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This is the concluding part of a modernized rendition of
Poincaré’s Rendiconti paper on relativity, of which the
first two paris appeared in the November 1971 and June
1972 1ssues of this Journal. It covers the last section of that
paper, in which Poincaré develops in masterful, even if
incomplete, fashion, a generalization of Newtonian gravi-
tational theory, tnvolving retarded action-ai-a-distance
interaction that is covariant under the Lorentz group. As
the first such attempt it is of obvious historical significance.
In addition, just as the first two parts, so this part, foo,
contains material of independent interest to the historian
of the genests of special relativity.

For the purpose and scope of the present
modernized rendition of Poincaré’s Rendiconti
paper on relativity, and for the notation that is
being employed, the reader is referred to the
introductory remarks to Pt. 1 of this study
[Amer. J. Phys. 39, 1287 (1971) ]. The additional
remarks concerning notation made in the introduc-
tion to Pt. II [Amer. J. Phys. 40, 862 (1972)]
are also applicable here. Because this part of
Poincaré’s paper is of particular interest in con-
nection with its methodological aspects, including
an anticipation of the four-vector calculus, certain
relevant portions of the original text are repro-
duced here more closely than would have been
otherwise indicated.

As for the notes or comments—which, as in the
earlier parts, are either given in footnotes or
enclosed in braces in the text—these are intended
in general, ag previously, to serve only as explana-
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tion of the original text. In addition, there are
included here a few footnotes that point out
nontrivial misprints in existing French and
English literal reproductions of Poincaré’s paper
and a footnote containing references to later
work on the subject of Poincaré’s pioneering
investigation in relativistic gravitational theory.

9. HYPOTHESES CONCERNING
GRAVITATION

[277 “Thus the impossibility of making evident
the existence of absolute motion would be fully
explained by Lorentz’s theory, if all forces were of
electromagnetic origin.”

But there exist forces, such as gravitation,
which are not of electromagnetic origin.

(28] “Lorentz was therefore obliged to com-
plete his hypothesis by supposing that forces of
any origin, and in particular, gravitotion, are
affected by a translation (or, if one prefers, by a
Lorentz transformation) in the same way as are the
electromagnelic forces.”

It follows from this assumption, as applied to
gravitation, that we can no longer retain the
Newtonian theory involving an attraction between
two bodies that depends only on their relative
position at each instant under consideration. The
gravitational attraction must also depend on
“the velocities of the two bodies.” In addition,
it is to be expected that “the force which acts on
the attracted body at an instant ¢ depends on the
position and velocity of that body at the instant ¢;
but also on the position and velocity of the ai-
tracting body, not at the instant #, but at an
earlier instant, as if it took gravitation a certain
time to propagate itself.”

The equation for this propagation must there-
fore be of the form

6t x,u,m) =0, [9.1] (106)
where, x=X;—X,, X, is the position vector of
attracted body at time ¢y, x; is the position vector
of attracting body at time &, =61, and u, uy are



the velocities of the attracted body at time ¢ and
of the attracting body at time .

Let now F represent the force exerted upon the
attracted body at the time #,.! It must be expressed
in terms of

[9.2] (107)

t; X, u, uy

and the following conditions must be satisfied:

(1) Equation (106) must be covariant under
the Lorentz group.

(2) F must transform under the Lorentz
transformations (9) in the same way as the
electromagnetic force denoted in Sec. 1 by the
same symbol, i.e., according to Eqgs. (19).

(3) “When the two bodies are at rest one must
regain the usual law of attraction.” [Relation
(108) becomes then, of course, irrelevant. ]

These conditions cbviously do not suffice. The
following additional ones naturally come into
consideration:

(4) “Since astronomiecal observations do not
seem to disclose significant deviations from
Newton’s law, we shall choose the solution that
deviates least from this law when the velocities of
the two bodies are small.”

(5) “We shall attempt to arrange for ¢ to be
always negative; for if, in fact, one conceives of
the gravitational effect as requiring a certain time
for its propagation, it is hard to understand how
this effect could depend on the position which has
not yet been atiained by the attracting body.”

[297 “There is one case when the indeterminacy
of the problem disappears; this is the case of
relative rest of the two bodies; i.e., when u=uy;
this then is the case which we shall examine first,
on the assumption that these velocities are con-
stant, so that the two bodies are involved in a
common state of rectilinear, uniform, transla-
tional motion.”

