Electric field outside a parallel plate capacitor
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The problem of determining the electrostatic potential and field outside a parallel plate capacitor is
reduced, using symmetry, to a standard boundary value problem in the halfzsp@cén the limit

that the gaml between plates approaches zero, the potential outside the plates is given as an integral
over the surface of one plate. This integral is evaluated for several special cases. The magnitude of
the field just outside and near the center of a two-dimensional strip capacitor of Widtlshown

to agree with finite difference calculations whéfid>4. The shapes of field lines outside a strip
capacitor are determined, and circular lines are shown to occur near the edges. The determination of
the electric field just outside and near the center of a parallel plate capacitor complements the
recently published result for the magnetic field just outside and near the center of a long sklenoid

A. Farley and R. H. Price, Am. J. Phy&9, 751-754(2001)]. © 2002 American Association of Physics
Teachers.
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[. INTRODUCTION Equation(2) holds just outside and near the center of rect-
angular plates in the limit that approaches zero. That such
The question of the magnitude of the magnetic field out-a field must exist in this region follows from a general argu-
side a long(ideal solenoid was recently addressed in thisment based on the fact th&thas zero curl and thus zero line
journal® It was shown that the magnitude of the field justintegral around any closed path. For example, taking the path

outside the solenoid and near its center is given by along thez axis of Fig. 1, | obtain
2A 0 ”
B..=| —|B: 1 f EZ(O,O,z)dz+f E,(0,0z)dz=0. (€]
out 7T|_2 in» ( ) —dr2 0

The path is closed on an arc of radiu®n which the 1r®
dipole field holds. Asr—<«, the contribution from the arc
vanishes. By using symmetry with respect to the surface of

whereB;,, is the uniform field inside and near the centers
the length of the solenoid, andl is its cross-sectional area.

This intere;ting result is independent of the shapg of th?ero potential, | obtain Eq3). To cancel the first contribu-
cross section and holds fdr>JA. The magnetic dipole ijon from the field inside, there must be a field outside and a
field holds at large distances. Thus, using 89, the field i corresponding surface charge density on the outer surfaces of
known in three regions: inside and near the center, just oUtsach plate, as shown in Fig. 1. For example, consider circular
side and near the center, and outside at large distances fr%‘fbtes of radiuR. A uniform field is produced by a charge
the centery>L. _ _ ~ density distributed uniformly on a plane. It is thus natural to

~ Along solenoid produces a region of uniform magneticassume a field that is uniform just outside and near the center
field inside and near its center. To produce a region of uniyf the plates. This field decreasesziscreasesz=0). The

form electric field, a parallel plate capacitor would be Usediength scale for this decrease must be jBsbecause | as-

with plate dimensions large compared to the gapetween g meq<R. Making an order of magnitude estimate, | obtain
the plates. The question | address in this paper is “Can the, ) Eq. (3)

electric field outside the capacitor plates be determined.” |

will show that the field outside rectangular plates of dimen- d .
sionsL X W may be determined throughout a plane of sym- ~Ein 2 +EquR~0, )
metry perpendicular to the plates fo<L,W. This determi- . .

which gives

nation of the field includes regions both near and far from the
plates as well as a region near the edges of an infinitely thin V
plate where the field becomes infinite. The field just outside  Eour™ SR
and near the center of these plates is

_2V\/L2+W2_(2d\/L2+W2

out LW LW

"
38 En- ®)

This order of magnitude estimate turns out to be exact, in the
region indicated, as will be shown in Sec. Ill.

Ein ’ (2)

II. ELECTRIC FIELD OUTSIDE A PARALLEL
whereE;,=V/d is the uniform field inside the plates akds PLATE CAPACITOR
the potential difference between the plates.

