ON THE ELECTROMAGNETIC FIELD FROM A VERTICAL HALF-WAVE
AERIAL ABOVE A PLANE EARTH

By P. Rjasin

The paper is divided into two parts. In the first part the calculation of the electro-
magnetic field from a radiating half-wave aerial in a homogenous non-conducting medium
is carried out based on the representation of the field from the Hertzian vector of
an elementary dipole by a zero order Bessel function. This calculation leads exactly
to the same expressions which had been obtained previously by the author * when solving
the same problem in a different way.

In the second part starting from the results of part 1 the vertical component from the
electrical vector of a half-wave aerial above a finitely conducting plane earth is calcul-
ated. It is also shown that the field from the vertical component of the electrical vector (E, *)
of the aerial is identical with the field from the Hertzian vector of two elementary dipoles
located at the top and the base of the aerial, the electrical constants of the surrounding
medium remaining the same in both cases.

Introduction

As is well known from the literature on the subject, the up till now publ-
ished investigations of propagation of electromagnetic waves radiated by a
source located close to a finitely conducting earth are usually based on the
assumption of infinitesimal dimensions of the radiator (elementary dipole).**
Such idealization of the real radiators (aerials) possessing a finite length which
is compared to the wavelength is quite admissible when treating the problem
of the electromagnetic field in the distant zone where it practically leads
to quite satisfactory results. It is however entirely unsuitable for the de-
termination of the structure of the electromagnetic field close to the aerial at
a distance compared to its length. In the field of radio engineering there exists.
a number of special problems which require a minute knowledge of the field
structure (particularly from the viewpoint of phase relations) just in the im-
mediate neighbourhood of the aerial.

* P. A, Rjasin, Calculation of the radiation from a straight aerial in the im-
mediate neighbourhood. — J. Techn. Phys. (Russian), VI, 646. No. 6, 1937.

** A, Sommerfeld, Ann. d. Phys., 28, 1909 and 81, 1926; H. Hersche l-
mann, JdTT, 5, 1911; H. Weyl, Ann. d. Phys., 60, 1919; B. van der Pol,
JdTT,37,1931; B. van der Pol and K. Niessen, Ann. d. Phys., 10, 1931 etc;
V. Fock, Ann. d. Phys., 18, 1933.
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In the present paper expressions for the electromagnetic field from a
radiator of finite length (a half-wave vibrator) close to a finitely conducting
earth are developed which are also valid for the immediate neighbourhood
including the surface of the radiator.

1. Calculation of the field from a half-wave aerial in homogenous space

Exact formulae for a perfectly thin radiating half-wave aerial have been
-derived by the author in a previous work * by the help of operations on
-elementary functions. Here will be shown at first how the same formulae are
obtained when starting with the well known representation of the field
from a Hertzian vector of an elementary dipole by a zero order Bessel
function: **
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Although for the case discussed in the previous paper the here described
method leads to the already known results, it still seems expedient to carry
out the calculation as this method can be successfully used for the calculation
of the field from an aerial above a finitely conducting earth, as will be shown
in the second part of the present paper.

Starting from formula (1) we obtain in our case:
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under the following conditions:

A. In the present work as well as in the previous one, thecurrent in the
elementary dipole is given by: '
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where cos (%ﬁ r) takes into account the sinusoidal distribution of the
Y0

current amplitudes along the aerial and sin wf—the harmonical variation
of current with time. I, is the current amplitude at the antinode. For
such distribution of the current along the aerial the moment of the ele-
mentary dipole dp is expressed by:

* 'Loc. cit.

** See for inst. F. Frank and R. Mises, Differential equations of Mathemat-
ical Physics (Russian), part II, 1937, p. 941, f-1a (11).
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1,
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hence the Hertzian vector in the complex form becomes:
I, 2% e
P o Y —
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If we express now I1 in CGSM units (instead of CGSE) which will be
used further and take J,=1, then
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B. The expression for ¢ 7 in the form (1) refers to an elementary dipole

raised at a height » above the origin of coordinates, the sign of the exponent
in the function before the root being taken as + for z — ¢ < 0 and — for
2 — t >0. We assume for definitiveness that 2 — f <0 in all points of
the aerial (Fig. 1). This will not affect the generality since for a different
orientation of the point of observation and of the aerial the same result is
obtained. For the given current distribution the following expression for the
Hertzian vector referring to the whole aerial is obtained:
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so that
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In order to prove the validity of the following mathematical operations
which will be used starting from the integral (11a) we shall make the following
remark. Although the denominator of the integrand for 4 — O tends to zero
according to the first order of 4 its numerator tends to zero according to the
second order of 4, i. e. A2 and indeed expanding the bracketed factor in powers