By choosing for the direction of our z; axis that
of the ecommon velocity of our bodies, so that
u;=0 (j=2,3), then taking =wu in Egs. (9),
the transformed reference frame 8’ becomes the
rest frame of the bodies,? and consequently by
condition (3), we have to within a constant factor,

Fr=—x'/r®, rt=x'2

[9.3] (108)
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In applying Eqs. (19) (where it is now being
tacitly assumed that pertinent equations in Pt. I
are taken with [=1), we note that Eq. (11) now
gives

P /p=y(1—Bu) =vy(1—42) =y,

and that F.-u=gFy, so that the transformation
equations for F reduce to

F/=Fy, Fj=~F; (7=2,3).

Hence, using Egs. (108) and (9), we find

Fi=—ny(zi—ut) /r%,  Fi=—a;/yr’
(7=2,3) [94] (109)
or
F=vV, V=1/y’, [9.4bis] (109")
where

72 = (2 — ut) 2Pt gt (109"

This result would appear to depend upon our
choice of an hypothesis concerning ¢, “but it is
easy to see that x;—u,t, which alone appear in our
formulas, do not depend on £.7?

We also see that the force acting on the at-
tracted body is normal to an ellipsoid whose
center is at the position of the attracting body.

“In order to make further progress, it is
necessary to look for the wnvariants of the Lorente
g,)/.a‘up'Jl

“We know that the transformations of this
group (taking I=1) are the linear transformations
which do not change the quadratic form x*>—¢2’
But this form can be written as apz,+ (48)2=
Zal, (=1, 2, 3, 4), introducing the notation
24=11.5 1t can therefore be seen, since the quad-
ruplets (z.), (dz,), (dx1,)® transform in the same
way under Lorentz transformations, that these
quadruplets may be considered as ‘‘the coordinates
of three points P, P/, P” in four-dimensional
space,” and that ‘“the Lorentz transformation is
but a rotation of this space about a fixed origin.
It follows that the only independent invariants
are “the six distances of the three points P, P’, P”
from each other and from the origin”; in other
words,” the six scalar products z,t., Z.dz., ete.,
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that can be formed from the four-vectors cor-
responding to P, P’, and P".

But what we actually need are not these in-
variants themselves but the invariant combina-
tions which are homogeneous of degree zero with
respect to the dz, and the diy,, since what we
must find are suitable “invariant functions of the
variables’”’ (107). There are only four such com-
binations, namely,?

Lala; (t—x-u) (1_u2)—1/2?
(t—x-u) (1—u?) 3

(1—u-u)[(1—u?) (1—-u?) T2 [9.5] (110)

Turning now our attention to the transforma-
tion properties of the force components, we are
guided first by Eqgs. (18), which show that if we
write f-u=f, then

(.7.227 3)
[9.6]

H=v(f1—8f), [i=f;

' =7 fo—Bf1), (111)

so that f, (=0, 1, 2, 3) are the components of a
(real) four-vector. On the other hand,

F,=f./p (»=0,1,2,3; Fo=F-u), (112)
and by Eq. (11) {I=1),
p/p'=1/y(1—Bur) =di/dt". (1127)

Hence (1—u?)~12F, are the components of a
four-vector, and by reasoning similar to that used
previously we find the additional four invariants®

(Fr—F)(1—w),  (F-x—Fyf) (1—u?)~7,
(Fru—Fo)[(1-u?) (1—us) ]2,

(F-u—Fo) (1—uw®), [9.7] (113)
of which the last vanishes identically by virtue of
the definition of Fy [in Eq. (112)].

Wenow have to satisfy the following conditions:

(a) The left-hand side of Eq. (106) must be a
function of the four invariants (110).

(b) The invariants (113) must be funetions of
the invariants (110).

(¢) “When the two bodies are in a state of
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absolute rest, F must have the value deduced from
Newton’s law, and when they are in a state of
relative rest, it must have the value deduced from
Eqgs. (109).”

As to condition (a), “many hypotheses can
obviously be made, of which we shall only examine
two” [given by the vanishing of the first two
invariants in Eq. (110) T

(A) X=12=12, (B) x-u=t.

