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When a charge moves along a nondispersive transmission line it induces forward and backward wave
components in the line. For unaccelerated motion there is no radiation unless the charge moves with the
speed of an unforced wave. For small accelerations, both radiation to the line and electromagnetic inertial
effects caused by changes in the energy of the fields will be observed. The electromagnetic mass at velocities
greater than the wave velocity is negative. Large accelerations can be handled by numerical computation. In
the case of dispersive circuits, the charge radiates at frequencies for which the phase velocity of the circuit is
equal to the velocity of the charge. This radiation is identified with Cherenkov radiation. Similar radiation

takes place when a charge moves through a plasma.

INTRODUCTION

HE material presented here deals with the inter-
action of moving charges with an environment,
called a circuit. The problem is attacked by methods
commonly used in connection with microwave tubes,
but the behavior disclosed, and the methods themselves,
are related to phenomena and methods of classical
electricity and magnetism.'~? This is apparent in con-
nection with electromagnetic mass, radiation from an
accelerated charge, and Cherenkov radiation.

In Part I of this paper, a very simple matter is con-
sidered: the motion of a charge near a nondispersive
circuit. Matters dealt with include continuous transfer
of energy from charge to circuit in the special case of
synchronous velocity and electric forces on accelerated
charges. Slow accelerations are dealt with by means of
an electromagnetic mass, while rapid accelerations re-
quire another approach.

In Part II, uniform motion of a charge near a dis-
persive circuit is considered. In this case the feature of
interest is the continuous transfer of energy to the
circuit at any frequency for which the velocity of the
charge is equal to the phase velocity of a mode of the
circuit. This is a form of Cherenkov radiation, and
Cherenkov radiation into a dielectric-filled wave guide
is compared with Cherenkov radiation into an infinite
dielectric medium.

The writer originally intended to include in this paper
the theory of Cherenkov-like radiation to a smoothed-
out electron gas (or plasma) by an electron moving
through it. The treatment of this case follows from that
of Part II; one needs merely to compute an impedance
looking out into the gas. Because this matter has been
treated in a somewhat different way by Pines and
Bohm,* and because it is somewhat foreign to the body
of the paper, this work has not been included. The
result will be given, however. The power flow P from a

1 G. A. Schott, Electromagnetic Radiation (The Cambridge Uni-
versity Press, New York, 1912).

1'W. Heitler, Quantum Theory of Radiation (Clarendon Press,
Oxford, England, 1944), second edition, Sec. I.

3L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1949), pp. 261-265.

4 David Pines and David Boﬁm, Phys. Rev. 85, 338-353 (1952).

charge g to a medium with plasma frequency w, is, in
mks units,

Ko(wp0/7)¢%»

8reaK1(w,a/v) '

Here K, and K; are modified Bessel functions, and ¢ is a
lower-limiting or meaningful radius dependent on the
spacing between the charges in the gas.

PART I

A MOVING CHARGE INTERACTING WITH A
NONDISPERSIVE TRANSMISSION LINE

In this section we deal with the motion of a charge
near a uniform, lossless, nondispersive transmission line.
In dealing with a lossless, nondispersive line we can use
very elementary mathematical methods. The procedure
enables us to proceed by a series of small, clear steps and
to keep our thoughts straight in doing so.

1. Differential Equation Approach

We will consider a uniform transmission line having a
series inductance L and a shunt capacitance C per
meter, as shown in Fig. 1. It will be assumed that a line
charge density

g(z—t) coulombs/meter

moves parallel to and very close to the line all at the
same velocity 9, so that all the lines of force from por-
tions of the charge terminate on the line at the same
z-position at which they originate. Then the charge
g(z—t) can be regarded as a charge induced on the line.

It will be assumed that all wave and particle velocities
involved are small compared with the velocity of light.

q(z-vt) L ,HENRIES/METER
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F16. 1. A charge ¢(z—2#) moves close to a distributed circuit which
can carry an electromagnetic wave.
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Thus, if V is the voltage across the shunt capacitance, to
a good approximation the field E in the z-direction at the
inductance and at the charge is

E=—9V/dz. (1.1)
The transmission line equations are then
v al
—=—L—, (1.2
0z ot
aI v a9
—=—C—t—ga). (13)
9z at ot

By differentiating and combining one obtains

av 18V 9?

——— = —L—q(z—‘vi), (1.4)
922 ¢® o

! (L5

= o 5)

Here, ¢ is the velocity of an unforced wave on the line.

If we assume the velocity » to be constant, we easily
see that Eq. (1.4) has a solution made up of two parts.
One is a special solution

Ly?

V= ——mq(z——vt).

It is convenient to rewrite this in terms of the
characteristic impedance of the line, K

(1.6)

K= (L/C)} .n
so that
(v/¢)
V= —I—LWqu(z—vt). (1.8)

Here, vg(z— ?) is the convection current of the electron
stream. Thus, the voltage is given by the product of a
current and an impedance times a dimensionless factor,
which is as it should be.