A magnetic field must exist outside a solenoid because The boundary value problem in Fig. 1 can be simplified by
magnetic field lines form closed loops. An electric field mustusing symmetry about the zero potential surface as shown in
exist outside parallel capacitor plates for an equally funda¥Fig. 2@). Rectangular plates of length and widthW are
mental reason: electrostatic field lines dot form closed assumed. Th&=0 plane is shown. One plate at potential
loops (VXE=0). +V/2 is a distancal/2 above an infinite grounded conduct-
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Fig. 1. Two identical parallel plates a distandeapart are seen in cross

section in thex=0 plane. This plane is perpendicular to the plates and

passes through their centers. The plates are assigned poten#sso the
surface of zero potential is halfway between the plateg=at-d/2 (the
coordinate origin is taken at the surface of the upper plate

1
O Ty -2
-1
" J(x—x')2+<(y—y)'>2+<z+z'>2' "
The (outward normal derivative is
G dG -2z
' a2, (X Py A
Finally, the potential foz=0 is
ay.0= 42| | dydx .
Am ) LX) (y =y )2 271 o

The limits on the integrals depend on the choice of plates.

ing plane atz=—d/2. This problem is equivalent by sym- Both circular and rectangular plates are considered below.
metry to the original problem. The final step is to use the Equation(9) predicts a dipole field at large distances cor-
limit that d go to zero to obtain the situation shown in Fig. responding to a dipole momept=(0,0p,). If we expand
2(b). The plate is lowered into the plane replacing the previthe integrand for large (r?=x2+y?+2z%), and keep only

ously grounded section by a section-a¥/2. The field ob-

the leading term, we find

tained in this boundary value problem should give a good

approximation to the field outside the plates in Figa)2
whend<L,W. By using Green’s theorefithe potential can
then be expressed as an integral over the surface\dp.

The integral can be evaluated to give the field onzhgis of

® VA z 10
(X,y,Z)HEr—y (10

whereA is the area of a plate. This result may be compared

circular plates and in the=0 plane of the parallel plates just 0 the potential of a point dipole at the origin

described. At large distances, a dipole field is obtained with

the dipole moment magnitudgd, whereq is the magnitude
of the charge on the inner surfaces of the plates.

The formula for the potential obtained from Green'’s theo-

rem ig
1 ! ! 0”G I !
<D(x,y,z)=——477f fCD(x Y ’0)_an’ dx’ dy’. (6)

G must vanish az=0. An image charge atx(y,—z) gives
the solution forG:

(a) AZ

x=0
R N ++V/2‘
d/2¢+++++++++ aills
-W/2 +W/2
(b) Az
x=0
+V/2
y
- |+ + +¢+| - -
b A ! >
0 -Wi2 +W/§O

Fig. 2. (a) A boundary value problem equivalent by symmetry to that in Fig.

1. An infinite grounded conducting plane iszt — d/2. Rectangular plates
of width W are assumed. The length of a pldtecan be finite or infinite(b)

b=k (11

p-r
r_3 .

The constank is used to include both Gaussian and Sl units.
Thus,

— { 1 (Gaussiah, 12
U(dmey) (SI).
The comparison shows that=p,=0 and
VA
pzzm. (13)

For later reference, | give the field of such a dipole on the
positivez axis (r=2),

_2P:

E=—3k, (14

and on they axis (r=|y|)

Pz
Ez: - r_3k

(15

The dipole moment can be related to the charges on the
plates. Using

(16)

Ei,=5=4mok,

d

wherea;, is the magnitude of the charge per unit area on the

The plate at is lowered into the=0 plane to obtain a boundary value inside surfaces of a plate, the dipole moment can be shown

problem forz=0 that approximates the problem @ for d<L, W.
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pzzimwkamd):qd, 17 E,(0,02)= w__t (24)
Axk 2 2T (Z2+W24)'
whereq=Aa, is the magnitude of the charge on the inside 5§ the yniform field just outside each plate has the magni-
surface of a plate. tude

2V
[ll. CIRCULAR PLATES E,(0,0,00= — (25)

The case of circular platédisks of radiusR can be found W
as a problem in Jackson’s textOnly the results will be  Note that Eq(2) reduces to Eq(25) for L>W. The behavior

summarized here. The potential on thaxis is given by[let  at largez is that of a two-dimensional dipole, which is
x=y=0 in Eq.(9), and evaluate the integral using cylindri-

