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Abstract: The concept of motional induced EMF 
is implicitly based on a reference frame relative to 
which the magnetic field pattern is unchanging or 
stationary, and uses the relative velocity v 
between the frame and the conductor in the 
expression B v 1. For ease of conception, the 
velocity may be taken as that between the field 
pattern itself and the conductor. Where there are 
multiple field patterns in relative motion, no 
‘velocity’ can be ascribed to the resultant field 
pattern relative to any object, fixed or moving. 
Therefore the EMF induced in a conductor 
situated in such a field cannot be expressed as a 
single motional EMF, but must be found by 
superposition of EMFs induced by the individual 
fluxes. From the impossiblity of applying the B v 
I rule to the resultant flux, Bewley concludes that 
the EMF in the conductor is not motional but 
variational. It is shown here, mathematically from 
a consideration of reference frames, and 
physically from the fact of electromechanical 
energy conversion taking place, that Bewley’s 
assertion is invalid and that the EMF is in fact 
motional, not variational. The B v I rule is then 
generalised for application to such situations. 

1 Introduction 

Among the many ‘paradoxes’ described and solved by 
Bewley in his classic little book ‘Flux linkages and elec- 
tromagnetic induction’ [l], one due to Dwight, called 
‘conductor in zero resultant magnetic field’ is described 
below. 
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In Fig. la, a north pole above a conductor is shown 
moving to the left arid, taking the flux density to be 
‘cutting’ the conductor, one arrives at an EMF e 
directed into the paper. In Fig. lb, the north pole is 
below the conductor and moving to the right, and the 
induced EMF is again e and directed into the paper. 
Now suppose that two north poles, one above the con- 
ductor and moving to the left, and the other below the 
conductor and moving to the right, are used as shown 
in Fig. IC. What is the EMF? Here the flux density is 
zero, and yet by the principle of superposition, the 
EMF should be 2 e! 

2 

After presenting this as ‘an interesting example of how 
a misconception may exist about (flux) cutting action’, 
Bewley goes on to solve the paradox. According to 
him, ‘the fallacy in the above reasoning is that the 
EMFs induced in the conductor are variational and not 
motional (cutting action) components at all’. He then 
proceeds to prove this, on the following lines. 

Bewley’s solution to the paradox 

Y 
I 
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Fig. 2 Travelling waves of,frux density 

If the reference frame is taken on the conductor, the 
field is varying rather than moving. Even though no 
closed circuit is involved, the EMF induced in the con- 
ductor can be calculated as follows. Let the flux density 
distributions due to thie two oppositely moving poles be 
expressed as travelling waves, so that 

B, = fi(. +- U l t )  + fz ( .  - vzt) (1) 
Here, both the flux density space distributions and 
their velocities may be different, as indicated in Fig. 2. 
In vector form, 

B = iB, + jB, + kB, 
with B, = B, = 0. 

from Faraday’s law is 
The differential forim of Maxwell’s equation derived 

dB 
V x E = - -  at 
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which, when expanded, becomes 

= o  dE, dE, - dBz  
ay ax at 

_ _ _ ~  -~ - (3Ci) 

The only nonzero part of these equations is, from eqn. 
36, 

The solution to this differential equation, compatible 
with the implied boundary conditions, is 

Ez = U L ~ ~ ( X  + v l t )  - ‘ ~ 2 f 2 ( ~  - cat) ( 3 )  
But this is the same resuft as is obtained by applying 

the ‘cutting rule’ separately to each component of flux 
density wave and superimposing the results. 

In the particular situation described, three conditions 
apply: 
(i) J’ = O (6) 
(ii) v i  = uz = v(say) 6) 
(iii) The flux density at the conductor is zero which, 
together with eqns. 6 and 7, when imposed on eqn. 1. 
gives 

or 
B, = f l ( U t )  + f a ( -u t )  = 0 

f l ( , U t )  = - f z ( - v t )  (8) 

E = v f l  ( u t )  + ? ~ f i ( ~ t )  2 ~ f l  ( ~ t )  (9) 

Substituting eqns. 6-8 in eqn. 5, 

or twice the EMF for either wave alone. 
If the flux densities are constant in space, 

f i ( v t )  = B 
E = 2Bv 

and eqn.9 becomes 

or 
e = 2Bvl (10) 

The superposition of EMFs calculated on the basis 
of relative motion works in this case, whereas, if the 
flux densities are superimposed first, there is no possi- 
bility of using the cutting rule. 

