Physical Significance of the Poynting Vector in Static Fields
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Even in static fields, where there is no observable energy flow, Poynting vector momentum
must be considered to avoid an apparent violation of the angular-momentum law. This often-
neglected aspect of the Poynting vector, is illustrated in an easily calculated example. Two
other simple and rigorously solvable pedagogical examples illustrate the role of the Poynting

vector in defining the energy flow in static fields.

T is conventional to use the Poynting
vector S=E xH, where H is defined by
H=(B—9M)/us, to represent rates of flow of
energy and momentum in electromagnetic waves.
This vector, however, is seldom applied to situa-
tions where the electromagnetic fields are static.
A permanent magnet placed in a static electric
field usually results in nonzero values for S that
indicate energy flowing in closed paths with
zero divergence which cannot be observed.
Since S is usually defined only in terms of its
divergence, an infinite number of functions such
as 8'=E xH-+f, where V-f=0, satisfies this
definition.

Not surprisingly, doubts have often been ex-
pressed concerning the physical significance of
such divergence-free energy flows.! However, the
angular momentum implied by the conventional
Poynting vector cannot be ignored. Specifically,
the addition of a function f, v-f=0, to the
Poynting vector will, in fact, change the physical
significance of the vector unless the net angular
momentum implied by f is constant with time
(regardless of what physical experiment is per-
formed). The changes in net angular momentum
implied by the conventional Poynting vector
are essential to the conservation of angular

1 As an example, one reviewer of this paper has called
our attention to an article published in this Journal by one
of the authors [E. M. Pugh, Am. J. Phys. 32, 879-883
(1964)] where such a caveat was inserted and worded too
strongly (p. 882) in response to comments by another re-
viewer. In the earlier text [E. M. Pugh and E. W. Pugh,
Principles of Electricity and Magnetism (Addison-Wesley
Publ. Co., Inc., Reading, Mass., 1960)] the Poynting
vector is used for static fields without restriction,

momentum. As Feynman? concludes concerning
such static fields, “There really is 2 momentum
flow. It is needed to maintain conservation of
angular momentum in the whole world.”

Our purpose is to underline the operational
significance of this statement, using a gedanken
classical experiment in which the relevant field
energies and momenta are confined to a finite
space where the energies, momenta, and fields
can be exactly calculated.

Imagine a solid sphere of radius ¢, consisting
of a ferromagnetic material with a uniform mag-
netization parallel to the z axis. For simplicity,
consider the sphere to be a nonconductor covered
with a thin conducting film, so that any current
flow is confined to the surface, as illustrated in
Fig. 1. Let this be surrounded by a spherical
shell of nonmagnetic metal having the inner
radius . Assume both spheres to have negligible
resistivity. If charges of +-Q and —Q are placed
on the inner and outer spheres, respectively, an
electric field confined to the space between
spheres will result. This electric field combined
with the magnetic field from the inner sphere
will produce values of E x H that circle the z axis.

Assume the two spheres to be free to rotate
without friction about the z axis. Start with the
spheres at rest and uncharged, so that the system
initially has no angular momentum.

Next, slowly charge the two spheres, bringing
equal but opposite charges along a coaxial cable
whose axes coincide with the positive z axis as

*R. P. Feynman, The Feynman Lectures on Physics

{Addison-Wesley Publ. Co., Inc., Reading, Mass.
Vol. 2, 27, 11, eading, Mass., 1964),
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F1c. 1. Nonconducting sphere surrounded by two con-
ducting spherical shells of radii ¢ and 4. The inner sphere
is solid and magnetized.

shown in Fig. 1. The resulting electric currents
in the sphere interact with the magnetic field
(F=J xB) producing opposite but nof equal
angular momenta in the two spheres. The com-
bined angular momentum of the two spheres is
not zero. Thus, a system originally with no
angular momentum and with no angular mo-
mentum being introduced is given a net me-
chanical angular momentum.

First let the magnitude of the charging cur-
rent be computed. Assume a positive charge
flows on to the inner sphere and a negative
charge flows on to the outer sphere, the mag-
nitude of each being Q. Further assume the
charges flow onto each sphere so slowly that
they can always be considered as uniformly
distributed over each spherical surface. The mag-
nitudes of these uniform charges are g=g¢(i),
where

ﬁ " qWdt=0.