At first sight it might appear that (A) has to be
rejected on the basis of Laplace’s proof that the
propagation speed of gravitation, if not infinite,

must exceed that of light—

7307 “But Laplace has examined the hypothesis
of a finite propagation velocity ceteris non mutatis;
here, on the contrary, this hypothesis is entangled
with many others, and it can transpire that there
exists between them a more or less perfect mutual
compensation of the kind for which the applica-
tions of the Lorentz transformation have already
provided us with so many examples.”

At the same time, hypothesis (B) must be
rejected because although it agrees with Laplace’s
result, it can 1n some instances conflict with
condition (5).° Hypothesis (A), on the other
hand, always agrees with that condition, upon our
choice of the solution

t=—r. (114)
We therefore adopt hypothesis (A).

Combining now conditions (b) and (¢) “for
the case of absolute rest, the first two invariants
(113) must reduce to F? and F . x, or, by Newton’s
law to

g4

, —rt (115)

on the other hand, by hypothesis (A) [i.e., by
Eq. (114) ] the second and third invariants (110)
become

(—r—xem) (1—u) e,

(116)

(—r—x-u)(1—u?)717

1.e., for absolute rest
(117)

—r,



We can therefore assume, for example, that the
first two invariants (113) reduce to'

(1—a?) (r+x-uy) ™,

— (1 —uad) 2 (r+xu)

but other combinations are possible.”

“Tt is necessary to make a choice between these
combinations, and we require also a third equation
in order to determine F.” We take now into
account condition (4). First we note that if we
neglect the squares of w; and w, and use Eg.
(114), then the invariants (110) and (113)
become, respectively,

(118)

0, —r—x-u, —r—X-1y, 1,

and

F?, F-(x+r), F(u;—u), 0. (119)

But we must also bear in mind that in the
Newtonian theory we have =0, where ¢ is defined
in connection with Eq. (106), so that in the
present approximation we can neglect higher
powers of { than the first, and we may thus
“proceed as if the motion were uniform.” Con-
sequently,?

x=x%:(0) Fuid, r{r—r) =X-uy,

where x,(0) is the position vector of the attracting
body relative to the attracted body at the time #,
r=|x(0)], and r= | x| [See (A)]; or by Eq.
(114),

x=x%(0) —uyr, r=ri—X-u;. (120)
Eqgs. (118) and (119) thus become
0, —r+ X (mp—u), -1y, 1 (121)

and [writing now x; for x,(0)]

F2) F. [X1+ (u—~u1)7"1], F- (lll_u) ’ O:

(122)

where in the second of expressions (122) we have
replaced r by 7y, since it is multiplied by u—u,.
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On the other hand, with F given by Newton’s
law, the expressions (119) take the form
r, —rrt—xe (u—u) i, X (u—w)rd, 0.
“If then we denote the second and third invariants
(110) by A and B, and the first three invariants
(113) by M, N, P, we shall satisfy Newton’s law
to within terms of the second order in the velocities
by putting’’*?
M =B,

N=A4B—  P=(A-B)B—

[9.8] (123)

This solution is, however, not unique: since

(A~ B)2and C'—1, where € is the fourth invariant
(110), are of the second order in the velocities,
“we may add to the right-hand sides of each of
Egs. (123) a term”
(C-D)fi(4, B,C)+(A—B)fe(4, B, (), (124)
where fi and f, are arbitrary functions. On the
other hand, the solution (123) as it stands is not
acceptable, because it can lead in some cases to
nonreal values of the F;, since the quantities M, N,
P are functions of the F; as well as of Fo=F-u.

“In order to avoid this inconvenience, we shall
proceed in a different manner.” We observe that
the invariants (110) can be put [using Fq. (114) ]
in the form

0, A=—y(rt+xu), B=-n(+zuw),

C=ym(1—u-u),
where we have introduced the symbols

Yo=(L—w)=2,  y=(l—u?)7, (124
“by analogy to the notation v = (1—43?)~*/? which
appears in the Lorentz transformation,” and that
“the following systems of quantities

(X7 t= _,") ’ ('YOF) 70F0); ('YO“: 'YO)) ('Yluly 'Yl)
undergo the same linear transformations when

they are subjected to the transformations of the
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Lorentz group. We are then led to put”

F,. = a'yO"‘x,.-{- bup+ C’YO—I'Ylulv

(»=0,1,2,3; uo=up=1), [9.9]

(125)
which is obviously a four-vector provided a, b, ¢
are four-scalars (i.e., Lorentz invariants).

