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The problem of determining the electrostatic potential and field outside a parallel plate capacitor is
reduced, using symmetry, to a standard boundary value problem in the half spacez>0. In the limit
that the gapd between plates approaches zero, the potential outside the plates is given as an integral
over the surface of one plate. This integral is evaluated for several special cases. The magnitude of
the field just outside and near the center of a two-dimensional strip capacitor of widthW is shown
to agree with finite difference calculations whenW/d.4. The shapes of field lines outside a strip
capacitor are determined, and circular lines are shown to occur near the edges. The determination of
the electric field just outside and near the center of a parallel plate capacitor complements the
recently published result for the magnetic field just outside and near the center of a long solenoid@J.
A. Farley and R. H. Price, Am. J. Phys.69, 751–754~2001!#. © 2002 American Association of Physics

Teachers.
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I. INTRODUCTION

The question of the magnitude of the magnetic field o
side a long~ideal! solenoid was recently addressed in th
journal.1 It was shown that the magnitude of the field ju
outside the solenoid and near its center is given by

Bout5S 2A

pL2D Bin , ~1!

whereBin is the uniform field inside and near the center,L is
the length of the solenoid, andA is its cross-sectional area
This interesting result is independent of the shape of
cross section and holds forL@AA. The magnetic dipole
field holds at large distances. Thus, using Eq.~1!, the field is
known in three regions: inside and near the center, just
side and near the center, and outside at large distances
the center,r @L.

A long solenoid produces a region of uniform magne
field inside and near its center. To produce a region of u
form electric field, a parallel plate capacitor would be us
with plate dimensions large compared to the gapd between
the plates. The question I address in this paper is ‘‘Can
electric field outside the capacitor plates be determined
will show that the field outside rectangular plates of dime
sionsL3W may be determined throughout a plane of sy
metry perpendicular to the plates ford!L,W. This determi-
nation of the field includes regions both near and far from
plates as well as a region near the edges of an infinitely
plate where the field becomes infinite. The field just outs
and near the center of these plates is

Eout5
2VAL21W2

pLW
5S 2dAL21W2

pLW DEin , ~2!

whereEin5V/d is the uniform field inside the plates andV is
the potential difference between the plates.

A magnetic field must exist outside a solenoid beca
magnetic field lines form closed loops. An electric field mu
exist outside parallel capacitor plates for an equally fun
mental reason: electrostatic field lines donot form closed
loops (“ÃE50).
502 Am. J. Phys.70 ~5!, May 2002 http://ojps.aip.org/aj
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Equation~2! holds just outside and near the center of re
angular plates in the limit thatd approaches zero. That suc
a field must exist in this region follows from a general arg
ment based on the fact thatE has zero curl and thus zero lin
integral around any closed path. For example, taking the p
along thez axis of Fig. 1, I obtain

E
2d/2

0

Ez~0,0,z!dz1E
0

`

Ez~0,0,z!dz50. ~3!

The path is closed on an arc of radiusr on which the 1/r 3

dipole field holds. Asr→`, the contribution from the arc
vanishes. By using symmetry with respect to the surface
zero potential, I obtain Eq.~3!. To cancel the first contribu-
tion from the field inside, there must be a field outside an
corresponding surface charge density on the outer surface
each plate, as shown in Fig. 1. For example, consider circ
plates of radiusR. A uniform field is produced by a charg
density distributed uniformly on a plane. It is thus natural
assume a field that is uniform just outside and near the ce
of the plates. This field decreases asz increases (z>0). The
length scale for this decrease must be justR because I as-
sumed!R. Making an order of magnitude estimate, I obta
from Eq. ~3!,

2EinS d

2D1EoutR'0, ~4!

which gives

Eout'
V

2R
5S d

2RDEin . ~5!

This order of magnitude estimate turns out to be exact, in
region indicated, as will be shown in Sec. III.

II. ELECTRIC FIELD OUTSIDE A PARALLEL
PLATE CAPACITOR

The boundary value problem in Fig. 1 can be simplified
using symmetry about the zero potential surface as show
Fig. 2~a!. Rectangular plates of lengthL and width W are
assumed. Thex50 plane is shown. One plate at potenti
1V/2 is a distanced/2 above an infinite grounded conduc
502p/ © 2002 American Association of Physics Teachers
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ing plane atz52d/2. This problem is equivalent by sym
metry to the original problem. The final step is to use t
limit that d go to zero to obtain the situation shown in Fi
2~b!. The plate is lowered into the plane replacing the pre
ously grounded section by a section at1V/2. The field ob-
tained in this boundary value problem should give a go
approximation to the field outside the plates in Fig. 2~a!
whend!L,W. By using Green’s theorem,2 the potential can
then be expressed as an integral over the surface at1V/2.
The integral can be evaluated to give the field on thez axis of
circular plates and in thex50 plane of the parallel plates jus
described. At large distances, a dipole field is obtained w
the dipole moment magnitudeqd, whereq is the magnitude
of the charge on the inner surfaces of the plates.