The current past a point P on the outer sphere
can be derived from the rate of change of the
negative charge below the zone of P. This
charge is —g(1+cos)/2 and its rate of change
is —{ (14cosf)/2}dg/dt. Hence the total current
J flowing past the zone of P is given by

J=—ag[3(1+cosh)](dg/dt)

and the rotational force per unit zone width at
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P is given by

J xB=7 x (9Ma?/36%) (2a, cosf-+ay sind)
=% (1-+cosb) (dg/dt) (Moa®/36%)a,2 cosh.

The force on the zone width bdf at P is
dF =a, (Mea®/3b2) (1+cosh) cosbds (dg/dt),
and the resulting torque about the axis is
dL = (Mea/3b) (1+4-cosh) sinf cosbdd (dq/dt).

Now the angular impulse delivered to the zone
of the outer sphere between 8 and §-+d# is

dl= / dLdt,
0

or

Moa? © dg

(1+cosf) cosf sinfdd | —dt,
3b o di

al = (QWea®/3b) (14cosh) cosh sinddd

al=

and the total angular impulse delivered to the

outer sphere is
Iz,=/ al,
0

/ (1+cosh) cosf sinddd,
0

which gives
QM ea®
3b
Iy =(2/9) (QMea?/b).

Iy=

The same type of analysis shows that the total
angular impulse delivered to the inner sphere is
I,=—1(2/9)(QMa?/a). Thus the net impulse is

I=1I+1Ty=—(2/9)(QMea®) [ (1/a) — (1/8) ],

which must give the net mechanical angular
momentum of the system if the spheres rotate
without friction.

Thus, a system having no angular momentum
has been taken and, without adding any angular
momentum, has been transformed into a system
containing a net mechanical angular momentum.
This appears to violate the law of conservation of
angular momentum. However, there is a Poynt-
ing-vector flux circulating about the g axis in the
existing static fields. Let us investigate its
angular momentum. The magnetic field due to
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the uniformly magnetized sphere is
H= (9a?/3ue?) (2a, cosf-+as sind)

from r=a to r=">0. The electric field exists only
between the spheres. [ts value is E=a,Q/4mre>
The Poynting-vector momentum density is

p=S/C?=2a,(MQa® sind/1 2w oecC%°)

or
a, (M,Qa® sind/127r%),

since C%uoep=1. The total angular momentum of
the Poynting vector is given by

P:/pr sinfdr

21 A pb mOQas
= / / / 72 s1n’0d¢dodr
o JoJa 12wt

P=(2/9)(29Qa®)[(1/a) — (1/6) ].

As expected, the inclusion of the Poynting
vector in the preceding “‘experiment’” provides
a rigorous accounting for the change in me-
chanical angular momentum. Obviously, the
same results will apply in the limit where b — =.
Thus, for example, the earth might be thought
of as a charged magnetic sphere, which would
have a significant circulating Poynting-vector
flux.

In the preceding calculations, we have dealt
only with the ¢ component of the Poynting
vector (which remains after the charging of the
spheres is complete). During the actual charging
process, there is also a small # component which
results from the interaction of the static electric
field with the magnetic field produced by the
charging current itself (this field was ignored in
the previous calculation). As guaranteed by the
divergence derivation of the Poynting vector,
this 6 component is exactly the size required to
account for the spatial distribution of the electro-
static energy accumulated in the field between
the two spheres.

The existence of such a simple configuration,
where angular momentum can be conserved only
through the Poynting vector, should help dispel
doubts about its reality. Although, the magni-
tude of the effect is too small to be easily ob-
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served, it is sufficiently large that modern experi-
mental techniques, cleverly applied, might be
able to detect or even measure the effect.

The foregoing analysis is all that is required to
demonstrate our basic point concerning the
“physical reality’’ of momentum carried by the
Poyating vector. There are, however, a couple
of details of the way momentum is absorbed by
the field in the ‘‘experiment’” which may be
puzzling to some, and may merit some comment.

