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Generation of Remote Homogeneous Magnetic Fields
Yuly M. Pulyer, Life Member, IEEE,and Mirko I. Hrovat

Abstract—This paper presents a magnetic efficiency model for
comparing efficiencies of various magnets for magnetic resonance
imaging. It demonstrates that monohedral magnets, magnets with
sources on one side, can generate remote saddle points in the field
profile relatively efficiently. These magnets may be modeled by a
minimum of two magnetic dipoles. The paper examines the field
profile and magnetic dipole efficiency for the two-dipole model in
detail, and develops some fundamental properties of homogeneous
magnetic fields.

Index Terms—Field homogeneity, magnetic resonance imaging,
magnets, MRI, remote fields.

I. INTRODUCTION

FOR MANY applications, it has become increasingly im-
portant to consider magnet designs which provide conve-

nient access to the target region of the magnet, usually the center
of the magnet structure [1]–[3]. The target region may be de-
fined as the volumetric region which has the desired magnetic
field profile for an application. In the case of MRI magnets, it is
desirable for the target region to be homogeneous within some
specification. Magnet designs have generally consisted of ei-
ther two-sided (two poles) or cylindrical structures. The suffix
“hedral,” from the Greek “hedron” meaning “side” or “seat,”
is used to describe in a simplistic manner the different types
of magnets which may be designed. The traditional electro-
magnet with its two pole faces may be described as a “bihedral”
magnet while the cylindrical solenoid may be viewed as an in-
finite sided “polyhedral” magnet. Currently, in order to provide
convenient access to the target region, various bihedral magnets
have been used [1]–[7]. Recently, another type of magnet has
been proposed which provides even more “open” access. This
is achieved by placing the magnetic sources to one side; hence,
they are “monohedral” [8]–[15]. These “monohedral” magnets
have also been termed “unilateral” [8] and “planar” magnets
[12]–[15]. A monohedral magnet has a target region which is not
within the magnet structure. Thus, the target region may be con-
sidered to be external or “remote” from the magnetic sources.
The term “remote” is used to indicate that the target field is not
encircled or enclosed by the magnetic field sources, whether
they consist of currents or magnetic dipoles. Thus, a “remote”
target region is more accessible or “open.” It may seem unlikely
that a monohedral magnet can produce a remote homogeneous
field and it may be expected that the magnet is less energy effi-
cient. However, accessibility to the target region lessens the im-
portance for energy efficiency, and hence, the investigation of
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these types of magnets is worthwhile. Furthermore, as will be
shown, the loss in efficiency for an open magnet may be small.

II. OVERVIEW OF MAGNET TYPES

A. Magnet Configurations

To lay the groundwork for the design of “open” magnets,
we present an overview of several magnet configurations.
This overview has been essential in recognizing key aspects in
magnet design and has provided a method for classification of
different magnet types. Several magnet structures are presented
in Fig. 1, superimposed with their corresponding magnetic field
profiles. Within each figure an equivalent dipole representation
and anextrema map, which is discussed below, are provided.

Consider the traditional single solenoid magnet as shown in
Fig. 1(A) [16]. It produces an internal axial field which has a
maximum along the axis at the center of the coil. If the axial
field profile is considered in a radial direction, then the axial
field is a minimum at the center of the coil. This center point is
more accurately described as a saddle point with the concomi-
tant property that the first spatial derivatives are zero. The prior
literature defines the order of a magnet in terms of the order of
the derivative which is first not equal to zero at the center of the
homogeneous region [17], [18]. Hence, a region homogeneous
to third order has the first and second derivatives of the field pro-
file at the center equal to zero. By this convention a first order
magnet has no derivative components equal to zero. Preferably,
the order of a homogeneous region may be defined in terms of
the number of successive derivatives that are equal to zero at the
center of such a region. In this paper, we adopt this convention,
whereby the number of successive derivatives equal to zero will
specify the “derivative order” of the magnet. Hence, the example
of the third order magnet may be specified as having a second
derivative order region. Furthermore, in regard to the solenoid
of Fig. 1(A), it is noted that the external field profile of the so-
lenoid has no saddle points and decays asymptotically to zero
from the external surface of the coil.