To give a complete description of all possible excita-
tions on the line we may add two unforced waves
traveling to the left and right, solutions which make the
left-hand side of Eq. (1.4) equal to zero. These are

V= f(z+-cl), (1.9)
V=g(z—ci), (1.10)
where f(z+cf) and g(z—cf) may be arbitrary functions
of the variable.
2. Summing Up Currents Induced in the Line

It seems of some interest and value to approach the
problem in a slightly different manner. In this case, in
deducing the fields produced by the moving charge, we
will consider the charge as causing a current J(z,4)
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F16. 2. A current density J(z1,41) flows into a transmission line
and excites waves traveling to the left and to the right.

amperes/meter to flow into the line, as shown in Fig. 2.
Half of this current will flow to the right with a velocity
¢ and half will flow to the left with the same velocity.
We will then evaluate the current at a position z at a
time #.

In order to make the problem reasonable physically,
we will assume that the line extends indefinitely in the
-+-z-direction, and is terminated in its characteristic
impedance K at z=2.

We will call the part of the current at z at the time ¢
due to waves traveling in the +z-direction I;. This
current may be expressed as

I+=%fz][21,t1(21)]d21. (21)

30

That is, it is a summing up of current which entered the
line earlier and traveled to the right with the velocity ¢
to reach point z at a time £, Thus

Z2—%
t1(Zl) =f{—

(2.2)
c

Now, if g(z—t) is the induced charge per meter, the
induced current per meter, J(z,) is

a
J(z,t) =a—tq(z—vt) 23)
= -—-vq'(z— W),

where ¢ (%) is the derivative of the function with respect
to its argument.

By using Egs. (2.3) and (2.2) in connection with Eq.
(2.3) we obtain

= f ¢L(U—v/)n—v(t—2/)Jdz. (24)

This of course integrates directly to give

q[(l—v/c)zl—v(t z/c)],

20

I+=

v
2(1—v/c)
(2.5)
Ii=-— 2(1—v/c){9( z—l)

—q[(v/¢) (z—ct)+20(1—/) }.
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INTERACTION OF MOVING CHARGES WITH WAVE CIRCUITS

We can obtain the part of the current at z; at a time ¢,
due to current flowing to the left by a similar procedure

I=} f " et (e)]ds, (2.6)

H

-3 f (Ta(+/0)—c(t+3/) Jdz,  (2.7)

B vq(z—1t)
2(14-v/c)

Let us now examine Egs. (2.5) and (2.8a). We see that
I, consists of two parts. The first term in the brackets
represents a current traveling along with the velocity »
of the charge. The second term represents a current
traveling along with the velocity of propagation ¢ of the
transmission system.

Suppose that we assume #7¢, and consider the field in
the vicinity of the charge far to the right of 2=2, a long
time after the charge has passed that point. If ¢(z—u)
is a narrow function of z, that is, a pulse, the part of I,
which travels with the velocity ¢ will then be far away
from the charge, and in the vicinity of the charge we will
have

(2.8a)

?

I,= q(z—t) (2.9)
T —y0)]
and
) (2.85)
I =- —t .
2(1—1—'0/0)
The total current I will be the sum of 74 and 7_, or
I=I++I_,
1 2.10
I=————uq(z—ut). (210)
1— (v/c)?

We will note that I, and 7. can be considered as
current traveling to the left and right as unforced waves
with the velocity ¢. This is clear from Egs. (2.1) and
(2.6) together with Eq. (2.2). The charge in its motion
continually builds up the current toward one edge of the
charge and cancels it out toward the other edge, so that
the pattern of current moves with the velocity .
Nonetheless the actual current flow at any instant can
be considered as an excitation of the unforced waves of
the transmission line, and if the charge suddenly
vanished these waves would travel off to the left and to
the right with their original spatial distribution but
with a velocity c.

Thus, we can obtain the voltages V, and V_ corre-
sponding to the currents (2.9) and (2.8b) by means of the
usual transmission-line relations

(2.11)
(2.12)

629

Here, Eq. (2.12) takes the form which it does because
we have counted I_ as positive when it flows in the
+z-direction.

Accordingly, we have

1
Vy=——K - .
+ 2w/ vg(z—ut), (2.13)
! K 2.14
—m vq(z—1t), (2.14)
V=V, 4V,
(v/c)
=————Kuvg(z—2t). .
- q(z—t) (2.15)

We see that this agrees with Eq. (1.8), the special
solution of the differential equation.

The advance has been in breaking V and I up into
+ and — components, each simpler in form than their
sum, and each obeying the usual transmission-line rela-
tions (2.11) and (2.12).

Before passing on, it is perhaps worth examining the
expressions

1
I= —I‘:—(‘;/-C)—z'l)q(Z'—'Ul), (210)
(v/¢)
V= —l—vaq(z——vt). (2.15)

As v approaches 0 the current I approaches the
convection current of the moving charge. The voltage
V, however, approaches zero.

For » <c the voltage is proportional to the charge by a
negative factor; that is, a positive charge produces a
negative voltage (as in the case of a negative capaci-
tance). In fact, at a given velocity the voltage has the
same spatial distribution as the charge, and the relation
is just as if the circuit consisted of a capacitance

1—(v/c)?

(v/c)Kv
farads per meter.

As v approaches ¢, that is, as the charge approaches
synchronism with the unforced wave, I and V approach
infinity. This is because I and V. approach infinity, for
I_ and V_ remain finite.