. 2
cal coordinatep Ezz_fk, (26)
® Vv z z
(0,02)=75|1- 7| (18 where ¢ is the dipole moment per unit length along tke

(long) axis, which is

WV  (4ako;,d)W
= = =\jd, (27

The field on the positive axis is then

\% R? ¢ =
E,(0,02)= 7 ——— (19 Ak 47k

2 (R2+22)3/2' . . X
where \;,= oy, W is the magnitude of the charge per unit

At z=0 the field is length on the inside surface of each conducting strip.
v The field can also be determined throughout theO
E,(0,0,0= R (20 plane. From Eq(9), the integral ovex’ gives
This result shows that the order of magnitude estimate made 2L 28)
in the first section, Eq(5), is exact. Forz>R, the field on [(y—y")2+ 2| L2+ 4(y—y" )2+ 4%

the axis takes the form of Eql4). . . .
The solution forz=0 can be extended ta<0. If the N the limit of infinite L, the potential becomes

integral giving the potential is evaluated assumisg0, the Vz [+W2 dy’
result is[Eqg. (9) is odd inz] d(y,2)= —f _ (29
2w ) w2 (y—y')2+ 22
\% z
®(0,02)=%5| —1- —|. 21 so that

| N 2

. . o o \Y W/2+y W/2—y
Equations(18) and(21) show the discontinuity that exists in d(y,2)= py= arcta +arcta .
the potential atz=0 corresponding to circular plates at ™ z z (30)

+V/2 and—V/2 with a separation approaching zero.
The additional charge on the outside surfaces of each plaé potential of this form is postulated in a problem in

increases the capacitance above the standard result. TBératton® Equation(30) clearly reduces to Eq23) wheny

fringing field makes important contributions, however, and a=0, and it gives eithe# /2 or zero wherz approaches zero

more detailed analy$iS is needed to determine those contri- for z=0. The components dE are then

butions.

v
IV. RECTANGULAR PLATES: L>W Ey.2)= 5

(WI2+y) . (WI2—y)
[22+(WI2+Yy)?]  [Z2+(Wi2—y)?])’

A two-dimensional version of the rectangular plate prob- (3D
lem is obtained in the limit ak becomes infinite. Because gnd
this limit is simpler to evaluate and is of interest in its own
right, it will be considered first. Vz{ 1 1 J

To find the field on the axis, | letx=y=0 in the integral ~ Ey(¥:2) =~ 5~ [Z2+(W2+y)2]  [22+(WI2—y)?]
of Eq. (9) and evaluate the integral ovef obtaining

©(0,07)= lsz“N’z dy’ On thez axis (y=0), thez component reduces to E(R4)
' A —wi2 (y’2+22Ny’2+2TL2/4' and they component is zero, as required. Tm-:omponent
(22) also vanishes for=0. As another check, the divergence and
curl of E are both zero.

The equations for the potential and field can be extended
Vv w2 dy’ vV W to z=<0 to describe parallel conducting strips at potentials
®(0,02)= 2—2 — = —arctar{ 2—) (23 +V/2 and —V/2 with a separation approaching zero. The
T Jowz(y't4z) T potential, Eq(30), is odd inz. It has limiting values of+ V/2
As z approaches zero on the positizeaxis, the potential from above or—V/2 from below for|y|<W/2. But, for|y|
approachestV/2. The field on thez axis is >W)/2, both limits give zero as required.

| then take the limit of infiniteL and obtain
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0 Fig. 5. Field lines of a strip capacitor in one quadrant of yizeplane for
0 2 4 8 8 W=1 andC=1.02, 1.10, 1.25, 1.50, and 2.00 cm. Thaxis goes through

y the center of a plate.

Fig. 3. The potential, Eq(30), plotted as a function of y in cm for
=1.00, 0.50, 0.25, and 0.05 cm usikg= 100 statvolts andV=8 cm with
L infinite.

1 (W2+2Wy' +4y'?)