A representation of these features is presented in Fig. 1(A)
as anextrema map. The map is a schematic representation of
the relative locations of maxima, minima, and saddle points in
the magnetic field profile. Qualitatively the map also serves as a
“fingerprint” for the magnetic field profile and thus for a magnet
configuration. Saddle points are indicated with an “X” symbol
while points of field maxima and minima (minimax points) are
indicated with a solid circle, “”. Maxima and minima are lo-
cated at the inner and outer surface of the solenoid. Both of these
extrema are simultaneously indicated with a single solid circle.
The location of a maximum or minimum near a magnetic source
is a consequence of the divergence of the field being equal to
zero in free space. Thus, maxima and minima only exist adja-
cently to sources. Since the solenoid has cylindrical symmetry,
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Fig. 1. Illustration of several magnet designs with qualitative field profiles. An extrema map and equivalent dipole schematic of each magnet is provided.
(A) Solenoid. (B). Split-coil. (C) Split permanent magnet. (D) Opposed coil. (E) Opposed permanent magnets. (F) Pan-cake coil. (G) Bihedral iron core magnet.
(H) Monohedral iron core magnet. (I) Four-dipole monohedral magnet. (J) C-magnet. (K) Double C-magnet.

these points actually form a ring. The cylindrical symmetry is
schematically indicated with the ellipse while the filled circle
on the ellipse indicates that the ring is a ring of maxima and
minima, (a minimax ring). The use of the ellipse to represent
circular or elliptical symmetry may be extended to represent a
ring of saddle points or even a ring of dipoles. The choice of
view-plane for the extrema map may be simply determined as
the orientation which produces the greatest number of features.

In addition, the external field profile is analogous to that
created by a single magnetic dipole and hence the solenoid
may be equivalently represented as a single dipole, as shown
in Fig. 1(A). It is necessary to point out that the extrema map
of the solenoid is not accurately given by a single dipole. As
the diameter of the solenoid decreases, the minimax ring and
saddle point collapse to a single minimax point. Thus, in terms
of the remote field behavior a minimax ring encircling a saddle
point is equivalent to a magnetic dipole, as represented by a
single minimax point.

If the solenoid is split into two parts as illustrated in Fig. 1(B),
then the external field profile radically changes. The external
field has a saddle ring (a ring of saddle points) which encir-
cles the center of the coil pair while along the axis there are
three saddle points, which exist at the extrema of the axial field
profile. Since this split-coil design provides physical access to
the central saddle point region, it is in use currently for mag-
netic resonance therapy (MRT) applications [1]–[3]. The dipole

equivalent of the split-coil consists of two colinear dipoles as is
shown in Fig. 1(B). A permanent magnet analog of the split-coil
magnet is shown in Fig. 1(C) and has been proposed for a minia-
ture endoscopical MRI magnet design for external imaging [19].
The dipole equivalent of this magnet is the same as that of the
split-coil magnet, though the external saddle ring is being used
in this application instead of the central saddle point. Thus both
of these magnets, split-coil and split-magnet, may be classified
as a colinear dipoles magnet type.

From these examples, a simple rule may be generated which
allows us to create the equivalent dipole model from the extrema
map. A dipole may be substituted for every solid circle and for
every minimax ring. It is not necessary that the minimax ring
encircles a saddle point. The orientation of the dipoles is then
determined by the location of the saddle points.

If the current polarity is reversed in one of the coils to create
an opposed-coil magnet [Fig. 1(D)], then an external saddle ring
is created for the radial field component [20]. This is clearly
shown in the extrema map. The orientation of the field at the
saddle point may be evident, but for added clarity it may be de-
sirable to label the two saddle points, as we have in Fig. 1(D),
with an “A” to indicate that the field is aligned along the axial
direction while the saddle ring is labeled with an “R” for a field
aligned along a radial direction. A permanent magnet analog
also exists [Fig. 1(E)] for a medical application [7] and is in use
for an industrial application (21). These two magnets may be
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classified as a colinear opposed dipoles magnet type as given by
their dipole model. A further generalization of the opposed-coil
design leads to the magnet depicted in Fig. 1(F). The difference
in diameters (or ampere-turns) of the two coils provides a shift
of the saddle point with one of the saddle points moving to a
point external to the two coils [8]. The concept has been fur-
ther expanded as “Pan Cake” superconductive magnets [9], [11].
Again, the dipole equivalent is represented by two colinear op-
posed dipoles; however, one is now larger than the other. For
completeness, it should be mentioned that there is a magnet de-
sign based upon two unequal colinear dipoles [10]. This design
is unusual in that a saddle point is not directly generated. Instead
the field has a static linear gradient which can be cancelled dy-
namically by gradient coils.