3. Charge Injected with Velocity of
Unforced Water

The fact that the I and V of the special solution, as
given by Egs. (2.10) and (2.15), approach infinity as v
approaches ¢ does not mean that a charge shot along the
line with the velocity ¢ will produce an infinite field. In
obtaining the expression (2.9) for I it was assumed that
a wave traveling with the velocity v became separated
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from a wave traveling with the velocity ¢ and this will
not occur if v=c¢.

Let us investigate what does happen when v=c¢. In
doing this, we will expand the second term in Eq. (2.5)
in powers of (1—1v/c)

gl (v/c) (z—ct)+20(1—v/c)]
=gl (z—v8)— (3—20) (1—v/c)]

=g(z—vt)— (3—z20) 1—v/c)¢’ (z—ov)+---. (3.1)
Thus, for v=c¢, I, becomes
(z—20
= R )q'(z—vt). (3.2).

In other words, 7. increases in amplitude as the distance
from the beginning of the line, which is also the point of
injection of the charge. Energy is continually trans-
ferred from the charge to the circuit, and the charge
must experience a retarding force. We note that for a
nondispersive circuit, an unaccelerated charge experi-
ences a retarding force only when its velocity is equal to
that for a wave on the circuit.

We note from Eq. (2.8) that there is no such peculi-
arity of behavior for the backward current, because the
denominator contains the factor (1+7/¢) rather than

(1—2/¢).
4. Changes in Velocity

Let us now consider cases in which #¢ and in which
Egs. (2.9), (2.8), (2.13), and (2.14) apply. Let us con-
cern ourselves first with 7,

vq(z—vt)

+=

Now, suppose that at the time ¢, when the charge is
at 2, we suddenly change the velocity of the charge to v,;

v,= 10480, (4.1)

At the moment of change the current and field in the line
cannot suddenly change. This will be true if the current
of the new forward (4) waves [and that of the new
backward (—) waves as well ] does not change. The new
I, must be made up of a component traveling with a
velocity v, [as in Eq. (2.9)] and one with a velocity c.
The combination which is equal to Eq. (2.9) at t=£, and
for which the part with velocity v, obeys relation (2.9) is

Vag[ 2— Vot + (va—)ts ]

v 2(1—2./2)
+v,,ql:z— o+ (c—v)ta] vglz—ct+(c— 'v)t.,]. 42)
2(1—v,/c) 2(1—v/¢)

We see that at ¢={, this gives the same value as the
previous expression for I.
We see that Eq. (4.2) consists of two parts; a part

R. PIERCE

traveling with the speed of the charge, and a part
traveling with the velocity of propagation of the line, ¢.
If we assume that dv in Eq. (4.2) is very small, we can
rewrite these to give '

[ o ‘Iq[z— (v+06v)t+0vt, |
I+=‘—' 'E;Jr

(1—v/0)]  2(1—v/0)
&v

+mq[z—— ct+(c— )t ).

(4.3)

Thus, the amplitude of the current accompanying the
charge is changed, and a small part of the current pro-
portional to the velocity change v is shaken off or
radiated and travels as an unforced wave with the
velocity c. As time passes, the pulses represented by the
two components will separate, forming two distinct and
essentially nonoverlapping pulses.

It is now of interest to examine the energy carried by
these pulses. In terms of the inductance L per unit
length and the capacitance C per unit length, the total
stored magnetic and electric energy per unit length W
is

W=31(PL+VC). (4.4)
This can be expressed in terms of 7, and I_ as
W=W+W_=i(I,+I. 2L+ T,—1_)*K2C]. (4.5)

Here, W, is the stored energy per unit length, the
forward wave and W_ is the stored energy per unit
length of the backward wave. By using Egs. (1.5) and
(1.7) we obtain
K K
W+=_I+2; W_=—I2
¢ ¢

(4.6)

To get the total energy associated with the forward
and backward waves we should integrate W, and W_,
as given by Eq. (4.6) with respect to z at a particular
time. The only term that varies with distance is the
square of the charge, and we will call the integral of the
square of the charge per unit length with respect to
distance Q%/L. Then the energy corresponding to the
first part of Eq. (4.3), the pulse moving with the
charge, which we will call W, y, is

_ (v/c)?Kc 9_2[1i 2(8v/v) . (8v/v)? ] @
41—/ LU (1=9/0) (1—v/or)

+M

While the part corresponding to the second part of Eq.
(4.3), which we will call Wg will be

(v/)*KeQ*(8v/v)*
p=———,
! 4(1—v/c)’L

The forward wave part of the electromagnetic energy
carried along with the charge is W, 5 while W is the
forward wave part of the electromagnetic energy de-
tached from the charge or “radiated.”

(4.8)
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Suppose we reach the final velocity v, in two discrete
steps, carried out at times far enough separated so that
the “radiated” pulses do not overlap. Then the total
“radiated” energy will be halved, while to the first order
the change in the energy carried along will be the same
as before.

We can apply this argument only to sudden changes
in velocity separated in time enough so that the
“radiated” pulses do not overlap. However, it indicates
very strongly that for low accelerations the electro-
magnetic energy carried along becomes independent of
acceleration while the energy radiated becomes neg-
ligible.

