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Electromagnetic systems of finite mass (m>0) and of zero mass (m=0) are considered.
For both cases the electromagnetic energy and momentum are computed and are shown to lead
to essentially different formulas. An invariant expression for the electromagnetic mass in
m >0 systems is derived. All m >0 results are then specialized to the electrostatic case. Histori-
cal and present day confusion in the literature is discussed.

1. INTRODUCTION

The momentum four-vector of classical electro-
magnetic systems as well as their electromagnetic
mass are topics of repeated diseussion in this
Journal and elsewhere. Most recently, two papers
by Butler! published in this Journal were added
to this literature. Unfortunately, both existing
textbooks and original papers are not always free
of errors or misleading statements on this matter.

A good deal of this confusion is due to the fact
that errors made by great physicists of the past
are taken over into textbooks in an uneritical way.
We shall return to this point in Sec. 5 of this
paper.

The results obtained here are not new, but the
approach is rather unconventional and hopefully,
pedagogical and transparent. We shall first give
various classifications of systems so that it will
be quite clear which physical systems we are
talking about (Sec. 2). Section 3 is devoted to
systems of finite mass m>0; this is the heart of
the paper. Then come systems with m=0 (Sec. 4).
The rest of the paper involves historical remarks
and discussion (Sees. 5 and 6).

Since the electromagnetic field is an intrinsi-
cally relativistic object, we use the language of
the special theory of relativity. We choose the
diagonal metrie tensor go=—1, gw=-+1 (k=1,
2, 3), so that the vector z has the components
z¢= (¢, x) and z,= (—¢, x), =0, 1, 2, 3.

2. CLASSIFICATION OF SYSTEMS

There are many ways in which physical systems
can be classified. The following eclassifications
will be relevant to our present interest:

(a) Macroscopic and microscopic systems. Mi-
croscopic systems of charged particles (for ex-
ample point charges) lead to difficulties if de-

seribed by the usual classical electromagnetic
theory (infinite Coulomb self-energy, ete.). While
a new formulation of the theory is free of such
difficulties,? we shall nol be concerned with mi-
croscopic systems here. Therefore, there will then
also be no question concerning the applicability
of classical theory (as compared to quantum
theory).

(b) One distinguishes open and closed systems.
If a physical system is removed from all other
matter and fields so that there is no interaetion
whatsoever between this system and the rest of
the universe, we call it closed. Otherwise, it is
open. Obviously, some or all of the conservation
laws valid for a closed system may be violated
it this system is opened by bringing it in inter-
action with other systems.

The most important invariance property for
the present consideration is translation invariance.
In ¢nlegral form this invariance insures the ex-
istence of & momentum four-vector P which is
a constant of the motion (i.e., each component
P+ is a constant of the motion). In defferential
form it states that the energy tensor T is diver-
gence free,?

8,7 =0. (2.1)

If the system consists of two components, e.g.,
a source and a field, then these two components
are in general not separately invariant. Their
individual energy tensors, II* and O, say, are
not separately divergence free. Instead, we have

3,1 4-3,0% =0. (2.2)

(¢) According to special relativity, all forms
of energy have a mass equivalent. But not all
systems have a rest mass: A unidirectional electro-
magnetic wave carries energy but has no rest
mass. One can therefore classify systems by their
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rest mass. We shall distinguish m=0 and m>0
below.* This is equivalent to a classification by
the total momentum four-vector: m=0 corre-
sponds to a null vector P (i.e., P,P*=0) while
m>0 corresponds to a timelike P(P,P#*<0). The
rest mass m ean in fact be defined by m?= — P, P~

3. SYSTEMS WITH m>0
A. The General Case

One of the most basic properties of a closed
physical system is translation invariance. This
is deduced from the fact that the physical descrip-
tion does not depend on the choice of origin of
the coordinate frame (origin of the three space
coordinates or of the time coordinate). Closely
associated with this invariance property is the
existence of a four-vector P which is the (con-
served) linear four-momentum of the system.
Mathematically, P is the infinitesimal generator
of the translation transformation.

Translation invariance 1s common to Poincaré
invariance (invariance under the inhomogeneous
Lorentz transformations) and to Galilean in-
variance {(invariance under the inhomogeneous
Galilean transformations). The existence of P
18 therefore very deeply rooted in physics and is
not an outgrowth of special relativity. The trans-
formation properties of P under motion with
constant velocity of course do depend on whether
the relativistic (Poincaré) or the nonrelativistic
{Galilean) deseription Is used.