All of the magnets mentioned above have dipole equivalents
which are represented by colinear dipoles. The bihedral geome-
tries of Fig. 1(B) and (C) produce a field which is parallel with
the symmetry axis of the magnet. Fig. 1(G) illustrates a bihedral
geometry that produces a field which is parallel with the sides
of the magnet [6]. In this case the bihedral magnet has a fer-
romagnetic core. A saddle point is found centrally between the
two pole pieces. Like the split-coil design [Fig. 1(B) and (C)]
the magnet does provide some limited access to the central re-
gion. The equivalent dipole model is more complex since four
dipoles are now needed to represent the configuration. If half of
the magnet is removed, say for example the right half, then there
will remain a saddle point at the same position. This feature is
preserved in the equivalent dipole representation since removal
of two of the dipoles in the right half still preserves the saddle
point. This is not true for any of the prior magnets considered.
The monohedral design created by removal of half of the magnet
is shown in Fig. 1(H) [13]–[15]. In this case, the dipole equiva-
lent is analogous to that in Fig. 1(D) and (E) with rotation of the
dipoles by 90 (antiparallel dipoles). Without an iron return, an-
other saddle point would be present, as is shown by the dashed
“X” in the figure. This is the expected map that would be ob-
tained by two antiparallel dipoles. With the presence of the iron
return, only one saddle point exists.

A better understanding of how a remote field is generated by
the magnet in Fig. 1(H) is provided by Fig. 2. In Fig. 2 a su-
perimposed pair of rectangular current loops is depicted. In this
orientation, the net magnetic field is zero. As one shifts the two
coils with respect to each other, two remote saddles point are
generated. Eventually, as the separation increases, a maximum
value is reached which then diminishes as the separation is in-
creased further. The contribution of each current element to the
total field is depicted in Fig. 3. Even though this type of con-
figuration for a magnet is expected to be more efficient than the
opposed coil or “Pan Cake” magnet [Fig. 1(F)], there can be
perceived an inefficiency due to the pairing of the current wires
in the pole faces. In Fig. 3, the contributions of the four current
wires to the net magnetic field are shown vectorially. The two
current wires in the center contribute to while the two outer
current wires contribute to . Clearly the magnet efficiency
can be increased by reducing . This could be achieved by
moving the outer current wires farther out, but at the expense of
increasing perimeter copper losses.

As Fig. 2 is instructive in understanding the field produced
in Fig. 1(H), Fig. 4 is instructive in understanding the field pro-

Fig. 2. Illustration of how two coils shifted in the plane of the coils produces
a remote saddle point.

Fig. 3. Contribution of the horizontal current elements to the magnetic field
for the two coils of Fig. 2.

duced by the coil pair in Fig. 1(B). In Fig. 4, a superimposed pair
of rectangular current loops are oriented horizontally. Unlike
Fig. 2, the top configuration of Fig. 4 produces a net magnetic
field without a remote saddle point. As one shifts the two coils
axially with respect to each other, two remote saddle points are
generated. Eventually, as the separation increases a maximum
value is reached which then diminishes as the separation is in-
creased further. As in Fig. 2, the field maximum is a function
of two parameters, the separation and one dimension,, of
the coils. The contribution of each current element to the total
field is depicted in Fig. 5. Again there can be perceived an inef-
ficiency due to the pairing of the current wires. The two current
wires on the right contribute to while the two current wires
on the left contribute to . The magnet efficiency could be
increased by reducing , analogously as above.
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Fig. 4. Illustration of how two coils shifted perpendicular to the plane of the
coils produces a remote saddle point.

Fig. 5. Contribution of the horizontal current elements to the magnetic field
for the two coils of Fig. 4.

A further improvement to the monohedral magnet of
Fig. 1(H) is shown with the planar magnet depicted in Fig. 1(I)
[15]. Here, the magnet consists of a pair of opposed magnetic
dipole sources located between another pair of opposed mag-
netic dipole sources. This is clearly seen in the dipole model
for the magnet. The additional inner magnetic sources may
be considered as a second magnet whose saddle point is at
a different location from that created by the outer magnetic
sources. The total magnetic field then has a larger region of
homogeneity with the saddle point for the total field differing
from the location of the saddle point of the individual magnets.
Clearly this design illustrates conceptually that monohedral
magnets are shimmable through additional magnetic sources.
A further advantage to this type of magnet is that the leakage
between the pole pieces is reduced as the reluctance of the
gap between the inner and outer magnet is increased. Contrast
this with the magnet of Fig. 1(H) which has undesirable flux
leakage losses along its edges.