The formula for the potential obtained from Green’s the
rem is2

F~x,y,z!52
1

4p E E F~x8,y8,0!
]G

]n8
dx8 dy8. ~6!

G must vanish atz50. An image charge at (x,y,2z) gives
the solution forG:

Fig. 1. Two identical parallel plates a distanced apart are seen in cros
section in thex50 plane. This plane is perpendicular to the plates a
passes through their centers. The plates are assigned potentials6V/2 so the
surface of zero potential is halfway between the plates atz52d/2 ~the
coordinate origin is taken at the surface of the upper plate!.

Fig. 2. ~a! A boundary value problem equivalent by symmetry to that in F
1. An infinite grounded conducting plane is atz52d/2. Rectangular plates
of width W are assumed. The length of a plate,L, can be finite or infinite.~b!
The plate at is lowered into thez50 plane to obtain a boundary valu
problem forz>0 that approximates the problem of~a! for d!L, W.
503 Am. J. Phys., Vol. 70, No. 5, May 2002
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1

A~x2x8!21~y2y8!21~z2z8!2

1
~21!

A~x2x8!21~y2y8!21~z1z8!2
. ~7!

The ~outward! normal derivative is

]G

]n8
5F2

]G

]z8
G

z850

5
22z

@~x2x8!21~y2y8!21z2#3/2
. ~8!

Finally, the potential forz>0 is

F~x,y,z!5
V

4p
zE E dy8 dx8

@~x2x8!21~y2y8!21z2#3/2
.

~9!

The limits on the integrals depend on the choice of plat
Both circular and rectangular plates are considered belo

Equation~9! predicts a dipole field at large distances co
responding to a dipole momentp5(0,0,pz). If we expand
the integrand for larger (r 25x21y21z2), and keep only
the leading term, we find

F~x,y,z!→ VA

4p

z

r 3
, ~10!

whereA is the area of a plate. This result may be compa
to the potential of a point dipole at the origin

F5kS p"r

r 3 D . ~11!

The constantk is used to include both Gaussian and SI un
Thus,

k5H 1 ~Gaussian!,

1/~4pe0! ~SI!.
~12!

The comparison shows thatpx5py50 and

pz5
VA

4pk
. ~13!

For later reference, I give the field of such a dipole on t
positivez axis (r 5z),

Ez5
2pz

r 3
k, ~14!

and on they axis (r 5uyu)

Ez52
pz

r 3
k. ~15!

The dipole moment can be related to the charges on
plates. Using

Ein5
V

d
54ps ink, ~16!

wheres in is the magnitude of the charge per unit area on
inside surfaces of a plate, the dipole moment can be sh
to become

.

503G. W. Parker
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A

4pk
~4pks ind!5qd, ~17!

whereq5As in is the magnitude of the charge on the insi
surface of a plate.

III. CIRCULAR PLATES

The case of circular plates~disks! of radiusR can be found
as a problem in Jackson’s text.3 Only the results will be
summarized here. The potential on thez axis is given by@let
x5y50 in Eq. ~9!, and evaluate the integral using cylindr
cal coordinates#

F~0,0,z!5
V

2 F12
z

Az21R2G . ~18!

The field on the positivez axis is then

Ez~0,0,z!5
V

2

R2

~R21z2!3/2
. ~19!

At z50 the field is

Ez~0,0,0!5
V

2R
. ~20!

This result shows that the order of magnitude estimate m
in the first section, Eq.~5!, is exact. Forz@R, the field on
the axis takes the form of Eq.~14!.

The solution forz>0 can be extended toz<0. If the
integral giving the potential is evaluated assumingz<0, the
result is@Eq. ~9! is odd inz#

F~0,0,z!5
V

2 F212
z

Az21R2G . ~21!

Equations~18! and~21! show the discontinuity that exists i
the potential atz50 corresponding to circular plates
1V/2 and2V/2 with a separation approaching zero.

The additional charge on the outside surfaces of each p
increases the capacitance above the standard result.
fringing field makes important contributions, however, and
more detailed analysis4,5 is needed to determine those cont
butions.