. of 4 we obtain:
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so that for A=0 the integrand remains finite. When approaching the
upper limit, i. e. 4 — oo the integrand will surely tend to zero more

rapidly than II;, so that convergence

of the integral along the integration
portion running to infinity is secured.
Finally the fact that over the in-
tegration interval 4 = k; the integrand
becomes infinity does not lead to the di-
vergence of the integral either, as for
A— k, the integrand tends to infinity as:

V2, (ke 1) ; 1
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Hence from the Cauchy test we conclude that over the portion around
A=k, the integral (I1Ib) is convergent. *

E, and E, through [1* are found:

The expression (IIb) for I1* will be used for the development of exact

* See for inst. «Higher Mathematics» by Smirnov (Russian), p. 249,
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formulae for a perfectly thin aerial. We shall try at first to find an expression
for the electrical field. From general relations the following expressions for
E. and E, through I1* are found:

—1 9 | on*
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o (om* ,
E=2 ( o ) (111a)

where IT* is a function of r, Z given by (IIb). Let us substitute IT from
(I1a) into (111), r and A being independent values. We thus obtain:

0 [, 0o [ Va—r(:—3)
E—_/T_O_I‘— Tor ];l/)"a_kz ( -+
V/w—m( ;0):1 . (IV)

Here the bracketed fz'ctor of the integrand is:
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hence according to (I) we obtain finally:
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Let us turn now to the determination of E,. Substituting IT* from
(1Ib) into (I1la) we obtain after simple transformations:

/dlj <zr)[V’ SHE=R) p ERE] vy

-

where

* Here J, (Ar) is a first order Bessel function.
Technical Physics, Vol, V, No 1 ' 3
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Integrating each of the right-hand integrals by parts we are able to calcul-

ate (IVb) and express it in elementary functions. And really putting in
(IVDbY:

dijJ, (%ry=du; e =;
__j(,r(/.:):u; (z:t ZO) Adi — dv,
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The first member being equal zero we obtain finally:
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E, and E, being known, H can be calculated from the relation:

. 0E, 0OE,
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Substituting E. and E; from (IVa) and (IVc) we obtain after reduction:
e:ikl Ry e:ikl Ry

H=——f—r—. (IVd)

It is quite clear that formulae (I1Va), (IVc) and (IVd) expressed in the
complex form are identical with formulae (14) and (16) of the above mentioned
work which had been developed without use of Bessel functions.

2. Some remarks of the electromagnetic field from a half-wave aerial
above a finitely conducting earth

In the first part of the present paper we obtained again a formula ident-
ical with formula (16a) of the previous work (§ 4, p. 654). According to this
formula the field from the component E, is represented by the superposition
of two spherical waves issuing from both ends of the aerial. -
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Let us imagine now that at both ends of the aerial there are two radiating
elementary dipoles — point sources. The resulting electromagnetic field from
both such sources will differ in structure from the field of the half-wave
aerial but as is clear from the above considerations the expression for the com-
ponent E, will be identical with that for the resulting field from the Hertzian
vector for the above indicated two elementary dipoles located at both
ends of the aerial. Moreover the expression for the field E, for each of these

— jk1 Ry jk1 Ry

R and — R

independently from one another is identical with the expression for IT of
the Hertzian dipole located at the same point. This fact helped to put on
a strict basis the following theorem: -

The expression for the vertical ';L @
component E] of the electrical field | R
from a vertical half-wave aerial above .

a finitely conducting plane earthis
identical with the expression for the A,

o
fieldof the Hertzian vector 1 excit- N \\\\\\e/
ed by two point (elementary) dipoles \
located at both ends of the aerial, NN\
the electrical constants of the sur- ‘\\ \
rounding medium being the same in N

\

taken

dipoles located at both ends cf the aerial: —

r
2 : RN
7,

r
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both cases.
The orientation of the aerial is seen from Fig. 2. \\\f{\k\,
In other words: if £}, be the field from the vertical
component of a half-wave aerial in the first medium
(air), EY and EP the fields from the equivalent, point sources located
at both ends of the zerial and T and ¥ —the expressions for the fields
from the Hertzian vectors for the elementary dipoles located at the
top and the base of the aerial, then: ** ’

N

Fig. 2.