For completeness, consider the magnets depicted in Fig. 1(J)
and (K). The magnet in Fig. 1(J) is a traditional C-magnet while
the magnet in Fig. 1(K) has the added advantage of symmetry
and better homogeneity. The former magnet has found appli-
cation as an open magnet for MRI/MRT applications [3] while
an extension of the latter design to fourfold symmetry is also
available commercially [3]. Both magnets may be simply rep-
resented with two colinear dipoles. Thus, these magnets may be
classified with those of Fig. 1(A) and (B). Note that rotating the

pole faces of the C-magnet by 90converts the magnet to the
type represented by Fig. 1(H).

The extrema maps and the dipole models help classify the
various magnet geometries. For example, based upon dipole
models, magnets may be classified as colinear dipoles, opposed
colinear dipoles, antiparallel dipoles, and combinations of them.
For most cases, the extrema maps permit a similar interpretation.
Colinear dipoles produce maps whereby the saddle point is co-
linear with the minimax points. On the other hand, two of the
opposed colinear dipoles [Fig. 1(D) and (F)] produce strikingly
different extrema maps. The monohedral type is more percep-
tible from the extrema map perspective. If a saddle point ex-
ists such that it is not colinear with the minimax points, then
the magnetic sources will be located to one side. That config-
uration may then be considered as a monohedral type as seen
in Fig. 1(F), (H), and (I). Based upon the magnets introduced
above, it is clear that a suitable monohedral magnet will have the
following features. 1) It must generate a remote saddle point. 2)
The dipole analog of the monohedral magnet will likely consist
of antiparallel dipoles or opposed colinear dipoles. 3) Current el-
ements and/or magnetic materials may be employed to achieve
similar classes of magnets independent of the technology em-
ployed.

B. Magnet Efficiency

It is not appropriate to discuss various magnet configurations
without considering relative magnetic efficiency. This type of
comparison is difficult because it is not apparent which mag-
netic parameters should be utilized toward a measure of ef-
ficiency. For example, a particular magnet configuration may
be suitable in terms of the size of target region provided, field
strength, and “openness” (accessibility to the target region), and
yet may not be suitable if it requires a large input current. Like-
wise, a magnet which may utilize less current for the same field
strength may provide a smaller target region. Another magnet
may be a permanent magnet design while another uses super-
conducting coils. Nevertheless, the ratio of field strength in the
target region to some measure of the driving magnetomo-
tive force provides a fundamental, though simple, measure of
magnet efficiency. Thus, we consider magnet efficiency as the
ratio of , the mean value of the magnetic field in the target re-
gion, to or . represents the total ampere-turns
for the case of current sources and represents the total mag-
netic moment for the case of dipole sources. Thus

(1)

and the total magnetomotive force is given by summing over all
of the individual current and dipole sources. Since the magnetic
moment of a current loop is given by where is
the area of the loop, then we have the additional relationships

(2)
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where is defined as the total effective area. The value of
may be given by

(3)

where and represent the field transfer function
at the target point for current and dipole sources, respectively.
Thus, the current and dipole magnetic efficiency are defined by

(4)

with .
With the developed framework for efficiency, it is possible

to compare the relative efficiencies of the different magnet
configurations. Table I presents at quick glance at current and
dipole magnetic efficiencies for various magnet configurations.
For some configurations, a direct comparison between current
and dipole magnetic efficiency is difficult, as the comparison
requires a value for the equivalent radius of the current loop
of a dipole. However, it is possible in all cases to compare the
dipole magnetic efficiency between different configurations.
The solenoidal case illustrates that the efficiency is inversely
correlated with the length of the solenoid. Colinear dipoles
which use the central saddle point are also quite efficient
in contrast to the saddle ring which has poor efficiency. At
first glance the Helmholtz pair seems to have good efficiency
when compared with colinear dipoles; however, the separation
between the coils is equal towhereas the separation between
the dipoles is equal to . A current loop of radius is similar
to a dipole in field strength only for the far field, .
In the near field the current loop is weaker by the ratio

. Antiparallel dipoles and opposed dipoles
have identical efficiencies, while unequal opposed dipoles are
clearly inefficient. The case for unequal opposed dipoles is a
simplification for the magnet configuration of unequal opposed
coils [see Fig. 1(F)] as analytic forms for saddle point position
and field intensity do not exist for the latter [8].