Z'(y') = 5\W+2 ’\/C— . (38
=3 y (Wt 2y') (36)
The behavior of the field near the edges of the plates id "€ aI!ovxfed range o’ for lines in the right half of theyz

illustrated in Figs. 3 and 4. Figure 3 shows the potential as &lane isy’ <y’'<y}, where C>W)

function of y for z=1.00, 0.50, 0.25, and 0.05 cm f&f C—W aW
=100 statvolts andV=8 cm. The “square-step” disconti- yLZ(T){li \/1+ (C——W)} (37
nuity aty=W/2=4 cm is clearly seen to develop as the plate

is approached. In Fig. 4, the component of the field is Figure 5 shows lines plotted usivy=1 andC=1.02, 1.10,
plotted for same parameter values as Fig. 3. The functional 25, 1.50, and 2.0¢the z axis goes through the centers of
form for z—0 is the plates Note that these lines become circular as the edge
1 is approached. To show the relation to circular lines, the
(33 solution may be rewritten as

(C-W)

\%
By 0= \Wizry T wiz—y )
The field becomes infinite at the ends because infinitely thin
plates are assumed. A detailed examination of the fringing
field for infinite L andW=d can be found in Cros5. ForW=0, Eq.(38) gives the field lines of a two-dimensional
The equation for the electric field lingsutside the platgs  (linean dipole.

in theyz plane is the functiorz(y) given by

dz E, Z%-y>+W?/4

&y E 2z (34 | | | |

y Y y The field on thez axis for arbitraryL and W is con-

The field lines near the edges of the plates in Fidp) 2are  sidered first. The integral in Eq22) is evaluated using
circles centered on each edge. If we shift the origin to theuATHEMATICA giving
right edge,z’ =z, y'=(y—W/2), and assume largd/, the

Zr2+y72:

V. RECTANGULAR PLATES: ARBITRARY L, W

equation for field lines in the new coordinatesdg’'/dy’ ®(0,02)= Xarctar( WL ) (39)
=—(y'/Z"). This result gives circular lines centered on the ™ 2z\L2+W?+47°

edge® The equation for the field lines outside the plates ca

be solved for arbitraryV. In the new coordinates, "The potential approache&/2, as required, as approaches

zero forz=0. The field on thez axis is then
dz' B Z/Z_y/Z_y/W
dy’ 27'y'+7’W

and its solution forz’ >0 is

(35) 2LWV(L?+W?+872)
E,(0,02)= 2 2 2 2 2 2 2°
m(Le+4z°) (W +4z°)\L -+ W+ 4z
Equation(2) then follows, lettingz= 0 in Eq.(40). Equations

(39) and (40) reduce to Egs(23) and (24) for L—>~ as
required. By expanding about infinite | obtain

(40)

10 E LWV 1 a1

% z o ;. (41)
W0 which gives the dipole form, Eq14), with momentqd, as

20 derived previously. Equatiof40) and the dipole field are

40 plotted in Fig. 6 forv=100 statvoltsL. =4 cm, andW=38

cm.
60 5 > 2 5 8 As in Sec. 1V, the field can also be determined throughout
y the x=0 plane. From Eq(9), the integral ovex’ gives

Fig. 4. Thez component of the field, Eq31), plotted as a function of in
cm for z=1.00, 0.50, 0.25, and 0.05 cm usikg= 100 statvolts andV/=8
cm with L infinite.
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Fig. 6. The field on the axis, Eq.(40) (solid curve, and the dipole field
(dashed curve plotted as a function afin cm forL=4 cm,W=8 cm, and
V=100 statvolts.

Using MATHEMATICA as before, the potential is determined to

be
Y L(W-2y) L(W+2y)
(D(O,y,z)—ﬁ(arctariﬁ} tafiiw ,
(43
where
D.= L%+ (W=x2y)?+47°. (44)

Equation(43) reduces to Eq(39) wheny=0 so the field on
the z axis agrees with Eq40). The field on they axis is
V[ VL2 (W=2y)?  JLP+(W+2y)?