“But for the compatibility of Eqs. (125) it is
necessary {in order to agree with the definition of
Fy [see (112)7]} that

F'u—F():O,

which becomes upon replacing the F, by their
values (125) and multiplying by v '*:
aA+b+cC=0. [9.10] (126)
“What we want is that if we neglect in com-
parison with the square of the velocity of light,
the squares of the velocities u., as well as products
of accelerations and distances, then the values of
the F, remain in agreement with Newton’s law.”’1s
To this order of approximation, we have

C=1,
B=—-T1.

Yo=v1=1,

= ——7'1+X' (ul—u),

If we make then the simple choice [compatible

with Eq. (126) ]
b=0, c=—aA/C,

we find, using Fgs. (120), that the three-vector

part of Eq. (125) becomes

F=a(x—Aw) =a(x+ru) =ax,(0).

Since by Newton’s law, F=—x;(0) /r, “we must
choose for the invariant a the quantity which
reduces to —r~% within the adopted order of
approximation, that is B—%.” Equations (125)
agsume then the form

F, =B, — vy AB=C g, [9.117 (127)
[31] “We see at first that the corrected attraction
consists of two components; one parallel to the
vector joining the positions of the two bodies, the
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other parallel to the velocity of the attracting
body.”

“Let us recall that when we speak of the posi-
tion or the velocity of the attracting body, we
refer to its position or velocity at the instant the
gravitational wave leaves it {i.e., at the retarded
time, #} ; whereas the position and velocity of the
attracted body are referred to the instant when
the gravitational wave reaches it, this wave being
assumed to propagate with the velocity of light.”

“T believe that it would be premature to wish to
push the discussion of these formulas any further;
I shall therefore confine myself to a few remarks.”

1. “The solutions (127) are not unique’ since
we can add to the common factor B3 the quantity
(124); “or not take b =0, but add arbitrary terms
to a, b, ¢ provided they satify condition (126)
and are of second order in u, as far as a is con-
cerned, and of the first order as far as b and ¢ are
concerned.”

2. The three-vector part of Eq. (127) can be
written'®

F=vB3C ' [(1—u-u)x+ (r+x-0)u ],

[9.11bis] (128)

and the quantity in brackets can be written as

(x+ru)+[ux (uyxx)], [9.12] (129)

so that F appears to consist of two components,
the first having ‘“‘a vague analogy to the me-
chanical force due to the electric field,” and the
second to “the mechanical force due to the
magnetic field.” This analogy can be improved by
getting rid of the factor C—* in Eq. (128), the
resulting expression depending then only linearly
on u. This can be done by applying remark 1
“to replace B~ by CB~%in Eqgs. (127).'7
“Setting now
vi(x+ru) =\,  wm(wxx)=N, [9.13]
it follows, since C has disappeared from the
denominator of (128), that

F=B-\+B-3ux\), [9.14] (130)



and one also has (as is easily checked)
[9.15]

Then X or B—*\ is a kind of electric field, while A’/
or, rather B—3)\, is a kind of magnetie field.”

3. “The postulate of relativity would force us to
adopt either the solution (127) or the solution
(130), or any one of the solutions that can be
deduced from them by using remark 1. But the
primary question is whether they are consistent
with astronomical observations. The deviation
from Newton’s law is of the order of «?, that is,
10 000 times smaller than if it were of the order of
u, that is, if the velocity of propagation were equal
to that of light, ceteris non mutatis.’® It is therefore
permissible to hope that it will not be too great;
however, only a more penetrating discussion could
tell us that.”™s

Br=\2— )",

1 The original text contains here the phrase ‘“‘at the
instant ¢,”’ a misprint which has not been corrected in either
the French or English (partly edited) reproductions of the
original paper, namely, those contained in H. Poincaré,
La Mécanique Nouvelle [conférence, mémoire et notes sur la
théorie de relativité. Introduction de m. Eduward Guillaume ]
(Gauthier-Villars, Paris, 1924), and in C. W. Kilmister,
Special Theory of Relativity (Pergamon, New York, 1970).
These will be referred to by the respective symbols (G)
and (K).