It may be argued that the degree of openness is not iden-
tical among the various magnet configurations. One method
to equalize openness would be to define the distance from the
saddle point to the nearest magnetic source to be equal to some
fixed value, “ .” This method has the merit of insuring that mag-
netic sources are excluded from a minimal sized sample region.
It may still be argued that even under these conditions some
magnet configurations are still more open than others. Neverthe-
less, the above definition provides a quantitative reference frame
to evaluate efficiency. The last column in Table I provides the
recalculated relative dipole efficiencies for equal openness. The
efficiency of the colinear dipoles remains the same if the cen-
tral saddle point is used. The greatest improvement occurs for
the saddle ring of the colinear dipole where the spacing is re-
duced from to . The Helmholtz coil pair improves due
to a reduction in size of the coil by 10.6%. With the stipulation
of equal openness, the apparent disparity in efficiency between
the dipole and current loop disappears. The antiparallel and op-

posed dipoles increase in efficiency while the unequal opposed
dipoles still remain inefficient.

From an inspection of the table, several general observations
may be made. 1) “Open” magnet configurations are not grossly
inefficient as compared with more “closed” configurations.
2) Dipole sources are potentially more efficient. Since dipole
sources imply permanent magnets and electromagnets while
current sources imply resistive and superconducting magnets,
then this statement is tempered by the fact that material prop-
erties may limit the magnetic moment strength for permanent
magnets and electromagnets, while superconducting magnets
have a wide range of current strengths. 3) Differential con-
figurations such as the unequal opposed dipoles are clearly
inefficient. 4) The saddle point, if it exists, generated in the
magnetic return path is less efficient then a saddle point that
exists in the closer primary magnetic flux path.

III. M AGNETIC FIELD BASICS

A. Description of the Magnetic Field

A homogeneous field may be defined as a field that is fairly
constant in magnitude and nearly unidirectional in some region
of space. As was mentioned above, it is desirable that the ho-
mogeneous field be of high order. This corresponds to having
several higher order derivatives of the field at the origin of the
target field to be equal to zero. The higher order terms may be
set to zero by either careful magnet design or through a process
referred to as “shimming.” Shimming may be applied with addi-
tional coil sets, (such as resistive and/or superconducting coils),
and/or magnetic materials, (such as steel or permanent mag-
nets) [18], [23]. Since the shimming process is a perturbation
to the overall field, it is important that the main magnetic field
be sufficiently homogeneous. Otherwise, the amount of energy
allocated to shimming will not be small compared to the main
magnetic field, and the shim coils should then be considered an
integral part of the magnet design. In the sense of a perturba-
tion, shimming cannot compensate for a flawed magnet design.
Therefore, a minimal requirement for a magnet design is that
it must generate at least a first derivative order saddle point. A
high order magnet design will not only contain a saddle point,
but will also have a larger target region relative to the size of the
magnet.

For any magnetic field in free space, Maxwell’s equations
must be obeyed. In turn, these equations allow the determination
of several important properties for magnetic fields regardless of
how they are generated. In free space the magnetic field may be
described with a scalar potential, , to give
and along with Maxwell’s equations we have

(5)

where the magnetic scalar potential satisfies Laplace’s equation.
Consequently, each component of the magnetic field also must
satisfy Laplace’s equation as summarily given by

(6)

Unfortunately the magnitude of the field does not satisfy
Laplace’s equation, i.e., , and knowledge of the
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TABLE I
MAGNETIC EFFICIENCY OFVARIOUS MAGNET CONFIGURATIONS. DISTANCE TO SADDLE POINT IS FROM THE GEOMETRIC CENTER OF THEMAGNET

CONFIGURATION. “EQUAL OPENESS” I S DEFINED AS SETTING THE DISTANCE FROM THE SADDLE POINT TO THE CLOSESTMAGNETIC SOURCE TO

EQUAL a. NOTE:�R = mN=IN

� This is the radius of the saddle ring.

�� Saddle distance is relative to the center ofm .

z Calculated forL = 2a.

y Calculated with:m =m = 10; Saddle distance fromm = 2:28a.

yy Calculated with:m =m = 10; Saddle distance fromm = 1:78a.

magnitude of the field is desirable for MRI applications. It is
convenient that any component of the field may be expanded in
terms of any basis set (spatial harmonics) which also satisfies
Laplace’s equation. For example, it is common to perform an
expansion in terms of spherical harmonics such as

(7)

where the coefficients in the expansion are given by and
[18], [23], [24]. This basis set is known as the Legendre

functions of the first kind, but are more commonly referred to as
tesseral harmonics for and sectoral harmonics for .
The case is also referred to as zonal harmonics. is
the value of the field at the center and the are the associ-
ated Legendre polynomials with representing a convenient
normalization factor. The expansion is normalized with respect
to a sphere of radius, , which defines the target region size.
The expansion rapidly converges with respect tofor .
The particular form shown in (7) has the advantage that the co-

efficients can have the dimensions of parts per million (ppm). If
is chosen to be

(8)

where is Neumann’s factor ( for and
for ), then the statistical error estimate of the harmonic
coefficients will be constant with increasingand . When the
iterative process of shimming has produced harmonic coeffi-
cients that fall within the error estimates, then further reduction
is not realistically possible [24].