E; = EQ + ELY =N + 0. V)

This theorem can be proved at least in two ways. This follows first of all
from the fact that the full mathematical conditions for the determination of
E? from a half-wave aerial raised above the earth’s surface are identical
with those for the field /7 from two elementary dipoles located at both its
ends. N

Let us consider these conditions. Eirstly: E satisfies the wave equation:

* Which is correct up to a real constant factor depending on the radiated power.
** We have expressed our thecrem with reference to the first mediqm but it Shq}ild
be borne in mind that this theorem is also valid for the second medium ({earth). G
. 3%
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Taking into account the boundary conditions: E; = E,, and H, = H, for
z=0 we obtain using Maxwellian equations the following two relations

for E, at the dividing surface:
KE. = Kk E:,

OE:I _ OE;_ [ for z2=0,. (Il)
022 02

The primary excitation is expressed in the form:
, 1R M EH
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and finally the conditions at infinity are:
( forr—2>corforz>02— 4
| and for z<0 z2— — =

The here discussed problem being linear the same above written condi-
Jh1 R gMBH

tions apply also to each separate equivalent «radiator» — B andm—R
b H

E. = (V)

If so, then all the four conditions fully coincide with those for the function 77
for an elementary dipole located at the same point, * and they determine the
“single-valued and only solution. Thus the problem of the vertical component
of the electrical field from the electrical vector of a half-wave vibrator (consist-
ing of an infinite number of elementary dipoles) is mathematically identical
with the problem of the field from the Hertzian vector for a pairof elementary
dipoles acting at both ends of the vibrator.

Not touching upon the very difficult discussion of the exact solution of
such problem we shall only point out that this solution was first obtained by
Hérschelmann in 1911. ** As is well known this solution is expres-
sed in a definite manner through Sommerfeld’s solution for the field

* See for inst. B. A. Wwedenski, The principles underlying the theory of pro-
pagation of radio waves (Russian), 1934, pp. 88—89, and the footnote on p. 91. In the liter-
ature on the subject the expression for the primary radiation is usually taken with the
iR

sign «plusy [ - £ . We have adopted the sign «minus». Such difference is of no import-

ance since it only leads to the reverse sign of the corresponding solution which will be
taken into account below.

** See: von Horschelmann, JdTT, 5, 1911. A sclution of the same form
for a raised dipole had been obtained later by K. Nijessen though in a different way
(K. Niessen, Ann. d. Phys., 1933, p. 899).

B. van der Pol investigated the expression for the field from a raised di-
pole from the viewpoint of its physical interpretation. B. van der P ol, Physics, 8,
1935, p. 843—853. ‘

A solution of this"problem was also given by H. We y |, Ann. d. Phys., 60, 1919.
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from the Hertzian vector of a dipole located directly upon the dividing
surface. The expression for I7,, from a raised vertical dipole is obtained
if in formula (8a) in the above mentioned work (p. 26) we put 8 =0, i. e. if
we remove the horizontal part of the idealized aerial discussed by Hdor-
schelmann. Weshall write thissolution putting A = [ (A is proportional
to the radiation intensity) and change the sign of the right part to the reverse,
according to the sign «minus» in our expression for the primary radiation:

e / RUAC D/
1z VF:E?

/ Jo (2r) e—V’w'h‘(ern AdZ.
T

9 / K Jy (Ar) eV HE+ 90 (Va)
— B :

0

Here N=k VA2 —k 4+ k2Vi* -k and v is the height of the dipcle
above the earth’s surface.

Applying (Va) to two dipoles located at both ends of the aerial we
obtain equality (V) in the expanded form:
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H
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The wvalues of Ry, Ry, Ry, Ru, 7o, 2 in (VD) are clear‘ from Fig. 2.
The first three terms on the right are identical with the expression for
the field IT], from a dipole located at point f, and the second three terms

correspond to the point f, (Fig. 2), the above mentioned factors being
determined from the following relations:
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The validity of formula (V—Vb) shall now be proved by deriving it from
integration along the aerial of Horschelmann’s solution for a raised
dipole.

