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The classical theory of the electron, as proposed by Abraham and Lorentz, is usually pre-
sented as beset by the difficulty that the momentum and wvelocity of its Coulomb field are
incorrectly related kinematically: p =4$m.v, where m, is the electromagnetic mass defined by
the electromagnetic self-energy. This problem also persists in the relativistic theory. It is
shown here that the difficulty is eliminated from the relativistic theory by treating the integrals
over the electromagnetic field in a relativistic fashion, i.e., taking note of their dependence on
the motion of the electron. The surface dependence of the integrals representing the electro-
magnetic momentum and energy of the particle is essential and occurs whenever the matter
tensor is not introduced. The nonrelativistic limit of this formulation then also leads to the
correct relationship p =msw. The corrected Abraham-Lorentz theory still contains the stability
problem, but this problem is no longer related to the transformation properties. It can be

removed by renormalization.

1. HISTORY AND IMPORTANCE OF
THE PROBLEM

HE first theory. of an elementary particle
was the theory of the electron, since it was
the only elementary particle known at that time.
It was developed in a number of papers by M.
Abraham and by H. A. Lorentz, based on Max-
well’s theory of electricity and magnetism. In its
“final” form it was presented by Lorentz in an
encyclopedia article* and in his Columbia Lec-
tures? of 1906, and by Abraham in book form.? It
was reviewed by Pauli* and v. Laue® in their
treatises onrelativity. All these are classics today.
From them it found its way into many standard
texts on electricity and magnetism.

This theory is still unsurpassed by any ele-
mentary particle theory today, as far as structure
and mathematical description is concerned, as
well as to agreement with experiments—within
its limits of applicability. Not that the theory is
perfect, closed, or mathematically satisfactory,

* The subject matter of this paper was first presented as
part of a lecture series at the Theoretical Physics Institute
at the University of Colorado, Boulder, during the summer
of 1959,
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but the other theories we have today are beset
by basically the same difficulties and in many
ways start with the same physical picture of a
particle on one hand, a field on the other, and an
interaction between the two. Of course, this situa-
tion is not very surprising, because in last analy-
sis these other theories are modeled after the
Abraham-ILorentz theory.

The comparison just made seems not quite
valid in one respect of major importance: Quan-
tum -electrodynamics, at present our best de-
scription of the electron as far as experimental
agreement is concerned, does seem to have over-
come a basic difficulty present in the Abraham-
Lorentz theory, viz., it succeeds in reducing the
self-energy problem and the stability problem of
the electron to the problem of mass and charge.
A brief explanation of this point is perhaps in
order here.

Just like the classical electron theory, quantum
electrodynamics is not a theory which attempts
to explain why the electron has a certain mass
and charge as found by experiments. In fact, it
breaks down as soon as the question of the magni-
tude of these quantities is asked. The theory is
thus phenomenological in this respect: The ob-
served values of mass and charge must be fed
into the theory. If this is granted, the self-energy
problems can be eliminated by reducing them to
the mass and charge problem. The same is true
for the stability problem which will be discussed
later on.
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The Abraham-Lorentz theory also requires the
knowledge of the observed electron mass and
charge. But its self-energy problem is apparently
not reducible to the mass problem, as in quantum
electrodynamics. This is in contradistinction to
a theory developed by Dirac® in 1938 in which
this reduction is carried out. These theories have
therefore been always regarded as basically
different.

One purpose of the following two sections is to
bridge this apparent gap, at least as far as the
self-energy problem is concerned. One can show
that also in all other respects the Dirac theory is
simply a further development of the Abraham-
Lorentz theory, but this would exceed the scope
of the present remarks. However, in comparing
the two theories one must keep in mind that the
Dirac theory describes a point electron, whereas
the Abraham-Lorentz theory can refer to an
electron of finite or zero radius.

2. ELECTRON SELF-ENERGY

The point electron is defined as the limit (as
the radius approaches zero) of an electron of finite
radius. For a relativistic theory it is essential that
such an electron be described in a relativistic
way. For example, a spherical electron must con-
tract, when in motion, according to the Lorentz
transformation.