Although the net integrated torque experi-
enced by the spheres is exactly right to account
for the momentum in the field, the ¢ distribution
of the torque does not correspond to the re-
sultant @ distribution of momentum in the field.
In particular, the torque on the spheres is
largest in the upper hemispheres where the
charging current is largest; but the resulting
field momentum is symmetrical about the equa-
tor. If one imagines a modification of the experi-
ment so that separate 8 zones of the spheres are
free to rotate independently, one would find that
the mechanical angular momentum on a zone-
by-zone basis would not balance the angular
momentum of the field on a corresponding zone-
by-zone basis. One wonders how the symmetry
of the Poynting vector about the equator is
established when the initial interaction of the
spheres with the field is concentrated in the
upper hemisphere. Apparently, angular momen-
tum for Poynting vector is transported through
the field from the upper to the lower hemisphere.
The simple Poynting vector, of course, has
nothing to say about this momentum transport
since no net flow of energy is involved. Pre-
sumably a more complete analysis, using the full
Maxwell stress energy tensor, would be required
to account for this momentum transport.

Secondly, it is interesting to note that in this
experiment, as in any situation where an electro-
static field is superimposed on an existing mag-
netic field, the addition of a small amount of
electrostatic energy can result in a polarization
of the momentum state for a much larger
quantity of energy present due to the initial
magnetic field. Consider an arbitrary point in
the field. At any time in the charging process the
energy density is given by

U=3el?+ 3u0H?
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while the momentum density is given by
P=(eouo)*|E xH]|.

The value of U is quadratic with E while P is
linear with E. At the beginning of the charging
process, 0U/dE=0 but dP/9E is finite. Thus
the initial change in angular momentum must
result primarily from a change in the momentum
state of energy already in the field. It cannot be
attributed exclusively to the momentum of the
energy added.

There are other interesting and informative
problems in connection with static fields near
dc circuits. For example, consider a small storage
battery centrally placed between two large
parallel disks. If the disks are metallic, circular,
and of large diameter, the electric field in the air
space between them will be perpendicular to
their surfaces and equal to the potential differ-
ence divided by the distance between the plates.
For simplicity consider the plates of the battery
also to be disks, but of much smaller diameter,
with centers on the axis of the larger disks.
This configuration is connected to external cir-
cuits through superconducting wires attached to
the centers of the large metallic disks.

(1) When the battery is being charged, the
vector S=E xH between the disks but outside
the battery will be directed radially inward to-
ward the battery. The integrated flux of S will
be the same at different radial distances and
will be equal to the power flowing into the
battery to appear as chemical and heat energy.

When the same battery is discharging, the
electric current and the magnetic field are re-
versed, so the Poynting flux is directed outward.
The total Poynting-vector flux then equals the
rate at which chemical energy is being converted
to electrical energy minus the energy appearing
as heat within the battery.? A complete circuit

3 If the source of this flux were traced in detail inside
the battery, it would be found to originate at the interfaces
between the battery plates and the electrolyte, where
chemical energy is converted to electrical energy and where
quantum effects force the electrons to flow in a direction
counter to the prevailing electric field.
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might involve one such battery charging another
such battery of lower voltage. Obviously, the
Poynting flux emerging from the first finds its
way into the second battery, but it is not easy
to follow this flux in greater detail.

(2) The difficulty in following the Poynting
flux from one battery to the other can be elimi-
nated by placing these same batteries between
concentric spheres instead of between parallel
disks. Let the z axis pass vertically through the
center of these spheres. Center the discharging
battery on the z axis, and connect it between
the top two points where this axis passes through
the surfaces of the two spheres. Similarly, con-
nect the battery being charged between the
bottom two points where the z axis passes through
the spherical surfaces. If the resistance of the
spheres can be neglected and the positive ter-
minals of both batteries are connected to the
inner sphere, the electric field in the space be-
tween the two spheres will be given by

E=a,Vab/(b—a)¥?,

where a, is a unit vector parallel to an outward
drawn radius, V is the potential difference be-
tween the spheres, # is the radial distance from
the center to the field point P, and ¢ and b are
the radii of the inner and outer surfaces, re-
spectively. If T is the total current, then at P

H=—a,I/(2wr sind)
and
S=E xH=a,[ VI/ (277 sing) Jab/(b—a).

The flux of S past any zone at =46 is then

b

/ Se2wr sinfdr = V1,

which is just equal to the power flowing from the
battery at the top to that at the bottom. These
problems have been found to be good illustrative
problems for students.