To this approximation, for small accelerations we will
neglect the radiated energy and take the energy carried
along by the forward component

(2/cy*Kc(?

+M

If we make further use of these methods we find the
energy carried along by the backward component to be

(v/cPKcQ?
M 4o/l
Thus, Wy the total energy carried along is
Wu=Win+W_n,

(o/ey {1+ (/0P IK Q"

E TRz
Now, suppose that we assume a law of force
f=dM/dt, (4.12)

where fis the force and M is momentum. We know that

(4.10)

(4.11)

aM
AW /dt= fo=—u, (4.13)
dt
M= f daw /o, (4.14)
Or, integrating by parts
M=o+ [ Wi (4.15)

It is easiest to divide the contributions to momentum
into two parts, that M » from Eq. (4.9) and M_, from
Eq. (4.10). This gives

K 1
= m, (4.16)
KQ? 1
=— < 417

4L (1+v/c)?
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Whence
M= M+M+M—-M:
=Q (v/c)
L [1— (/o

We note that this is an odd function of the velocity, as
it should be.

(4.18)

5. The Force on the Charge

In Sec. 4 an electromagnetic momentum M was de-
duced from a definition of momentum, relation (4.12),
and a relation between energy change and work, rela-
tion (4.13).

Physically, we are dealing with a charge moving in
certain fields. Any “‘electromagnetic momentum” must
manifest itself as an electric field which acts in the direc-
tion of motion when the speed of the charge is changed.

Let us, then, consider the fields present in the vicinity
of a charge after the velocity of the charge has been
changed by an amount &v. Let us deal first with the
fields of the wave components traveling in the J-2-
direction, as expressed by Eq. (4.3). We have

Ve=KL, @.11)
a
Ey=——(KlL,) 5.1)
Jz
and from Eq. (4.3)
ov ¢'[z—vat+ (va—1)ts ]
E.=K{ v+
+ ( (l—v/c)) 2(1—1/c)
6y
KoL) 652)

Now, the impulse H. given to the charge due to the
change in velocity will be given by the integral

L] 0

H, = f E q[z—vit+ (va—1v)ta)dzdi.  (5.3)
t=tg¥ z=

Here we have multiplied the field by an element of
charge and integrated over all the charge, and then we
have integrated this force with respect to time in order
to obtain the impulse.

From Eq. (5.2) we see that there will be two terms in
the integral. The first gives zero

f q'Ta—vat+ (va—v)ts Jq[2— vat+ (va— v)ta Jdzdt
t=tgV z=—00

[
t—ta

© g z— vt (Va—)ta]

Z2e2—00

=0. (5.4)
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The second term has a factor

) L)+~ =1
=gV g=—00

X q[2—vat+ (va—12)t4 Jd2dt.

This can be integrated by the following substitution
of variables:

(5.5)

(5.6)
(5.7

The element of area is obtained by multiplying du:du,
by the Jacobian

t=u1,

2— V50t (Ve—0)ta=1Us.

6u1

6141

o 9z
du 1d1l2 =
6u2

duldu;»: duldug. (58)

aug

Jt 0z

-7

The integral then becomes

f f ¢'Tus+ (c— ) (ta—21) Jg(u2)dusdus.  (5.9)

We integrate first with respect to #,, and obtain

00

f (ua)du T gty ez
wg=—a0 e ’ ul=ta (6—7})
-— " g Paee—2—. 5.10)
(C—' ‘U) ug=—00 (C_ v

We note that we have used the symbol Q?/L for the
integral before.

We have now evaluated the integral occurring in Eq.
(5.3) and from Egs. (5.2), (5.3), and from this work we
see that

KQ%v

—_—— 5.11
2c(1—uv/c)’L G110

+=

This H is the integral of the force experienced by the
charge following a velocity change év, times the time. If
we express it as the result of a change in a momentum
M, the relation should be of the form

H=det

=—dM/dt,
det= =—M,
or
oM dM KQ?
—————— (5.12)
v dv 2¢(1—v/c)’L
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If we compare this with Eq. (4.16) we see that Egs.
(5.12) and (4.16) differentiated are in agreement. In
Eq. (4.14) the momentum was defined in terms of
change with velocity of stored electromagnetic energy.
We have seen that the force which resists (or aids) slow
acceleration of the charge is actually the force exerted on
the charge by the field of the wave which is radiated
when the charge is accelerated. Although the energy
radiated approaches zero as the acceleration between
two particular velocities is made slower and slower, the
impulse due to the radiated field does not approach zero
but approaches a constant value instead. This is because
the energy depends on the square of the radiated field
while the impulse depends on the first power of the
radiated field.

In other words, for a given change in velocity, for the
radiated field the integral /% FE?dz approaches zero as
the acceleration is made slow, but the integral /% | E|dz
approaches a constant which is not zero.

Because the impulse depends on the first power of the
radiated field, the calculations which have been made
concerning it hold even when pulses representing the
radiated field overlap. Hence, we may regard the mo-
mentum M as correct for all accelerations which are
gradual enough so that the velocity does not change
substantially in the time it takes the radiated pulse due
to the velocity change to pass the charge.