Although the particular model is irrelevant for
the point in question, let us assume, for definite-
ness, that our electron when at rest, is a sphere of
radius @ whose charge ¢ is entirely on the surface.
The electromagnetic field inside will then be zero
and outside it will be the Coulomb field

E=(¢/r)t, H=0, (1)

with the unit vector ¥=r/7. The momentum and
energy of any electromagnetic field is best defined
in terms of the symmetric electromagnetic
energy-momentum tensor T* whose space part?
(T*#) forms a dyadic, called the stress tensor
density '
T=(1/4r) EE4+HH)—-1U,
U= (1/8m)(E*+H?%), (2)

whose time part

TY=-7, 3

(1;31:’8.)A. M. Dirac, Proc. Roy. Soc. (London) A167, 148
7 Ou.r relativistic notation is x#=(ct,r)=(x%x,x%,%%);
ABr=A-B—A%B%; { k=1,2,3;p»=0,1,2,3.
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and whose mixed parts are the components of
the Poynting vector S,

Tok=—(1/c)S%, S=(c/4n)EXH. (4)

In the Abraham-Lorentz theory the energy and
momentum of the Coulomb field surrounding a
uniformly moving electron are defined by

W=—-—fT°°d3x=fUd3x

(Abraham-Lorentz) (5)

1 1
pr=—— f T3y = — f Skd3x.
c ¢

Let us use this definition for the particle at
rest. It gives, after integration {rom @ to .

1 0 62 62
W=— —dix =—,
8rJ, 2a (at rest) (6)
p=0.

The self-energy W due to the Coulomb field is

written as
W=my?, (N

which defines the electromagnetic mass
me=e2/2ac% (8)

The latter is a relativistic invariant.

Let us now assume that the electron is moving
with constant velocity v. The corresponding
energy and momentum are obtained from those
at rest by a Lorentz transformation

W'=y(W+p-v), v=(1-2/c")?

o =y(@+Wv/)+ (v—1¥X(VXp),
which yields, by means of (6),
W' =ym,?

, )
P =vm,v.

This is exactly the result that one wants to ob-
tain. It gives the correct relativistic relationship
between the momentum and the velocity which
kinematically means that the Coulomb field is
carried along by the electron in a relativistically

invariant way.
Why, then, did Abraham and Lorentz obtain a
different result? The answer is simple : The defini-
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tions (5) are not Lorentz invariant, i.e., their
form changes when a Lorentz transformation is
applied. Though this is no criticism for a non-
relativistic theory, the situation leads to an in-
consistency in the relativistic case where Lorentz
and Abraham took great pains to describe the
contraction of the spherical shape.

What is the physical reason behind this lack
of invariance? The integrals in (5) are to be
carried out from the surface of the electron to
infinity. But this surface does not remain spheri-
cal when seen by an observer in motion relative
to the electron. The world-line of the electron
then does not remain orthogonal to a space-like
hypersurface ¢ (e.g., t=constant). Lorentz in-
variance requires this orthogonality and there-
fore the integrals (5) are not covariant.

Let us try to see this situation quantitatively.
For this purpose it is convenient to define the
vector

do* =n*do (x). (10)

n* is the (timelike) unit vector normal to the
surface at the point x and directed into the future
light cone. This means n,n*= —1, #°>0. do is an
invariant infinitesimal element of this surface. In
the rest system of the electron #*=0, #’=1, and
do =d*x for a plane hypersurface. The energy and
momentum in Eq. (9) form a four-vector which
can be written in manifestly covariant form

8! 1
pr= ("W’P) . f Twdo,.  (11)
[ C Vg
The definition (5), however, is
1 1
(“er) == fTMOdey (5/>
¢ ¢

and this definition would follow from (11) only
if the integral were independent of «.

One can prove that an integral of the form (11)
is independent of the hypersurface ¢ if and only if

8,Tw=0. (12)

This equation is exactly the differential form of
the conservation laws of energy and momentum
for the electromagnetic field. But it is valid only
in the region r >a, i.e., outside the electron where
no matter is present, Thus, the surface over
which the integral (11) is extended can be chosen
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arbitrarily for 7 >¢ only. For r {a it is determined
by the relativistic change of the shape of the elec-
tron, which change in turn depends on the motion
of the electron. Even in the limit ¢ — 0 will the
integral depend on the motion of the point elec-
tron electron.