The rest mass of a physical system as men-
tioned earlier, is given by its momenium P
through

P Pr=—m? (3.1)

Since m*>0 is assumed here, this equation makes
P a timelike vector in Minkowski space. Such

vectors come in two types, depending on whether’

they point into the future or into the past light
cone. The positivity of the total energy of a
system leads to the physical requirement;
Po>0. {3.2)
In a given coordinate frame S, the components
of P, ie., P# shall be denoted by E=P° and
P= (P!, P P%). Every timelike vector can be
transformed to a rest system S, which is char-

acterized by Py, =0. From (3.1) and (3.2) follows
E(o) =m.
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The three-dimensional spatial volume Vi of
the system in S, (which may be infinitely large)
can be thought of as composed of small cells each
of which carries a certain amount of energy. If
Uy is the energy density in the frame S,, then

Eo=fUy(x)dVe, Py=0. (3.3)

We shall now show that the four-vector trans-
formation property of P together with (3.3) imply
that P in any frame S must have the form

Pr=f T (z)dPs,(x), (3.4)

where d?¢* are the components of the infinitesimal
volume element of a three-dimensional spacelike
byperplane. The tensor T is called the energy
(or energy-momentum) tensor. It is actually
{dimensionally) an energy densiiy tensor.

In Minkowski space the volume V', is the
three-dimensional hyperplane {=const. It has a
unit normal which is the timelike four-vector
7 With components ngy*=(1, 0) so that

N o= —1.

In general, a spacelike hyperplane with normal
vector n and num*=—1 has the infinitesimal
element

o =nrdie, (3.5)

where d?c = —7,d%* is an invariant. This element
transforms like a four-vector. In S,

Prot=nw'dcm = (dV, 0).

Thus, d’¢=dV . Finally, since d%* is a vector,
T+ must be a tensor.
1t follows that (3.4) can be written

Pe=[ Pr(z)d3, (3.6)
where

Pe(z) =T(x)#n, (3.7)

is the momentum density four-vector in the reference
frame S. In .S it reduces to Py (x) (0 in gen-
eral) and Pp°(2) =Fg(z) =Ug{x). We make
the Important observation that in any frame
858 the energy component P(z)® of the mo-
mentum density four-vector is not T(z)® but is
T%n, and in general n, has nonvanishing com-
ponents for v=1, 2, 3.

A Lorentz transformation on the unit normal
veetor ng* of the t{=const. hyperplane in Sg
shows that in a frame S that moves with ve-
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locity v relative to S; we have the components

[using y=(1—v?)~¥%]

nk= (7, yV) =v-. (3.8)
This can also be seen from the observation that
both » and v are timelike unit veetors, nyn*= —1,

v*= —1 and that in S ne*=(1, 0) and vg*=
(1, 0). Thus, (3.4) can also be written

Pr=Mewy, (3.9)
with

M =f Tw(z)d%. (3.10)

We shall eall this tensor the mass fensor. From
the identification of the total mass m with the
total energy (divided by ¢?=1) in the rest frame
Sy we have

m=Pg’= —v0.L o= —voM o voy=—M o,

(3.11)
and therefore in any system S

m= —v,Pr=—v,M",. (3.12)

As a physical requirement, the mass tensor must
be symmetric. Otherwise, M* would contain a
covariant part (i.e., the antisymmetric part)
which does not contribute to the mass.

Given the symmetric mass tensor M# we can
define the rest frame as that frame in which

Me®=0 (k=1,2,3).  (3.13)

That Sy exists is ensured by the timelike nature
of the four momentum. The mass m is then de-
fined by the M® component in S, according to
(3.11).

Alternatively, we can say that the eigenvalue
equation

Mg =N (3.14)

has a solution for a real positive eigenvalue A=m
and an associated eigenvector y*=1v*, according to
(3.12). In the rest frame Sy this is easily verified
to be correct; a Lorentz transformation to S then
confirms it in general. We conclude therefore that
for any frame S

Pr=my# (3.15)

with m given by (3.12).
B. The Electromagnetic Case

To proceed further, additional information
about the system is necessary. Only now do we
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specify our energy tensor as that of an electro-
magnetic field. When the system is macroscopic,
ag we assume, the total energy tensor will consist
of a purely eleetromagnetic part, 8* and a re-
maining tensor which deseribes nonelectromag-
netie forces and matter.

If we restrict our attention to the electromag-
netie field which is in general only part of a physi-
cal system, this partial physical system will be
open in the sense of Sec. 2. The presence of a
source of the field (e.g., an electric charge) re-
quires a separation of the electromagnetic field
produced by this source (e.g., the Coulomb field)
from the matter of this source (the “bare’ source).
This separation is very artificial and unphysical
for an individual electron which is considered to
be “all electromagnetic,” but it is quite reason-
able in macroscopic physics where bodies can be
charged and discharged at will.