6. Velocities Greater Than the Velocity of
the Natural Wave

The queer feature about the total momentum as
defined by Eq. (4.18) is that for v>¢, dM/dv<0. Thus,
if the velocity of the charge in the - z-direction is in-
creased, the charge experiences a force in the 4-z-direc-
tion. Contrarily, if the velocity of the charge in the
~+z-direction is reduced, the particle experiences a re-
tarding force. Thus, motion with a uniform velocity
greater than ¢ would seem to be unstable; it seems that
the charge would tend either to speed up or to slow
down. Physical considerations would suggest that it
might slow down.

Suppose that the charge has a mechanical mass m. If
we assume its acceleration to be small, the following
equation should be satisfied

(@M /dt)+ (mdv/dt)=0,
M+ my=const.

(6.1)
(6.2)

Thus, the charge cannot spontaneously change its
velocity with a small acceleration. This need not em-
barrass us, for Eq. (6.1) holds for small accelerations
only.

In principle, motion under large accelerations can be
computed numerically. Suppose that an abrupt change
is made in the velocity of the charge. The radiated fields
acting during a short interval following the change can
be computed using Egs. (4.2) or (4.3), and an impulse
can be obtained by integrating charge times mass over
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the interval. At the end of the first short interval another
abrupt change in velocity, equal to the impulse divided
by the mass, can be assumed, and new radiated fields
can be computed. Over the next interval the radiated
fields of the first two intervals act on the charge. The
calculation can be continued thus, step by step. Alter-
natively, the equation of motion can be written in the
form of an integral equation.

It is interesting to note that because of the electro-
magnetic mass we cannot gradually accelerate a charge
past the velocity ¢, but this does not forbid shooting it
into the system with a velocity greater than ¢, or even
rapidly accelerating it to a velocity greater than c.

It seems likely that even when v>¢ and |0M/dv| is
smaller than m, the motion will be stable. An approxi-
mate calculation was made for v>> ¢ and for | dM/dv| >m.
It showed a rapid deceleration of the moving charge. On
the other hand, a calculation for »>¢ and |dM/dv| <m
showed the charge settling down to a constant velocity.

If a charge is shot into a line with a velocity »>¢, the
field corresponding to the second term of Eq. (2.5) will
cause an initial deceleration of the charge, and the fields
radiated subsequently will decelerate the charge further.

Thus, a charge shot into a line with a speed v>¢ tends
to slow down and to radiate provided that |8M/dv| is
greater than the mechanical mass m.

7. Charge Separated from the Circuit

So far our picture has been much like that of a
physically idealized transmission line with a charge very
close to it. What happens if we separate the charge from
the line? In the case of slow waves we can use an
electrostatic approach in which an element of charge is
regarded as exciting the line over a distance, with some
appropriate weighting. Perhaps a better approach is to
regard the actual transmission system as having many
modes, active and passive. From this point of view,
Part I can be regarded as having dealt with one mode of
transmission of a realistic multimode transmission
system.

PART I

UNACCELERATED MOTION WITH A
DISPERSIVE CIRCUIT

We have seen that when a charge moves with a con-
stant velocity near a lossless-nondispersive circuit it
gives up energy continually only when the velocity of
the charge is equal to the wave velocity of the circuit.
For dispersive circuits the phase velocity varies with
frequency and thus over a wide range of charge velocity
a wave of a particular frequency will have the charge
velocity. This causes a continual transfer of energy from
the charge to the circuit. Cherenkov radiation is an
example of this. We will consider other simpler examples
first and then discuss Cherenkov radiation.

WAVE CIRCUITS 633
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FiG. 3. A charge ¢ flows through a series of resonators.

8. A Charge Passing Through a Series
of Resonators

Imagine a charge ¢ to travel with a velocity o through
apertures in a series of thin, pillbox resonators, as shown
in Fig. 3. Imagine that the holes are very small in
diameter and that the resonators are so thin that the
charge passes across one in a time small compared with a
cycle of the natural frequency of a resonator.

Then, the passage of the charge across a given
resonator corresponds to transferring a charge from one
side of the resonator to the other, and if Cy is the
effective capacitance of a given mode of the resonator
referred to the point at which the electron passes
through, an energy W=¢?/2Cy, is transferred to that
mode of the resonator. The resonator will oscillate with
this energy after the particle has passed. The resonators
which the charge has passed oscillate independently,
and they are phased so that the oscillations constitute a
wave of phase velocity equal to the charge velocity ».
The group velocity of the wave is of course zero; there
is no energy flow from resonator to resonator.

If d is the distance between centers of resonators, the
power P flowing from the electrons to the resonators is

Wy ¢
P=— .
d 2dCg

(8.1)

As we make the resonators thinner and thinner, Cg
tends to be proportional to 1/d and hence we may regard
dCr as a constant which does not depend on d.

Let us consider the retarding force F against which
the electron works:

P=Fv=q/2dCk, (8.2)

F=¢/2dCk. (8.3)
Thus, the force is independent of velocity and pro-
portional to the square of the charge.