An alternative definition of P* which would be
of the form (11) but surface independent could
clearly be given by means of the fofal energy
momentum tensor (including the matter tensor)
whose divergence vanishes everywhere. However,
this approach is not followed usually, despite its
popularity in quantum field theory. The reason
for this reluctance of introducing a matter tensor
lies mainly in the attempt to separate these prob-
lerns from the question of the equations of mo-
tion. The latter leads to difficulties of its own that
should not be confused with the issues presently
under discussion.

Returning to the definition (11), let us choose
o to be a plane hypersurface, i.e., #* independent
of x; this choice will be used exclusively from
here on. Then the direction of #* will be deter-
mined by the motion of the electron via

n=v/c, (13)
where 9* is the velocity four-vector
v = (cy,Vy), v=dr/dt. (14)

This is intuitively clear, since #* is the only dy-
namical quantity which is a timelike vector of
fixed magnitude with >0 (as n* was defined).
But it can also be proven formally by asking for
the conditions on #* such that P* as defined in
(11) satisfy

Pr=m "

(15)

These conditions lead uniquely to (13).

We can summarize this discussion by saying
that the definition (5) is incorrect and should be
replaced by (11) which becomes (for a plane
hypersurface)

1
Pr=—— fT“"v,,dcr,

c
W='nyd0'—-'ny-vd0'

s
p='nydcr+—; fT'VdO’.
C

(16)

ie.,

17
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Since the volume element d*x =~vde, we see that
these expressions differ from the Abraham-
Lorentz definition (5) by additional terms.

In the nonrelativistic limit (17) becomes (v<c)

W= fUd3x,

1
p=de3x+——2— fT-vd%c
¢

because the second term in W is negligible, but
the second term in p is not negligible, as we shall
now verify by explicit calculation.

For slow (nonrelativistic) motion

(VR) (18)

E=(e/r))f, H=(1/c)vXE. (19)
Using the explicit expression (2) for T we find
1 1
— fT-vd3x=~—— (EE-v—3ivE?)dx
c? 4rc?

é? = dr
- f l f (38 -v—dv)de.
At J, 72

The integration over the solid angle d2 =sindddd ¢
leads to —47v/6 as can easily be verified.® Thus,

1 et © dr
f‘fT'Vde:*——Vf —_
c? 6c: J, 2

v
=———=—3im,V.
6ac?

(20)

Now, the Abraham-Lorentz definition (5) for
the momentum [which is the first term of our
definition (18)]] vields in the nonrelativistic case

(21)

Pa—L=§mV,

as is proven in many texts, following the original
work by -Abraham.® The relativistically correct
definition has a nonrelativistic limit (18) which
differs from p4_z exactly by the addition of the

8 For example, multiplication of the angular integral by
a constant vector perpendicular to v yields zero for this
integral. Thus, the integration must give a vector parallel
to v. It is now sufficient to compute this integral times v,
which is —4#%2/6 and gives the stated result.

9 M. Abraham, Ann. Physik 10, 105 (1903). See, for
example, W. Panofsky and M. Phillips, Eleciricity and
Magnetism (Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1955).
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integral (20). Thus,

P=psa_r—imv=myv. (22)

This, in turn is a special case of (15). We have
thus shown that for a uniformly moving slow
electron the definition (18) for the momentum
yields the correct result, and that the second term
in this definition cannot be neglected. The defini-
tion of energy in (18) is the same as that proposed
by Abraham and Lorentz. In the relativistic case
the correct definitions are provided by (16).

The generalization of the covariant definition
of momentum (16) to accelerated motion is im-
plied in Dirac’s classical electrodynamics.® It
adds little to the points made in the present
considerations.

3. STABILITY OF THE ELECTRON

As is pointed out in standard texts, and as was
first observed by Abraham,! the definitions (5)
which lead to the unacceptable result (21) also
lead to the necessity of the existence of non-
electromagnetic forces which are required both for
the stability of the electron and for the Lorentz
invariance of the theory. These forces were intro-
duced by Poincaré and are known by his name."

Intuitively, the situation seems trivially sim-
ple: A surface charge on a sphere would “fly
apart” unless held together by some attractive
forces. No such forces, however, appear in a
purely electromagnetic theory. Quantitatively,
the situation is described by the electromagnetic
stress tensor

@ =T*dx (i, k=1, 2, 3). (23)

If the system were in equilibrium, % would have
to vanish in the rest system. This is not the case.
A simple calculation shows that in the rest system

Q=0 i7k; (24)

indicating that the electromagnetic stresses are

Oit= — L2,

. not compensated and the electron is not stable.