Tall (W—2y) (W+2y)

E,(0y,0)

(45)

Equation(45) reduces to Eq(33) in the limit of largeL. For
largey,

LWV 1
E,0y,00——

g 40

which has the form of Eq15) with the same dipole moment
as obtained before.

VI. NUMERICAL EXAMPLE

| have found the uniform field, Eq2), just outside and

near the center of rectangular parallel plates in the limit tha

d<L, W. For the two-dimensional cask>W, and Eq.(2)
reduces to Eq(25). The question of when Ed25) actually
becomes an accurate approximation is found by using a tw
dimensional finite difference cod&’ to calculate the poten-
tial and field for finite gaps, and letting the rativ/d in-
crease and comparing with E@25). The comparison is
shown in Fig. 7. The plot shows good agreement\iéd
>4,

The code is based on the standard five point finite differ

ence formula for the Laplacian on a square grid of spahing
The formula has an error whose leading termQgh?).

30

25

N 20

15

10

Fig. 7. The field, Eq(25), just outside and near the center of two parallel
conducting strips obtained by assumitig¢W compared to that field com-
puted numerically for five ratios dfv/d (points.

and an interior field of 50 statvolts/cm. Two finer grids were
used in the multigrid codé to obtain the potential on a fine
grid with h=1/4. Approximately 26 000 grid points were
used on the finest grid. Five runs were made usig 2, 4,

6, 8, and 10 cm giving ratio8v/d=1, 2, 3, 4, and 5. As
shown in Fig. 7, the calculated points begin to overlap Eq.
(25) for W/d>4.

VII. SUMMARY AND PROBLEMS FOR STUDENTS

A charged parallel plate capacitor has a charge on the
outer faces of its plates and an increasing charge density as
the edges of a plate are approached. The existence of charge
on the outer faces is required by the condition that the line
integral of the electrostatic field around any closed path must
vanish. By using symmetry and the conditidr<L, W for
rectangular plates of length and width W, the boundary
value problem of Fig. 1 can be reduced to that of Fidn)2
which is a standard textbook probletThe solution for the
potential outside the plates is then given by E®), which
has been evaluated in a plane of symmetry perpendicular to
the plates. A uniform field is obtained just outside and near
the center of each plate, E@®). ForL>W, the potential and
field are found on the axis, Eq.(23) and Eq.(24), respec-
tively. In addition, the potential and field components are
determined throughout the=0 plane, Eqs(30)—(32). For
arbitraryL andW, | have calculated the potential and field on
the z axis, Egs.(39) and (40). Finally, the potential was
found throughout th&=0 plane, Eq(43). | also determined
he potential and field on the axis of circular plategsee

ef. 3. Dipole fields follow as limiting cases, and the dipole
moments are determined by charge on the inside surfaces of
the plates. As the edges of the infinitely thin plates are ap-
proached, field components increase without limit. Finite dif-
ference calculations in two dimensions show agreement be-
tween the calculated and predicted field just outside and near

the center of a strip capacitor of widilV for W/d>4. The

equation giving the shapes of field lines outside a strip ca-
pacitor is determined, and circular lines are shown to occur

However, additional error is produced by the discontinuity atyg5r the edges.
the edge of a plate. Also, in order to compare with the theory, proplem 1 Consider the parallel plate capacitor in Fig. 1
the region covered by the grid needs to be relatively large. Ifyith the z axis perpendicular to the plates, as shown. Take

practice, a compromise is sought between the ideal of both
large grid and smalh. The square region actually used cor-
responds to Fig. (@) with closure added on three sides with
the plate centered at=0. A coarse 4&40 grid withh=1
cm was used to setup the problem. The plate/&t=50
statvolts was located at=1 cm, corresponding td=2 cm
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the origin to be at the upper surface of the positive plége.
Show that the vanishing of the line integral Bfaround any
closed path leads to the requirement that

©

I

/ E,(0,0z)dz=0. (47)
2
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Hint: Use symmetry, the fact that the plates look like aeters.(c) Show thatp, can be put in the forngd, whereq is

point dipole at large distances and that the dipole field e magnitude of the charge on the inside surface of each
decreases as rf/ (b) Explain why Eq.(47) requires each plate andd is their separation.