9. Use of Fourier Transforms

It was possible to treat the case in Sec. 1 by very
elementary means. In more complicated problems it is
convenient to represent ‘the charge by means of its
Fourier transform. Let the charge per unit length ¢ have

5 Here we disregard all but one mode of oscillation of the
resonator. Other modes will give other contributions to the power.
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qz-vt) f

2 —>

F1G. 4. The spatial distribution of the charge g(z— ).

some spatial distribution ¢(z— ) such that

f q(z—ot)dz=q.

Here ¢ is regarded as a constant in the integration. We
can also represent the charge as

- (9.1)

se=w= [ @m0
The function g(B) is given by
1 0
g =——f g(z—t)e?fer0dsz, (9.3)
27 V_o

Here we should note what sort of function of B¢ (8) is.
We will consider ¢(z—uf) to represent a relatively nar-
row lump of charge, as shown in Fig. 4. From Eq. (9.3)
we see that for small values of 8,

ejﬂ(z—-v 6

will be constant and nearly unity for all values of (z— )
for which ¢(z—uf) is substantially different from zero.
Thus, from Eq. (9.1) we see that for small values of 8

gB)=q/2r (9.4)

and for larger values of 8, g(B) will decrease in value,
perbaps as shown in Fig. 5.

From Eq. (9.2) we can obtain the current I in the z-
direction either by multiplying the charge by v, or by
using the relation

dI/dz=—3aq/dt, (9.5)

I=vf g(B)e—ile—204dg, (9.6)

—

In connection with the current expressed as in Eq.
(9.6) we can obtain the field produced by the current
through the use of an impedance per unit length Z (w,8).

i
2m
(m) —\

D>

(7~

Fic. 5. The Fourier transform g(8) of the charge g(z—).

R. PIERCE

In terms of this impedance per unit length

E=—v f Z(w,8)g(B)ei#=—r0dg. 9.7
Here, we see that
w=18. (9.8)

We should note that for circuits of finite transverse
extent involving no loss (resistance, conductance) Z
will be purely imaginary. However, for actual circuits,
which always have some loss, Z may be nearly imagi-
nary over most of the range of w and 8 but whatever real
part Z has, that real part will be positive. This is im-
portant in connection with the poles of the idealized
purely imaginary (reactive) impedances considered
later.

The instantantaneous power flow from the electrons to

the field (circuit) is
=— f Elds.

—0

9.9

f_: f—: J: : F(v)e*h(B)eib2dydBdz
=2 f: FOR*B)dS. (9.10)

Whence, from Egs. (9.6) and (9.7)

P=2myt f Z@AgB)g*®)ds.  (9.11)

10. Problem of Section 8 by Fourier
Transform Method

Let us consider the problem of Sec. 8, disregarding all
but one mode of the resonators. The impedance of one
resonator Zg will be

=j
= (10.1)
Crlo— (wi/w)]
wie=LC. (10.2)
The impedance per unit length, Z, will be
ZR - jw
== (10.3)

d dCR (w2 w02)

We remember that dCr is independent of the resonator
spacing d.

According to Egs. (9.11) and (9.8), the power flow to
the circuit will be

P=2r? f l I ]
dC ro[ B— (wo/v) JTB+ (wo/v)]
XgB)g*(B)ds. (10.4)
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Now, because g(z—1) is real, g(8)g*(B) is an even
function of 8. The impedance (10.3), the bracketed part
in the integrand, is an odd function of 8 with two poles,
as shown in Fig. 6. Except for the contribution in
passing the poles, the integral would be zero. How do we
get by the poles?

We note that for an actual circuit the impedance will
not pass through infinity but will assume a high, real
positive value. Hence, wo must [see Eq. (10.4)] have a
small positive imaginary part which we will call js.
Near the pole at 8=wo/7, for instance, we can disregard
the variation with respect to 8 except for that in the
factor B—wo/? and write for the contribution to the
integral from B=wy/1—a to f=w/v0+}a

— jmg(wo/v)g* (wo/)
- dCr
(wo/v)+a dﬂ
% f P (105)
wom—a [B— (wo/v)]— 7o
— jmvg(wo/v)g* (wo/v) a— 78
_ jwvg (wo/ g(o/)ln J . (10.6)
dCr —a—jb
i
i
]
|
gz i
|
]
p=-3F P
v
ﬁ—b

F16. 6. The impedance Z of a circuit, plotted vs phase constant g,
showing poles.

For a=0 the logarithm is zero; for o2>$ it is +jr. We
note that for intermediate values the argument has a
positive imaginary part, and hence the value is 4.
There is an equal contribution from the pole at
B=—w/v, and hence the value of the total integral is

2y (wo/v)g* (wo/2)
= . '

(10.7)

If we assume that wo/% is small in the sense discussed
in connection with Eq. (9.4), then Eq. (9.4) applies and

P=g%/2dCh. (10.8)

This agrees with Eq. (1.2), the assumption that wo/% is
small merely saying, as we did in Sec. 9, that the charge
passes through each resonator in a small part of a cycle
of oscillation at the natural frequency of the resonator.

635

11. Nondispersive Line

Suppose that we have a transmission system con-
sisting of a distributed series inductance L per unit
length and distributed shunt capacitance C per unit
length. Let us consider the interaction of the charge
with the fields associated with the mode of propagation
of this circuit. If we consider slow waves we can take the
longitudinal field as —3dV/dz. Under these circum-
stances the impedance Z per unit length is found to be

— ]‘w LB2
L=, (11.1)
Br—wLC

From Egs. (2.8) and (2.11) we obtain

— j2m’L

p=—1""" f Be(8)g* (8)dB.