B. Saddle Points

If the field is homogeneous within a region of space, it is ex-
pected that at some central point within the region.
Equation (6) suggests that any component of the field also sat-
isfies a curvature relation of the form

(9)

Therefore, if a component of the field exhibits a positive or neg-
ative curvature along then there must be an equal and oppo-
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site curvature of that component of the field perpendicular to.
There is no absolute maximum or minimum in the field though
there may be a maximum or minimum with respect to a partic-
ular coordinate. If at a particular point in space then
it must be a saddle point. This in turn implies that any homoge-
neous region must begin about a saddle point. Since each com-
ponent of the field satisfies Laplace’s equation, then the deriva-
tives of the field component must also satisfy Laplace’s equa-
tion. In Appendix A, it is shown that there is an equivalence to
the th spatial derivative at the origin of the target region to the

th order terms in the spherical harmonic expansion. The con-
vention used for an th derivative order magnet corresponds to
a configuration whereby all terms in the spherical harmonic ex-
pansion are zero for all for to .

C. Unidirectionality of Homogeneous Fields

Consider a very small region of space where the magnetic
field is unidirectional but may not necessarily be constant in
magnitude. Let the axis be defined to be parallel to the di-
rection of the magnetic field so that . Then, by
Maxwell’s equations

(10)

Because the field is unidirectional along, then
and from the above equation, . Therefore, must

be constant.Thus, a unidirectional field must be constant in
magnitude.

Now consider a very small region of space where the mag-
netic field is constant in magnitude,, but may not necessarily
be unidirectional. Furthermore, if is a measure of length along
the th coordinate direction, then the relation

(11)

implies that a homogeneous field may only have spatial varying
components that are orthogonal to the direction of the field.
Since the curl of the field is zero, it can be shown that

(12)

However, by (11), the change of any field component along the
direction of the field must be zero. For example, if we define
the field to be aligned along theaxis at a particular point in
space, then . Since there is no change in the field along
its direction and the magnitude is constant, then all changes in
components perpendicular to the field must also be zero, i.e.,

for any direction.Hence, a magnetic field constant
in magnitude is unidirectional. Consequently, the definition of
a homogeneous field is consistent with a field constant in mag-
nitude which then must be unidirectional.

D. Influence of and on Homogeneous Fields

Since there are three independent spatial components to the
magnetic field, it is necessary to ask whether all three compo-
nents of the field must be specified in the design of a homoge-
neous region. Certainly, symmetry of the source elements plays

Fig. 6. Schematic representation of the two-dipole model. The two saddle
points atx = �a=2 in B are indicated for the case� = 0 .

a role in traditional magnet design to ensure that the magnetic
field is dominated by a single component. Likewise, it is ex-
pected that in the design of monohedral magnets, symmetry will
play a corresponding role. For example, if the source elements
are extended along thedirection, then and
and, only needs to be considered in the design of such a
magnet. An example of this is given by replacing the two dipoles
in Fig. 1(H) by a string of dipoles along thedirection. There
will be no variation along the direction and will only de-
pend upon .

It would be desirable to be only concerned with just one com-
ponent of the field even in the absence of symmetry. The pre-
vious section seems to imply that it may not be necessary to
specify all three components, since we may consider a con-
stant magnetic field to be unidirectional. Therefore, if a mag-
netic field is nearly homogeneous, then it will be dominated by
a single component, such as, which is parallel to the general
direction of the field. Under these conditions, the magnitude of
the field, , is given by

(13)

where is the magnitude of the perpendicular component to
the field. In order to achieve a homogeneity to a ppm, it is only
necessary to reduce the perpendicular component to a part in
a thousand. For these reasons, it is possible to design monohe-
dral magnets with the same simple considerations used for tra-
ditional magnets.