IV. RECTANGULAR PLATES: LšW

A two-dimensional version of the rectangular plate pro
lem is obtained in the limit asL becomes infinite. Becaus
this limit is simpler to evaluate and is of interest in its ow
right, it will be considered first.

To find the field on thez axis, I letx5y50 in the integral
of Eq. ~9! and evaluate the integral overx8 obtaining

F~0,0,z!5
V

4p
zLE

2W/2

1W/2 dy8

~y821z2!Ay821z21L2/4
.

~22!

I then take the limit of infiniteL and obtain

F~0,0,z!5
V

2p
zE

2W/2

1W/2 dy8

~y821z2!
5

V

p
arctanS W

2zD . ~23!

As z approaches zero on the positivez axis, the potential
approaches1V/2. The field on thez axis is
504 Am. J. Phys., Vol. 70, No. 5, May 2002
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Ez~0,0,z!5
VW

2p

1

~z21W2/4!
, ~24!

and the uniform field just outside each plate has the ma
tude

Ez~0,0,0!5
2V

pW
. ~25!

Note that Eq.~2! reduces to Eq.~25! for L@W. The behavior
at largez is that of a two-dimensional dipole, which is

Ez5
2j

z2
k, ~26!

where j is the dipole moment per unit length along thex
~long! axis, which is

j5
WV

4pk
5

~4pks ind!W

4pk
5l ind, ~27!

where l in5s inW is the magnitude of the charge per un
length on the inside surface of each conducting strip.

The field can also be determined throughout thex50
plane. From Eq.~9!, the integral overx8 gives

2L

@~y2y8!21z2#AL214~y2y8!214z2
. ~28!

In the limit of infinite L, the potential becomes

F~y,z!5
Vz

2pE2W/2

1W/2 dy8

~y2y8!21z2
, ~29!

so that

F~y,z!5
V

2p FarctanS W/21y

z D1arctanS W/22y

z D G .
~30!

A potential of this form is postulated in a problem
Stratton.6 Equation~30! clearly reduces to Eq.~23! when y
50, and it gives either1V/2 or zero whenz approaches zero
for z>0. The components ofE are then

Ez~y,z!5
V

2p H ~W/21y!

@z21~W/21y!2#
1

~W/22y!

@z21~W/22y!2#
J ,

~31!

and

Ey~y,z!52
Vz

2p H 1

@z21~W/21y!2#
2

1

@z21~W/22y!2#
J .

~32!

On thez axis (y50), thez component reduces to Eq.~24!
and they component is zero, as required. They component
also vanishes forz50. As another check, the divergence a
curl of E are both zero.

The equations for the potential and field can be exten
to z<0 to describe parallel conducting strips at potenti
1V/2 and 2V/2 with a separation approaching zero. T
potential, Eq.~30!, is odd inz. It has limiting values of1V/2
from above or2V/2 from below foruyu,W/2. But, for uyu
.W/2, both limits give zero as required.
504G. W. Parker
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The behavior of the field near the edges of the plate
illustrated in Figs. 3 and 4. Figure 3 shows the potential a
function of y for z51.00, 0.50, 0.25, and 0.05 cm forV
5100 statvolts andW58 cm. The ‘‘square-step’’ disconti
nuity aty5W/254 cm is clearly seen to develop as the pla
is approached. In Fig. 4, thez component of the field is
plotted for same parameter values as Fig. 3. The functio
form for z→0 is

Ez~y,0!5
V

2p S 1

W/21y
1

1

W/22yD . ~33!

The field becomes infinite at the ends because infinitely
plates are assumed. A detailed examination of the fring
field for infinite L andW@d can be found in Cross.7

The equation for the electric field lines~outside the plates!
in the yz plane is the functionz(y) given by

dz

dy
5

Ez

Ey
5

z22y21W2/4

2yz
. ~34!

The field lines near the edges of the plates in Fig. 2~b! are
circles centered on each edge. If we shift the origin to
right edge,z85z, y85(y2W/2), and assume largeW, the
equation for field lines in the new coordinates isdz8/dy8
52(y8/z8). This result gives circular lines centered on t
edge.8 The equation for the field lines outside the plates c
be solved for arbitraryW. In the new coordinates,

dz8

dy8
5

z822y822y8W

2z8y81z8W
, ~35!

and its solution forz8.0 is

Fig. 3. The potential, Eq.~30!, plotted as a function of y in cm forz
51.00, 0.50, 0.25, and 0.05 cm usingV5100 statvolts andW58 cm with
L infinite.