11.2)
1-22LC (

We see that the integrand is an odd function of 8
with no poles. Hence, the power is zero (except when
1?LC=1; this case must be treated differently, as, for
instance, in Sec. 2.3).

12. Dispersive Circuits

When the circuit is dispersive and has for some fre-
quency a phase velocity equal to the velocity of the
charge, then there is a pole in the integrand of Eq.
(9.11), as in the case of Eq. (10.4), and the power is not
zero.

For instance, consider a wave guide filled with
dielectric material, with a charge moving on the axis.
There is an infinite number of transverse magnetic
axially symmetrical modes of propagation which can be
excited by the charge. Each is dispersive; the phase
velocity varies from oo at a cutoff frequency to 1/(ue)}
at very high frequencies.

Thus, if the charge travels faster than 1/(ue)}, for
each such mode of propagation there will be a pair of
simple poles in the integral (9.11), and thus each mode
will contribute something to the power given up by the
moving charge.

Now, if we make the wave guide very large in diame-
ter, the charge is to all intents in a large space of
dielectric constant ¢, and we should approach the usual
case of Cherenkov radiation.

It seems worth while to examine this matter in detail
and accordingly, the power flow from a moving charge
distribution to one axially symmetrical transverse magnetic
mode of a circular wave guide of radius ¢ filled with a
dielectric of dielectric constant e will be evaluated. The
relation between the field and the exciting current is®

—'](F2+602) R Hn(x;y)Jn
’ we : " r2— ’

6 J. R. Pierce, Traveling Wave Tubes (D. Van Nostrand Com-
pany, Inc., New York, 1950), Chapter VL

(12.1)
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where
[ [ @pmspasay
Ju= . (12.2)
| [ pasay
We will take
Hn(x)y)=-,0(7nr)y (12'3)
where
Jo(ya)=0. (12.4)
Then

[ [y pasay

=f 2o Jo(var) Pdr=na[J1(vna) . (12.5)

Here, use has been made of Eq. (12.4).
We will assume a current [ to flow at r=0, so that

ff](x,y)Hn(x,y)dxdy=1. (12.6)

Whence
I

Jpm=————————.
7"‘12[:] 1(v=a) ]2

Thus, from the relation

(12.7)

=—I7

we deduce that the impedance Z, associated with the
nth mode is

y I‘2+ 2
Zn= ik b¢) . (12.8)
wawel J1(vna) P 2—T2)
Here
w= 0, (12.9)
w v
Bo=w(ue)t=—=-4, (12.10)
u u
I'=jB. (12.11)
And, for the wave guide considered
Pn2= -ﬁn2,
12.12
n2+'Yn =BD‘I- ( )
So that
— % (12.13)

L=
ra2er[ J1(vaa)

X[ﬁ“[@/:):— 1]*][6 N 13*}

R. PIERCE

Thus, for this mode the power P, will be
2v

Ppme———
e J1(yqa)
—jBg(B)g*(8)dB

[
f— )
[ﬂ_[(v/uy)s—1]%][’%[@/;)2—1]%]

This is of exactly the same form as Eq. (10.4), and by
the same process we obtain

() ()

P,= . (12.15)
025[-] 1y @) ]2

If we assume that

(12.14)

_
Lo/uy—1]

is sufficiently small so that we can use Eq. (9.4), we
obtain

¢

P — 12.16
2ra?e[J 1(vq0) P ( )

To get the total power for all modes we would have to
sum with respect to #.

Let us rather examine the power as a function of
frequency. At a given point there is no radiation present
in the wave guide prior to the passage of the charge.
After the passage of the charge, each mode is excited at a
particular frequency such that the phase velocity equals
the velocity of the charge. Thus, the field has a line
spectrum.

Let w, be the cutoff radian frequency of the nth
mode. Then

(12.17)

Wn
7n=wn(ﬂ€)’=~-
u

The radian frequency w,’ at which the phase velocity
of the wave is equal to the velocity of the charge is such

that
v W \2T?
ar===[1- () ],
”u Wy
» . (12.18)
“ ()]
Wn ©
Let us define
Aw=wnr1’ —wyq'. (12.19)
Then
w — Wy
e (12.20)

Ap=—",
(1= (/0]
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For large values of »

Wni1@ Wad

Yrp1@—Yn@=—"""—""—""=m,
u u (12.21)
Wnr1—Wa=mu/a,
T
M
a[1— (u/v
(12.22)

Po LG/r-1D
Aw - 2r2ael J1(wnau) ]2.

Now, for large values of w,a/% at the extrema where

wad
7(=)-o
u

(12.23)
waa\ P 2u \?
CD]-(5)
u TWad
hence
P. @ua[ (0/u)?—1]}
Aw dren ’
(12.24)
P g [(v/u)—1]
Aw drreu

This is in agreement with the power radiated per unit
radian frequency in Cherenkov radiation.?