IV. TWO-DIPOLE MODEL

A. Two Antiparallel Dipoles

From the prior discussion on magnet configurations, it is ev-
ident that an investigation of the two dipole configuration is
worthwhile. The magnetic field of a magnetic dipole,, is
given by

(14)

where is the magnetic permeability of free space andis the
dipole moment strength [22]. A single dipole does not exhibit
any saddle points. However, as was seen in Fig. 1, two dipoles
may have saddle points. Referring to Fig. 6, consider two mag-
netic dipoles, oriented along thedirection , that are
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(a) (b)

(c)

Fig. 7. Illustration of the two-dipole field profile in thexz plane. (a)B component. (b)B component. (c)B component aty = 1.6� 10 a.

placed directly on the axis at locations and . The compo-
nents of the field are then given by

(15)

The behavior of these field components is shown in Fig. 7 for
. Since for all and is shown for

a slight offset on . Setting the first derivatives of to zero
with respect to reveals by inspection that a saddle point
exists at . These points are indicated in Fig. 6 and
clearly seen in Fig. 7(a). The value of at these points is

. Furthermore, and are both equal
to zero at the saddle points so that is the only contributing
component. Interestingly, and have saddle points at

and (0, 0, 0) respectively, [seen in Fig. 7(b) and
(c)] but their value at these saddle points is zero. Further
examination of the functional form for reveals that all odd
order derivatives of with respect to and vanish at the
saddle point. Therefore, two antiparallel dipoles have a first
derivative order saddle point.

B. Effect of Orientation

A further refinement to the two-dipole model may be made
if the orientation of the dipoles is varied. Letbe the angle that
subtends the dipoles and thedirection as shown in Fig. 6. For

90 the dipoles are colinear, as represented in Fig. 1(B)
or (C). As above, the saddle points for may be determined by
setting the first derivatives to zero. The solution for saddle point
position now depends on solving the following cubic equation:

(16)

When , a solution is given by and when
, a solution is given by . These two so-
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Fig. 8. Saddle point position and relative field strength(B ) for the two dipole
model as a function of tilt angle in degrees. _______ Saddle point position,
_ _ _ _ _ Relative magnetic dipole efficiency, __ _ _ __ Relative magnetic dipole
efficiency for a fixed distance between saddle point and dipoles.

Fig. 9. Saddle point positions as a function of tilt angle in degrees for the
two-dipole model. Notice that at any particular tilt angle only three saddle points
exist.

lutions correspond to the orientation of the dipoles perpendic-
ular and parallel to the axis, respectively. The behavior of one
of the roots of (16) is shown in Fig. 8, the saddle point position as
well as the magnetic dipole efficiency varies with. As before,
if the dipole efficiency is adjusted for a constant fixed distance
from the dipoles to the saddle point, then the dipole efficiency
will increase as the saddle point moves farther away from the

plane (see Fig. 8). Thus, orientation provides another degree
of freedom to control either saddle point location or efficiency.
This simple example illustrates that there is considerable flexi-
bility in controlling the position of the saddle point. The saddle
point positions as given by the three roots of (16) are shown in
Fig. 9.

V. SHIMMING THE MAGNETIC FIELD AND THE FEASIBILITY OF

MONOHEDRAL GRADIENT COILS

Clearly, the theoretical feasibility of a remote homogeneous
target magnetic field depends upon the existence of an external
saddle point. This provides a core of homogeneity. Standard
techniques for magnetic field shimming may then be used to
increase the size of this core field [18], [23]. Both shimming
and the application of gradients (in MRI) generate a correction
to the magnetic field in order to generate a desired field pro-

file. In principle, either method can be implemented through the
use of current elements and/or ferromagnetic materials. In those
applications where the field profile changes dynamically, as in
MRI, the use of current elements is more practical. However,
the design process in either case is similar. To illustrate the fea-
sibility of shimming an external field generated by a monohedral
magnet, consider the field to be expressed in terms of spherical
harmonics as in (7). In this example, ferromagnetic shimming
techniques will be employed. The field generated by a distribu-
tion of magnetic dipoles is given (see [25]) by

(17)

where is Neumann’s factor, is the magnetic dipole den-
sity at the spherical coordinates given by , and
extracts the real part between the brackets. If our distribution of
dipoles consist of only two arbitrarily located pieces of iron (re-
duced to infinitesimal size, ), then the field contribution is
given by

(18)

This may be summarily rewritten as

(19)

where

(20)

If (19) is matched up with the expansion of the magnetic field
as given by (7), then

(21)