plate to have charge of the same sign on its outside surface,
as shown in Fig. 1(c) Assume circular plates of radil&and  agjecironic mail: gparker@unity.ncsu.edu
a uniform fieldE,, just outside and near the center of each 1. Farley and Richard H. Price, “Field just outside a long solenoid,” Am.

plate and make a rough estimatetyf; using Eq.(47). As- J. Phys 69, 751-754(200D). o
sume that an initially uniform field decreases over a length™- D- JacksonClassical ElectrodynamicgWiley, New York, 1975, 2nd
scaleR. ed., p. 44.

: ol SReference 2, Chap. 2 . 79 and 80, Problem 2.3.
Problem 2 (a) Evaluate the electrostatic potential in two ce &, tLhap. <, pp. /5 ' . . .
( ) P 4H. J. Wintle and S. Kurylowicz, “Edge corrections for strip and disc

d|m$n3|ons, Eq(30), in the iollowmg limiting Casessl) z capacitors,” IEEE Trans. Instrum. Med$4-34 (1), 41-47(1985.

—0" for |y|<WI/2, (2) z—0" for |y|<W/2, (3) z—0" for 5G. T. Carlson and B. L. lllman, “The circular disk parallel plate capaci-
ly|>Wi/2, and(4) z—0~ for |y|>W/2. Show that these lim-  tor,” Am. J. Phys.62 (12), 1099-11051994.

its are consistent with two semi-infinite conducting strips of . A. StrattonElectromagnetic TheorfMcGraw—Hill, New York, 1943,
width W with equal and opposite charges that are separatedp. 220, Problem 17.

by a vanishingly small gam two-dimensional strip capaci- J. A CrossElectrostatics: Principles, Problems, and Applicatightiger,
tor). (b) Calculate the field components and show explicitly Bristl 1987, pp. 473-475. .

that the divergence and curl & are both zerdor, equiva- Cross(Ref. 7) gives equanon; foz. andy '|n term; ofu gndv, Yvhereu
lently, that the Laplacian of the potential is zgrec) Plot or = constant corresponds to field fines. His equations giddy’ = - (1
sketch the potential and ttze:omponent of the field near the +e" cosv)/e" sinv for constantu. For u>1, which corresponds ty

P >d/2m, dZ'/dy’ = —cosv/sinv=—(y'/Z’). The radius of these circles is
surface of the platéz small, 0<y<W, wherey=0 is the > e \unich is small in the limit of smald. This last limit brings

center of a strip Discuss the behavior gt=W/2. (d) Ex- Cross’s domain I(— o, W—2) into the region where my solution holds

pand the field on the axis for z=W and determine the  (L—«, d—0) when | also tak&Vto be large. Cross'exaci equations in

dipole moment per unit length of a strip. Show that it is equal my notation arey’ = (d/27) (u+1+e" cosv), Z' =(d/2m) (v +€" sinv).

to A\, d, where\;,= o;,W is the magnitude of the charge per °G. W. Parker, “Numerical solution of boundary value problems in electro-

unit Iength on the inside surface of each strip. statigs and 'magnetostati.cs," in Computing in Advanced Undergraduate
Problem 3 (a) Determine the electric field on the axis of a Ehys'cs' eg't?d b}t’ DAaV'? tM' \fv‘l’o'i'g gpomcee‘;g‘gzo"f a Conference at

- - - ; awrence University, Appleton, WI, , pp. 78-90.
E?;‘ag?é)p(lgteee ,C?c?raggg:nvgllgj gre?;lg (rb?lgtﬁgv\?if::?ﬁl]gs;g? d 10G. W. Parker, “What is the capacitance of parallel plates?,” Comput. Phys.

: 5, 534-540(199)).
on the axis takes the form of qu4) for z>R, and deter- 1A, Brandt, “Multi-level adaptive solutions to boundary-value problems,”

mine the dipole momenp, in terms ofR and other param-  Math. Comput31 (138), 333—390(1977.
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