Fig. 4. Thez component of the field, Eq.~31!, plotted as a function ofy in
cm for z51.00, 0.50, 0.25, and 0.05 cm usingV5100 statvolts andW58
cm with L infinite.
505 Am. J. Phys., Vol. 70, No. 5, May 2002
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z8~y8!5
1

2
AW12y8AC2

~W212Wy814y82!

~W12y8!
. ~36!

The allowed range ofy8 for lines in the right half of theyz
plane isy28 ,y8,y18 , where (C.W)

y68 5S C2W

4 D F16A11
4W

~C2W!
G . ~37!

Figure 5 shows lines plotted usingW51 andC51.02, 1.10,
1.25, 1.50, and 2.00~the z axis goes through the centers
the plates!. Note that these lines become circular as the e
is approached. To show the relation to circular lines,
solution may be rewritten as

z821y825
~C2W!

4
@W12y8#. ~38!

For W50, Eq.~38! gives the field lines of a two-dimensiona
~linear! dipole.

V. RECTANGULAR PLATES: ARBITRARY L , W

The field on thez axis for arbitraryL and W is con-
sidered first. The integral in Eq.~22! is evaluated using
MATHEMATICA giving

F~0,0,z!5
V

p
arctanS WL

2zAL21W214z2D . ~39!

The potential approachesV/2, as required, asz approaches
zero forz>0. The field on thez axis is then

Ez~0,0,z!5
2LWV~L21W218z2!

p~L214z2!~W214z2!AL21W214z2
. ~40!

Equation~2! then follows, lettingz50 in Eq.~40!. Equations
~39! and ~40! reduce to Eqs.~23! and ~24! for L→` as
required. By expanding about infinitez, I obtain

Ez→
LWV

2p

1

z3
, ~41!

which gives the dipole form, Eq.~14!, with momentqd, as
derived previously. Equation~40! and the dipole field are
plotted in Fig. 6 forV5100 statvolts,L54 cm, andW58
cm.

As in Sec. IV, the field can also be determined through
the x50 plane. From Eq.~9!, the integral overx8 gives

2L

@~y2y8!21z2#AL214~y2y8!214z2
. ~42!

Fig. 5. Field lines of a strip capacitor in one quadrant of theyz plane for
W51 andC51.02, 1.10, 1.25, 1.50, and 2.00 cm. Thez axis goes through
the center of a plate.
505G. W. Parker
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UsingMATHEMATICA as before, the potential is determined
be

F~0,y,z!5
V

2p H arctanFL~W22y!

2zD2
G1arctanFL~W12y!

2zD1
G J ,

~43!

where

D65AL21~W62y!214z2. ~44!

Equation~43! reduces to Eq.~39! wheny50 so the field on
the z axis agrees with Eq.~40!. The field on they axis is

Ez~0,y,0!5
V

pL FAL21~W22y!2

~W22y!
1

AL21~W12y!2

~W12y!
G .

~45!

Equation~45! reduces to Eq.~33! in the limit of largeL. For
largey,

Ez~0,y,0!→2
LWV

4p

1

y3
, ~46!

which has the form of Eq.~15! with the same dipole momen
as obtained before.

VI. NUMERICAL EXAMPLE

I have found the uniform field, Eq.~2!, just outside and
near the center of rectangular parallel plates in the limit t
d!L, W. For the two-dimensional case,L@W, and Eq.~2!
reduces to Eq.~25!. The question of when Eq.~25! actually
becomes an accurate approximation is found by using a t
dimensional finite difference code9,10 to calculate the poten
tial and field for finite gaps, and letting the ratioW/d in-
crease and comparing with Eq.~25!. The comparison is
shown in Fig. 7. The plot shows good agreement forW/d
.4.

The code is based on the standard five point finite diff
ence formula for the Laplacian on a square grid of spacinh.
The formula has an error whose leading term isO(h2).
However, additional error is produced by the discontinuity
the edge of a plate. Also, in order to compare with the the
the region covered by the grid needs to be relatively large
practice, a compromise is sought between the ideal of bo
large grid and smallh. The square region actually used co
responds to Fig. 2~a! with closure added on three sides wi
the plate centered aty50. A coarse 40340 grid with h51
cm was used to setup the problem. The plate atV/2550
statvolts was located atz51 cm, corresponding tod52 cm

Fig. 6. The field on thez axis, Eq.~40! ~solid curve!, and the dipole field
~dashed curve!, plotted as a function ofz in cm for L54 cm,W58 cm, and
V5100 statvolts.
506 Am. J. Phys., Vol. 70, No. 5, May 2002
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and an interior field of 50 statvolts/cm. Two finer grids we
used in the multigrid code11 to obtain the potential on a fine
grid with h51/4. Approximately 26 000 grid points wer
used on the finest grid. Five runs were made usingW52, 4,
6, 8, and 10 cm giving ratiosW/d51, 2, 3, 4, and 5. As
shown in Fig. 7, the calculated points begin to overlap E
~25! for W/d.4.