The minus sign reflects that to produce a homogeneous field,
the shim correction must produce a harmonic coefficient oppo-
site in sign to the value of the field harmonic. If and
are not zero, i.e., are not positioned on a node, then any two
harmonic coefficients may be matched with the two pieces of
iron. It should be noted from (20) that and are inde-
pendent of each other and that only two degrees of freedom are
provided by the two pieces of iron. Thus either one term
and one term, or two terms, or two terms may be
matched. Thus, two pieces of steel may be used to correct for
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any two harmonic terms without significant regard to their lo-
cation. Clearly, this technique may be continued in an arbitrary
manner with pieces of steel in order to correctdifferent har-
monic terms. This would produce a system oflinear equations
similar in form to (21) which may then be solved by standard
numerical techniques. It is expected that other methods will be
developed which will improve upon the method described here
and this is a matter of current investigation.

It becomes clear that monohedral magnets may achieve ho-
mogeneities comparable to whole body magnets. If a design
for a planar magnet achieves a saddle point, then this saddle
region may be extended by traditional methods to achieve the
desired homogeneity in the target region. Similar to traditional
whole body magnets, it is expected that a high derivative order
saddle point will generate a larger target region than a simple
first derivative order saddle point.

VI. CONCLUSION

The classification diagrams, extrema maps and dipole
equivalent models, demonstrate similarities among the various
magnet geometries. Those magnets which provide remote
saddle points are called monohedral. These magnets have
special importance for open magnet design. Furthermore,
monohedral magnets are not by their nature grossly inefficient.
The efficiency of monohedral magnets should compare favor-
ably with bihedral magnets. The current or dipole magnetic
efficiency may be used to compare various magnet designs. A
first derivative order saddle point is established as the minimum
requirement for a remote homogeneous magnetic field. Two
dipoles provide the minimum configuration to produce such
a field. Variation of the spacing or orientation of the dipoles
provides flexibility for location of the saddle point. Through a
dipole model, it is also demonstrated that shims and gradient
systems may also be generated for monohedral systems. The
development of an analytical methodology for monohedral
magnets is of primary importance for the future of open MRI
technology with enormous medical significance.

APPENDIX A
EQUIVALENCE OF SPHERICAL HARMONIC ORDER WITH

DERIVATIVE ORDER

Consider a solution to Laplace’s equation in terms of the
spherical harmonic forms [23], [25]

(A1)

where either the or are chosen based upon the boundary
conditions of the problem. For a homogeneous field, it is appro-
priate to use the solutions as shown by (7). The Cartesian
derivatives of similar forms for positive powers ofhave been
derived in (23) and are given by the set of equations (A2) at the
bottom of the page. Clearly, these derivatives are representable
in terms of spherical harmonics with a common radial factor of

concomitant with a reduced order for the associated Le-
gendre functions. It may be asked if this pattern continues for
spatial derivatives of any order. This result may be generalized
as follows. Since a component of the field satisfies Laplace’s
equation, then any spatial derivative of the field also satisfies
Laplace’s equation. This is represented by the following expan-
sion equations:

(A3)

for the expansion of the field and

(A4)

for the expansion of the derivative of the field where rep-
resents a differential length and the expansion coefficients are
given by , and (Note that
for ). Expanding the spatial derivative gives

(A5)

The behavior of the various partial components can now be ex-
amined with respect to their radial dependence. For the first
term, it is noted that does not have units of length and
is equal to the cosine of the angle betweenand . On the
other hand, and scale as . After performing the

operation ( and do not affect the radial de-
pendence), (A5) becomes

(A6)

(A2)
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where is simply a function of angular variables only. Com-
parison of (A4) to (A6) and equating powers ingives the fol-
lowing identities:

(A7)

Clearly the effect of the spatial derivative is to shift the contri-
bution of the and coefficients to a neighboring order.
This process is simply repeated for higher derivatives. For the

th spatial derivative, the result is that a particular or
coefficient will be found in terms of order .

Since our interest is in homogeneous fields, the following dis-
cussion is relevant for only positive powers of . From
(A7), the only contribution at the origin to theth spatial deriva-
tive of the field arises from the term, as higher orders vanish
at the origin. If this derivative is zero at the origin, then
. This in turn requires that all and terms of order

to be equal to zero. This implies that there is an equiv-
alence between theth spatial derivatives to theth order terms
in the spherical harmonic expansion.If all of the coefficients of

th order in the expansion of the field in terms of spherical har-
monics are equal to zero, then allth order spatial derivatives
of the field are identically equal to zero at the origin of the target
region.
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