Bewley concludes that ‘the whole idea of cutting 
action is basically wrong in this case, and the induction 
is actually a pure example of variational induction’. 

3 Bewley’s reasoning 

Consider a coil on the armature of an alternator. If the 
reference frame is fixed to the rotor, there is no flux 
variation with respect to the frame, but the coil has a 
veleocity relative to it, and the induced EMF in the coil 
is B v I ,  i.e. motional. On the other hand, if the refer- 
ence frame is fixed to the coil, there is no relative veloc- 
ity between the frame and the coil, both of which 
merely experience a flux variation, and the EMF 
appears as variational. 

Consider next the induced EMF in the secondary 
winding of a transformer. Since both the winding and 
the flux are stationary in space, practical considerations 
dictate that the reference frame be also stationary, fixed 

to the winding and core. No velocity is involved and 
the coil experiences only a flux variation. The EMF is 
purely variational and cannot be expressed as 
motional. Hence it is clear that, by a change of refer- 
ence frame, a motional EMF can always be expressed 
as a variational EMF, but a variational EMF can 
never be expressed as a motional EMF. 

Any velocity used in B li 1 must be with respect to the 
reference frame chosen [l]. The frame on which Bewley 
has expressed the flux density, eqn. 1 ,  is fixed to the 
conductor itself, making the relative velocity between 
the frame and the conductor zero. The conductor 
merely experiences a flux variation, and naturally the 
EMF appears as variational. Furthermore, since the 
EMF cannot be expressed as motional EMF, i.e. as a 
single B $1 1: using the resultant B, Bewley concludes 
that it must be variational. 

4 Is Bewley’s conclusion valid? 

First, Bewley’s conclusion contradicts physical facts, 
for there is motion, and if it is stopped there will be no 
EMF. Secondly, if either magnet is moved alone, the 
induced EMF is obviously motional. If the components 
are motional EMFs, must not the resultant, U fortiori, 
be a motional EMF? 

But the ultimate criterion is whether the situation 
involves electromechanical power conversion, or merely 
electric power transfer between circuits. If a circuit with 
a motional EMF is closed there will be power conver- 
sion from mechanical to electrical, i.e. generator action. 
If a circuit with a purely variational EMF is closed, 
there will only be electric power transfer to this circuit 
from another circuit, i.e. transformer action. 

To apply this criterion to the present situation, let 
the conductor form part of a closed circuit. (If practical 
or conceptual difficulties are encountered in visualising 
this condition, alternatively let the configuration of 
Fig. I C  represent the development of one half of a 
rotating machine. The other half will have a pair of 
south poles, one on either side of the ‘airgap’, with 
another conductor placed symetrically between them. 
Let the two conductors be connected at one end of the 
machine so as to form a single-turn coil. The inner and 
outer magnetic systems will have to be coupled in such 
a way that, driven by a prime mover, they will not only 
run at the same speed but in opposite directions, but 
also each pair of like poles is always symmetrical about 
the conductors. The turn can easily be made part of a 
closed circuit). 

It is obvious that there will be electric power dissipa- 
tion in the circuit, and this power can only come from 
the mechanical agent moving the magnets (or the prime 
mover), which means that there is electromechanical 
power conversion. Therefore the EMF is purely 
imtionul and not variational at all! 

Why then is it not possible to express it as B v 1 using 
the resultant B? 

5 Solution to the paradox 

A clue can be had from the following. In the situation 
described, the conductor is stationary and the fields are 
moving. Is it possible to reverse their conditions, i.e. 
keep the fields stationary and move the conductor, and 
still get the same effect? Obviously not. 