VII. SUMMARY AND PROBLEMS FOR STUDENTS

A charged parallel plate capacitor has a charge on
outer faces of its plates and an increasing charge densit
the edges of a plate are approached. The existence of ch
on the outer faces is required by the condition that the l
integral of the electrostatic field around any closed path m
vanish. By using symmetry and the conditiond!L, W for
rectangular plates of lengthL and width W, the boundary
value problem of Fig. 1 can be reduced to that of Fig. 2~b!,
which is a standard textbook problem.3 The solution for the
potential outside the plates is then given by Eq.~9!, which
has been evaluated in a plane of symmetry perpendicula
the plates. A uniform field is obtained just outside and n
the center of each plate, Eq.~2!. ForL@W, the potential and
field are found on thez axis, Eq.~23! and Eq.~24!, respec-
tively. In addition, the potential and field components a
determined throughout thex50 plane, Eqs.~30!–~32!. For
arbitraryL andW, I have calculated the potential and field o
the z axis, Eqs.~39! and ~40!. Finally, the potential was
found throughout thex50 plane, Eq.~43!. I also determined
the potential and field on thez axis of circular plates~see
Ref. 3!. Dipole fields follow as limiting cases, and the dipo
moments are determined by charge on the inside surface
the plates. As the edges of the infinitely thin plates are
proached, field components increase without limit. Finite d
ference calculations in two dimensions show agreement
tween the calculated and predicted field just outside and n
the center of a strip capacitor of widthW for W/d.4. The
equation giving the shapes of field lines outside a strip
pacitor is determined, and circular lines are shown to oc
near the edges.

Problem 1. Consider the parallel plate capacitor in Fig.
with the z axis perpendicular to the plates, as shown. Ta
the origin to be at the upper surface of the positive plate.~a!
Show that the vanishing of the line integral ofE around any
closed path leads to the requirement that

E
2d/2

`

Ez~0,0,z!dz50. ~47!

Fig. 7. The field, Eq.~25!, just outside and near the center of two paral
conducting strips obtained by assumingd!W compared to that field com-
puted numerically for five ratios ofW/d ~points!.
506G. W. Parker



a

ac

ch

gt

o

o
at
i-
tly

e

ua
er

a

ach

m.

c

ci-

s

ro-
ate
at

ys.

,’’
Hint: Use symmetry, the fact that the plates look like
point dipole at large distancesr, and that the dipole field
decreases as 1/r 3. ~b! Explain why Eq.~47! requires each
plate to have charge of the same sign on its outside surf
as shown in Fig. 1.~c! Assume circular plates of radiusR and
a uniform fieldEout just outside and near the center of ea
plate and make a rough estimate ofEout using Eq.~47!. As-
sume that an initially uniform field decreases over a len
scaleR.

Problem 2. ~a! Evaluate the electrostatic potential in tw
dimensions, Eq.~30!, in the following limiting cases:~1! z
→01 for uyu,W/2, ~2! z→02 for uyu,W/2, ~3! z→01 for
uyu.W/2, and~4! z→02 for uyu.W/2. Show that these lim-
its are consistent with two semi-infinite conducting strips
width W with equal and opposite charges that are separ
by a vanishingly small gap~a two-dimensional strip capac
tor!. ~b! Calculate the field components and show explici
that the divergence and curl ofE are both zero~or, equiva-
lently, that the Laplacian of the potential is zero!. ~c! Plot or
sketch the potential and thez component of the field near th
surface of the plate~z small, 0,y,W, wherey50 is the
center of a strip!. Discuss the behavior aty5W/2. ~d! Ex-
pand the field on thez axis for z@W and determine the
dipole moment per unit length of a strip. Show that it is eq
to l ind, wherel in5s inW is the magnitude of the charge p
unit length on the inside surface of each strip.

Problem 3. ~a! Determine the electric field on the axis of
parallel plate capacitor with circular plates of radiusR using
Fig. 2~b! ~see, for example, Ref. 3!. ~b! Show that the field
on the axis takes the form of Eq.~14! for z@R, and deter-
mine the dipole momentpz in terms ofR and other param-
507 Am. J. Phys., Vol. 70, No. 5, May 2002
e,

h

f
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eters.~c! Show thatpz can be put in the formqd, whereq is
the magnitude of the charge on the inside surface of e
plate andd is their separation.
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