2z The original statement here reads: ““the two bodies will
be at rest after the transformation,” i.e., the bodies will be
in a state of absolute rest, this being clearly implicit in the
wording of condition (3).

3 Since assumption (3) is being used, we could simply set
t=01in Egs. (109), or (109’) and (109").

4 See the discussion following the third paragraph after
Eq. (40).

5 No such symbol is introduced in the original text.

¢ The original symbols 8.z, 81y, 82z and & are replaced
here by dx; and df;. The convenient symbol & to represent
to+¢ is not introduced in the original text, but from its
context it is clear that §;x =34z, etc., in Poincaré’s notation
for differentials. The reproduction of this notation in the
present connection in () and (K) (see Ref. 1) is incon-
sistent with the editing of Poincaré’s notation for deriva-
tives found elsewhere in these references.

7 We introduce at this point the convenient four-vector
formalism. Had Poincaré adopted the ordinary vector
calculus that was already in use by theoretical physicists—
for example, Lorentz and Abraham—for some time, he
would have in all likelihood introduced explicitly in the
present connection the convenient four-dimensional vector
caleulus.
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8 The second expression in (110) can be written
yo(t—X+1) (vo—vo?u?) "2, where v, is defined later in
(124’). Bince (o, vou) is a (real) four-vector (in fact, the
velocity four-vector, in modern terminology), the invari-
ance of this expression—and in a similar way, of the last
two expressions—is apparent.

¢ Compare Ref. 8. The proof in the original text is based
directly on Eq. (112’), which implies that F, and 4, (u¢=1)
transform in the same way under Lorentz transformations
(as four-vectors except for the missing factor ).

0 There is a misprint here in the original text, which
reads ‘‘but in certain cases, ¢ could be negative’” (instead of
“positive’’), which has been reproduced in (G) and (K).

11 By choosing the second expression in (116) to com-
pare with (117), and then taking account of (115).
The misprints “invariants (4)”" [for “invariant (7)”7] is
reproduced in (K) and changed to the wrong “invariants
(5)” in (G).

12 The second equation follows from the first, when higher
powers than the first in the material velocities are neglected.
We introduce here temporarily the symbol z;(0) to replace
the symbol z; in the original text, because the latter symbol
has been employed here previously in connection with
Eq. (106).

13 There is a misprint in (K) in the second equation of
[9.8].

U With g-b=aby—abd: (=a,b*), we have v?F-u=
ayer-u-+byusu-+cyoyiurru, and by (110), vyomeu=A4,
vyoyrureu =C, while vo?u-u as the ‘‘square’” of the “four-
velocity’” vou is 1 (remembering that we are using units
with ¢=1.)

15 This is a more precise statement of condition (4)
introduced in the beginning of this section.

16 Recalling that 4 =ve(t—x-u), C=voy1(1—u-u), and
using Eq. (114).

1 By taking f1=B"% and f,=0 in expression (124).

18 This sentence is rather obscure. Tts meaning becomes
clear when we read the corresponding part of the con-
cluding paragraph in Poincaré’s note on the subject of his
Rendiconti article [Compt. Rend. 140, 1504 (1905)]:
“The deviation from the ordinary law of gravitation is, as
I have said, of the order of £2 {i.e., ¥?}; if one only assumes,
as was done by Laplace, that the velocity of propagation
is that of light, this deviation would be of the order of £,
that is, 10 000 times larger.” (Cf. [307).

18 Such a discussion was presented a few years later by
W. de Sitter [Monthly Notices Roy. Astron. Soc. 71, 388
{1911) ] and quite recently, as part of a general discussion
of special relativistic theories of gravitation, by G. J.
Whitrow and G. E. Morduch [Nature 118, 790 (1960);
also, “Relativistic Theories of Gravitation” in Vistas n
Astronomy, edited by A. Beer, Editor, (Pergamon, New
York, 1965), Vol. 6, pp. 1-687. A brief summary of special
relativistic theories of gravitation is contained in H. M.
Schwartz, Iniroduction to Special Relativity (McGraw-Hill,
New York, 1968), Appendix 7B (errata sheets can be
obtained from the author).
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