Poincaré simply postulated attractive forces cor-
responding to stresses which would exactly bal-
ance these and establish equilibrium. Such forces
must evidently be of nonelectromagnetic nature.
Mathematically, the Poincaré tensor plays the
same role as the matter tensor mentioned earlier.

10 M. Abraham, Physik Z. 5, 576 (1904).
11 H. Poincare, R. C. Circ. Mat. Palermo 21, 129 (1906).
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It assures that the integral be independent of the
surface, since it is chosen to complement the
electromagrnetic tensor to yield a divergence free
result in all space.

The Abraham-Lorentz definition (5) of energy
and momentum of the Coulomb field leads to a
very confusing situation: It provides a link be-
tween the transformation properties of these
quantities and the instability of the charge. The
factor 4 in (21) seems linked with the nonvanish-
ing result (24). This can be seen by carrying out
a Lorentz transformation on T* in (5) or (5').
One finds for motion in the x direction:

FIR 2
W’=7W—’y(*) fT”d%
¢

w )
pl =y —y— fT11d3x’
62 62

(25)

where W and T! refer to the rest system, so that
W=m,?. This demonstrates that the correct re-
lationship (15) (without the % factor) can be ob-
tained if and only if ®'=0 in the rest system. If
this conclusion were true it would mean that a
relativistic theory cannot be constructed on
purely electromagnetic interactions: The separa-
tion of electromagnetic and nonelectromagnetic
Poincaré forces is not Lorentz invariant, and
conversely, the theory would no longer diverge in
the point limit if it were Lorentz invariant. This
conclusion is obviously false, as is evident from
the existence of a divergent but Lorentz invariant
quantum electrodynamics.

Indeed, our definition (16) no longer permits
such a conclusion. The same Lorentz transforma-
tion applied to (16) gives

W =+yW
' =v(W/c*w,

and all stress tensor integrals exactly cancel in
the process. Equation (26) holds despite the fact
that @10, We now have, as in quantum electro-
dynamics, a relativistically invariont classical elec-
tron theory, but which diverges in the point limit,
and which vields an unstable charge. The stability
problem is not related to the transformation prop-
erties of the theory.

(26)
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Again, just as in quantum electrodynamics, the
relativistic invariance of the theory permits one
in a unique way to eliminate all divergences in
terms of the mass and charge problem, This pro-
cedure is today well known in quantum feld
theory as renormalization; it can be carried
through in classical just as in quantum electro-
dynamics. In fact, historically, the former was
renormalized first (Dirac, 1938).

The details of classical renormalization theory
exceeds the present discussion,’? but when it is
carried out consistently it yields a renormalized
stress tensor which vanishes identically. Thus,
the renormalized classical electron is stable, just
as in renormalized quantum electrodynamics.

It remains to explain why, after renormaliza-
tion, the electron no longer ‘‘flies apart,” since
no attractive forces have been introduced. How
can renormalization play the same role as the
Poincaré ‘‘glue” played previously?

This seems indeed to be a baffling situation.
But what makes the electron unstable in the first
place? It is the (repulsive) Coulomb force of one
part acting on another part of the charge, The
covariant formulation permits a separation of the
field of the electron into a part which acts on
other charges and a part which acts on itself. The
latter part is removed from the theory by renor-
malization. No part of the renormalized electron
can act on another part of it, very much within
the spirit of regarding the electron as “‘element-
ary.” This makes the self-stress vanish not be-
cause of cancellation with another stress (as
in the Poincaré model), but because there are
no self-interactions in a classical renormalized
theory. We emphasize that renormalization is
only possible when the self-interaction can be
separated in a relativistically invariant way. This
was not possible with the Abraham-Lorentz
definition of self-energy momentum.

We conclude that, after correction of the defini-
tions of energy and momentum of the Coulomb
field, the classical electron theory exhibits exactly
the same structure as quantum electrodynamics,
both as to the mass problem and as to the sta-
bility of the charge.

12 See, e.g.,, S. N. Gupta, Proc. Phys. Soc. (London)
A64, 50 (1951).



