 10" rad/s and the coupling dipole strength is about
H:H0+Hl. (11) |p20|:2.5><10*29cm.
Here the unperturbed Hamiltoniath, is given by
, IIl. SOLUTIONS
(I|Holl") =t w8y, (12 . .
with I, 1"=0,1, 2. The perturbatiohl, is restricted to be A. Coherent population trapp|rig
(HL1 Y= (1 [Hy 1Y =50y e iont, 13 From the time-dependent Schlinger equation
. d|Y(t
with W)= W)~ W) and Q”:QO]_:Q]_OZO. Note thatw2 ih |¢( )> :H|¢(t)>, (20)
>w,>wo=0 andw;g=w, . This is a so-called A” system dt
with the highest level coupled to two lower levels. we have
For the Hamiltonian given, find the time-dependent wave . o
function ’ P 16o(1)= wool1) + Qo Zcy(1), @y
2 1C1(t) = 1C1(1) + Qe “21'Cy(1), (22
|¢(t)>:§0 C|(t)||>, (14) |C2(t): wzcz(t)+Qoze—lw2tCO(t)+lee—lw21tcl(t)(23)

if |4(0))=co(0)[0)+c1(0)[1) with [co(0)]+]c1(0)[*=1.

Discuss the condition foc,(t)=0 and its implication. If we redefine the coefficients by

cl(t)=e""by(t), (24)
B. Electromagnetically induced transparency the equation set is simplified to
If we define a density matrix iDo(t) = Qogps(t) (25)
p(O=[(t)) (D], (15 .
: - , ib1(t)=51b5(1), (26)
whose diagonal elements are the probabilities of occupying
specific states and off-diagonal elements represent the tran- ib,(t)=Qq0(t) +Qb,(1). (27)

sition rates between two given states, we have o . .
g Multiplying Eq. (25) with Qg, and Eq.(26) with 4, and

i 0_9_ H 16 adding them together, and substituting the resulting equation
: ot =[H.p], (16 into Eq. (27) after taking one more time derivative, we ob-
.. tai
from the Schrdinger equation. The interactions between at- a n"
oms in the cloud can cause a finite linewidth and decay of  b,(t)=—(|Q502+|Q?)by(t). (28
each level, which can be accounted for by a relaxation ma-
trix: Yo ! Y X We have used)qy,= 03, andQ,=Q3;. So we have
(ICy=2y81, (17) by(t)=Ae¥+Be 1, (29)
and change Eq16) into with Q=1[Q,?+[Q,]?. Taking the initial condition
ap in b,(0)=c,(0)=0, we arrive at
ih—=[H.p]= % (Lp+pl). (18 b,(t)=C sinOt, (30)

Assuming that only the dominant decaying factor is nonzero\I/Evith C being a constant. Substituting this result back into
that is,y,=y andy, ;=0, and that the atom is in the ground gs.(25) and(26), we have

state at =0, show that bo(t) =[co(0) — a]cosQt+ a, (32

- t)= - t+ 2

(@)= eg| 1+ — wg(w Zw_z) 19 by(t)=[c1(0) — BlcosQt+ B, (32
wild— (0= )" ~iy(0—w,) wherea and 8 are constants constrained by

605 Am. J. Phys., Vol. 69, No. 5, May 2001 New Problems 605



Qg+ 41,8=0. (33 =NaproPo2= (€~ €o) E(t) with po,=(0|p|2)=p3,. Then we

We have used the initial conditionby(0)=cy(0) and reach Eq/(19).

b,(0)=c,(0). ThecoefficientC is given by C. The slowest light

C= ;)—[90200(0)+912€1(0)]- (34) We know that the group velocity is given by

dw c
If co(0) andc4(0) are such thaC=0, we havec,(t)=0 all Vg=r = -
the time. A typical case is|Qo]=|Q1)] and |cy(0)| 9 dk n+ae(dn/de)
=|c,(0)|=1#2, with the total phase difference between theFor all known materialsn~0O(1). So if vy<c, we must
two terms beingm. So the staté2) will stay empty and the have
atoms are trapped in the lower states. The effect of such a

(44)

coherent population trapping is that the absorption or emis- . ¢ (45)
sion of light is completely eliminated. Y9 w(dn/dw)’
. . For v,=0.45m/s, as observed in the experiment by Hau'’s
B. Electromagnetically induced transparency groupg,l one must have
Consider that the travelingprobing laser is described by _

a time-dependent electric fieH(t)=Eye '“! with » very o(dn/dw)=6.7< 10", (46)
close tow,. The perturbation from such a field is From the given permittivity, we have

2|H4|0)=—(2|p|0)Eqe "'=1 Qe ", 35 ca 1 og(o—o

(2] 1|> .< |p[0)Eq - 208 . (39 | I T d _ ?) 4
wherep is the dipole moment induced by the field. Now if 20 2 wgld—(0—wy) ~iy(o—w))
we examine the density matrix elements between two Stateﬁ)onsidering thato is very close taw,, we have
pu={l|p|l"), we have

. Ca 204¢(w— w,)
J i ntiz-—=1+——75——
[ %:(wz_ i¥)poot Qe “2tpgg 20 wi
. Ao—w,y)? i4y(o—w
00 poo p20), (39 i| g4 Mo wa)® MA@ wd) |
wR wR
- 9p10 Ciw e
! 7:“’113104' Qe prg— Qo™ 2pyy. (37 (48)
which gives
We have used )
20 Nylp2d

2 w(dn/dw): E > . (49

> (=1 (38) ° R

=0

We have usedy=n,|p,d%/% ;. With the numerical values
in deriving the above equations. We can then replage  of the quantities given, we then obtam=2x10"m3, a
p22, andpy, by their values at=0, that is,po=1, p2,=0, density quite difficult to achieve experimentally.

andp;,=0, and change a variable witho=p;e ' “2t, be- Note that the absorption coefficieatis zero at the reso-
cause we are only looking for the linear solution. Then wenance frequency. This is the essence of the electromagneti-
have cally induced transparency, a condition that must be met in

order to have a significant light transmission at the resonance

. dpog . it frequency. Otherwise, the drastically slowed group velocity
I — = (@27 1Y) pagt Qarlaot Qo' (B9  of light observed by Hau’s group would not have been pos-
sible.
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