More formally, the issue is one of reference frames. 
To obtain motional EMF, the reference frame should 
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be such that, with respect to it, the field pattern 
remains unchanging. Such a frame is obviously the 
source of the field itself, which may be a current-carry- 
ing coil or a magnet. In the case of the alternator, the 
rotor obviously constitutes such a frame. But, in the 
Dwight-Bewley situation, there is no such reference 
frame, as there is not one, but two separate magnets or 
unchanging field patterns in relative motion with 
respect to each other. To which of them should the ref- 
erence frame be fixed? This is the crux of the matter. 

Let us now view the problem mathematically and try 
to apply the B v 1 rule. The questions to be answered 
concern the values of B and v. 

Bewley says that if the flux densities are superim- 
posed, the resultant at the conductor becomes zero and 
it is not possible to apply the B v I rule. But then, in 
that case, neither is it possible to apply the JBlJt rule, 
since B is permanently zero. However, for his own der- 
ivation, Bewley tacitly sidesteps this problem by start- 
ing with a general expression for the total flux density 
at any point distant x from the origin (and imposing 
the condition By = 0 only at the end). Let us try the 
same procedure. Eqn. 1 is reproduced below, for con- 
venience in algebraic form: 

B = BI + B2 = f l ( .  + U l t )  + fa( .  -va t )  (11) 
Since Bewley implies that the B v I rule might be appli- 
cable to points where B # 0, consider a point x # 0. At 
such a point, B will have a finite nonzero value under 
Dwight’s conditions. Now, what is the velocity of this 
B relative to the conductor? The answer is that no sin- 
gle ‘total’ or resultant velocity can be ascribed to this B 
as a whole. So we find that even where there is a finite 
resultant B, we are unable to apply the B v I rule owing 
to the nonexistence of a resultant v. 

We looked for the velocity of B only because we 
know that the conductor is stationary. Now, what can 
‘velocity of B’ possibly mean? It can only mean the 
velocity of the field source relative to the conductor. If 
so, what is the ‘resultant field source’? Again, no single 
resultant source can be identified as the two component 
sources are in relative motion. This is what the problem 
of reference frames amounts to in practical terms. 

With the real problem thus identified, both physically 
and mathematically, the solution becomes apparent. It 
is to recognise that each component flux pattern and its 
velocity are both integral to their respective source. 
This means that each B and its v are inseparable and 
no attempt should be made to combine the two flux 
densities or the two velocities separately. The funda- 
mental or elemental quantity that can be combined or 
superimposed is the electric ,field E = B v rather than 
the flux density B. The induced electric field in the con- 
ductor should therefore be found from 

E = Z(B,V,) (12) 

(13) 
= B l U l  + B2(-112) 

= f l ( .  + V l t ) U l  + f 2 ( 2  - vat)(-vz) 

This naturally takes ius directly to eqn. 5 of Bewley’s 
derivation, and the rest of the steps are simply those 
following it there ~ eqns. 6-10. 

In vector notation, the electric field in a conductor 
due to flux cutting is given by 

where v is the velocity of the conductor relative to the 
field. Again this equalion needs to be generalised as 

E = v x B  (14) 

(15) 
7 

E = %(Vn x Bn) 

Since Dwight’s EMF is derivable by eqn. 12 or eqn. 
15, it is motional, not variational. 

6 Bewley‘s contribution 

Bewley’s conclusion may be erroneous, but his deriva- 
tion is of great significance. Other writers [2-41 obtain 
eqn. 14 for ‘flux-cutting electric field’ from the Lorentz 
formula (for force on a current-carrying conductor sit- 
uated across a magnetic field) which is treated as fun- 
damental. Bewley has shown that flux-cutting EMF in 
a straight conductor is directly derivable from the rele- 
vant Maxwell equation. He has also demonstrated that 
in situations where the applicability of other theories is 
doubtful, a recourse to Maxwell’s equations can lead to 
the correct quantitative result. 

7 Conclusion 

The EMF induced in a conductor situated across multi- 
ple magnetic field patterns in relative motion cannot be 
found as a single resultant B v 1 because no resultant v 
exists, but this fact docs not make the EMF variational 
because physically it is motional. The elemental quan- 
tity that can be combined to obtain a resultant in such 
situations has been shown to be the electric field E = 
Bv. The law of motional EMF has accordingly been 
generalised for application to such situations. 
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