When establishing in the first part of the present paper the exact formula
for an aerial in a homogenous medium we began with the integration along
the aerial of the Hertzian vector for an elementary dipole, and having
obtained in this way the vector /7 * (11b), we determined E, from (I11). It thus
appeared that the final result of the above operations was expressed as a sum
of the fields from two elementary dipoles acting at both ends of the aerial.

The here discussed problem being linear we have the right to apply the
same method of determining the vertical component of the electrical field
also to the case of a finitely conducting earth. * '

Following this path we shall integrate Horschelmann’s vector
with respect to the «elevation» = over the whole length of the aerial

2z

€os ~ (T —7o)
multiplying it previously by Ok —
1
In air we thus obtain:
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The factor —}z— cos [%ﬁ (r -—To)} is introduced into formula (VI) from
1 | Ao

the same considerations as in formula (1I) (see explanation to formula Ia).

Here = is the elevation of the middle of the aerial above the earth’s
surface. Substituting in (V1) the values of the integrals with respect to =
by the use of (Ila) we obtain;

>

HTz=__/‘ﬂM [e'l/zz..k%(wrr,,_%’)«l_e}/m%(z_TﬂJr%o)] .
0

AV _p

* If only the assumed above distribution of the current along the aerial remains
unchanged.
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The unknown quantity E;, is determined from:
. 1 o [ omt )
Elm— [rT'J (VII)

where Ty, is given in (Vla). The operation nf expanding the right side of
(VII) is identical with that of (11I). This operation here also consists in

. 1 A
the determination of 77;)7 [r ‘”‘;r(ﬂJ which as is seen from (IV) is

equal simply to—A2J, (Ar). Thus the transition from (VIa) to (VII) is
fulfilled by the substitution in (VIa) of J,(4r) by 4%J,(4r) as a result
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2077, 77/

Fig. 3. Fig. 4.

of which (as is easily seen) (Vb) is obtained again., i. e. the validity of
the above formulated theorem is proved again. In conclusion the following
formula for E for the particular case of the field at the dividing sur-
face will be given:

E:l _ fk‘;_‘];)\#-r_) [e— Va2 - gl (fo—i— f;l) + . Vie—nt (ro - ’1’)] 2 —

0
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=_-2f Njo(lr)e—]/’l —h "cos(-gl/l-—%?) AdA.
0

The above given theorem can easily be generalized for any even or odd
harmonic to which the aerial may be excited. Such generalization could be

1
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proved mathematically in the same manner as above but it is possible to do it
without carrying out any calculations. Let us discuss at first an aerial excit-
ed to an odd harmonic (Fig. 3). (Here an aerial excited to the fifth harmon-
ic is shown.) This aerial is divided by the current nodes into simple half-
wave aerials, the adjacent ones vibrating with opposite phases. On the basis
of this fact and also of the above theorem the equivalent circuit of this aerial
can be represented as is shown on the right of Fig.3. From this circuit follows
that the field E: from the aerial is identical with the field from the Hertz-
ian vector for a group of elementary dipoles of equal intensity located at
the current nodes, the ends of the aerial bearing each a single dipole of equal
phases these being equal to the phase of the medium half-wave. It is just these
two-dipoles which excite the field from the Hertzian vector identical with
the field E,; from the whole aerial as at each of the remaining nodes there
is a pair of dipoles of opposite phases whose fields eliminate one another.

It could be shown in the same way that the field from the vertical electric-
al component of an aerial excited to an even harmonic is identical with the
field from the Hertzian vector for two elementary dipoles located at both
ends of the aerial but in distinction from the first case here the phases of both
dipoles are opposite in accordance with the signs of the phases of the extreme
half-waves (see Fig. 4).

It is evident that in case of an aerial excited to one of its overtones the
extreme «representative» dipoles should be referred to the frequencies of the
harmonics and not of the fundamental tone.

The further development of the here discussed problem on propagation
of electromagnetic waves radiated by conductors (aerials) of finite length
particularly by half-wave vibrators above a finitely conducting earth will
be given in another work.
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