13. Comparison with Cherenkov Radiation

We have seen that the expression for the radiation per
unit frequency of a charge moving along the axis of a
large dielectric-filled guide is the same as the expression
for the power of Cherenkov radiation. We feel that this
is as it should be, and yet there are several matters
which may appear puzzling.

First, we are inclined to regard an infinite, homogene-
ous, isotropic space as nondispersive, and yet we have
seen that radiation into a wave guide depends on the
dispersive nature of the modes of propagation.

As a matter of fact, an infinite homogeneous space
will support all dispersive modes. It differs from a wave
guide chiefly in having a continuous rather than a
discrete spectrum of modes. If we wish, the charac-
teristic pattern of Cherenkov radiation can be regarded
as made up of a continuous spectrum of modes such as
those used in Sec. 12,

The over-all pattern of Cherenkov radiation is simple.
It is shown in Fig. 7. The pattern is characteristic of a
shock wave. The wave front of the radiation is a vee
extending back from the moving charge. The wave
front advances with a speed #

1
Y=
(ne)?

WITH WAVE CIRCUITS 637

l_—WAVE FRONT

_—- NORMAL TO
WAVE FRONT

—
DIRECTION

s
MOVING CHARGE \ OF MOTION

\ __ WAVE FRONT
* EXTENDED
e WAVE \

FRONT \
\

F16. 7. The wave front of Cherenkov radiation.

normal to itself. The intersection of the wave front
travels along the path of the particle with the particle
speed v, which is greater than «. If 8 is the angle between
the normal to the wave front and the path of the par-
ticle, we see that

(13.0)

The angle 6 is the angle of the cone of radiation in
Cherenkov radiation.

We see that the velocity of a wave front along a line
may be greater than the velocity of a plane electro-
magnetic wave. In fact, the Cherenkov radiation clearly
travels so as to make the velocity of the wave front
along the path equal to the velocity of the moving
charge.

We may note that the angle 6 in Eq. (13.1) is charac-
teristic of the resolution of wave-guide modes into sums
of plane electromagnetic waves, in which case # is, as
here, the velocity of a plane electromagnetic wave in the
medium and v is the phase velocity of the wave in the
guide.

Another thing which may at first seem puzzling is that
Cherenkov radiation has a continuous spectrum, while
the radiation in the wave guide has a line spectrum. The
moving charge cannot be aware of the walls of the wave
guide, because the charge is moving faster than the
group velocity of any electromagnetic signal in the
medium. We are unused to devices (in this case a wave
guide) which seem to put all the power of a source with a
continuous spectrum into a line spectrum.

This can be made clear by means of a physical picture.
In order to make matters as simple as possible, let us
consider a two-dimensional case, corresponding to a line
charge moving between infinite parallel conducting
planes, as shown in Fig. 8.

The reflection of the wave front from the conducting
plane gives the lozenge-shaped wave front shown in
Fig. 8. We may if we wish regard this pattern of wave

%=1 cosf.
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F1c. 8. Cherenkov radiation of a line charge between parallel
g!banes—the wave fronts of the charge and of its images (dashed).
e radiation has a line spectrum.

front as made up of the wave fronts of image charges,
which are shown dotted outside of the planes in Fig. 8.

It is clear that the successive passages of the reflected
wave fronts will result in a line spectrum rather than a
continuous spectrum. However, the charge does not
know that the reflecting walls are there. How, then does
the presence of the walls convert the continuous spec-
trum of Cherenkov radiation into a line spectrum?
Perhaps we should first note that in any case the charge
itself sees a steady retarding field. We should also note
that if we add the walls while the charge is moving, only
the radiation which has not yet reached the position of
the walls is reflected. The continuous spectrum of
Cherenkov radiation can in principle be deduced only
by an extended examination of the radiation pattern,
while the line spectrum of the guide can be deduced only
by an extended examination of the different radiation
pattern in the guide. Now, one pattern which has been

j. R. PIERCE

examined for a long period cannot be converted into the
other.

There are other cases in which a signal which we
think of as having a continuous spectrum can be con-
verted into a signal which we think of as having a line
spectrum. Let a very short pulse come along the
transmission line of Fig. 9 from the left, and let the
switch be closed after the pulse has passed but before the
first reflection returns to the switch. All the electro-
magnetic energy of the pulse is now batting back and
forth between the switch and the end of the line. The
single pulse on a line, which we ordinarily think of as
having a continuous spectrum, has been converted into
a recurrent phenomenon with a line spectrum. This does
not mean, however, that a linear, time-invariant, net-
work can put all the energy of a signal source having a
continuous spectrum into a number of discrete fre-
quencies. All a linear network can do is reject or absorb
some frequencies while passing others.

!

{/SWWCH

FiG. 9. A pulse trapped in a section of line assures a line spectrum.

—
PULSE

A third question which might arise concerns the very
fact of a charged particle traveling through a medium
with a speed greater than that of an electromagnetic
wave. In the case of Cherenkov radiation, this is possible
because the particle is shot into the medium from
outside. This does not show that it is possible to
accelerate a particle within a homogeneous, isotropic
dielectric to a speed greater than the speed of a plane
electromagnetic wave in the medium, and indeed, if the
medium is linear for all field levels this would seem to
take an infinite energy under a variety of assumptions,
provided that the acceleration is small.
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