It follows that the situation is of a type char-
acterized by Eq. (2.2). If we wish to restrict
our attention to the electromagnetic field only,
we can still construct a covariant momentum
four-vector if we follow the procedure of the pre-
vious section and integrate over the hyperplane
characterized by the rest system. We shall return
to this point at the beginning of Sec. 6.

The electromagnetic momentum four-vector is
then given by

Pr= [ o#(z)v,d%, (3.16)

which is valid relative to any Lorentz frame S and
where O(x) is the electromagnetic energy tensor.
If the system contains no fields inside matter
(e=1, p=1 in Gaussian units) there are only two
three-vector fields, E and B. The antisymmetric
field tensor has components F# with Fi/=B,
(3, , k, being a cyclic permutation of 1, 2, 3) and
F*=E,. In terms of F* we have the well-known
expression®

0w = (4 ) TL(FraF o+ g» Foghof) . (3.17)

This symmetric tensor can be written in terms of
E and B as

%= — (8) 1 (E*+B)=—-U;

0% = — (4x)1(E xB)s= — (S)s;

O = (T) b= (4r) '[EE4+BB —}1(E*+B%) L1,
(3.18)
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The characterization of the rest frame Sy, (3.13),
therefore becomes

S SwdVe=0 (3.19)

and expresses the fact that in this frame the fotal
integrated Poynting vector vanishes.
The mixed electromagnetic mass tensor

M, =[ 0r,(z)déo (3.20)

has the total electromagnetic mass m as an eigen-
value and v* as eigenvector, according to (3.12)
to (3.15).

Since the frace of 6 vanishes,

8“1‘=0, (321)

as is evident from (3.17), the remaining three
eigenvalues of this 4X4 tensor M* must add
up to —m. In S, these are the eigenvalues of the
integrated Maxwell stress tensor 0%;= 0% which
is given by (3.18) in dyadie form. They are not
of interest here.

We are thus ensured the existence of an electro-
magnetic momentum four-vector of the form
(3.15) with the electromagnetic mass

m= (87!")_1 f (E(0)2+B(0)2> dV(()) (322)

as follows from (3.11) and (3.18). This is the
electromagnetic rest energy (c=11) of the system
[eompare (3.3)].

When (3.15) is written as an integral over the
momentum density (3.16), one obtains the com-
ponents of the electromagnetic momentum four-
vector in terms of U, S, and T from (3.18) and
(3.8)

Po=vy [ (U—=v-S)dPc= (v/4r)
X [ [3(E*+B?) —v-E xB]d%,

P=y [ (S+v-T)ds= (v/47)
X [ [E xB+v-EE+v-BB — v (E2+B?) Jd%.
(3.24)

From these equations we learn that, when re-
ferred to the invariant three-dimensional inte-
gration volume d?c=dV ), the energy density is
not U(x) or vU (), but in the frame S

Pz)=vLU(z) —v-S(x)],  (3.25)

v being the velocity of S relative to the rest
frame S,. Similarly, the momentum density in

(3.23)
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frame § is not the Poynting vector S or ¥S, but
Plz)=~[S@)+v-T(2)]. (3.26)

There are many erroneous statements in the
literature concerning these densities. As we shall
see below, P*(z) =U, and P(z) =S8 (z) holds only
under very special circumstances when one is
dealing with pure radiation (no matter) and
unidirectional energy flow, i.e., when the total
electromagnetic rest mass m vanishes.

The Eqgs. (3.23) and (3.24) are not new,® but
they are quite general and therefore deserve more
attention than is given to them in the standard
literature.

C. The Mass Invariant and the Electrostatic Case

The electromagnetic mass m is an invariant
and, because of the assumed transiation invari-
ance, is in fact a constant (i.e., time independent).
This invariance is not evident from (3.22) but
(3.12) tells us that

m= —v,M»v,= —[ v,0" (z)v,d*

=4m) 71 [ (fafot+iF opFP)ds, (3.27)

where
fe=Fay, (3.28)
is the Lorentz force four-vector per unit charge,
Je=(yv-£; 7f), (3.29)
f=E+v xB. (3.30)

Eq. (3.27) makes the invariance of m manifest.
The invariants can be expressed in terms of the
three-vector fields E and B,

Jo fr=y 2= (v-£)7]

=~[E* (v xB)?—2v-E xB — (v-E)?7,
(3.31)
(3.32)

Let us now consider electrostatic systems which
are characterized by the fact that in their rest
frame B =0 everywhere. When such a system
is in motion, a magnetic induction is present
which is determined by the velocity v relative to
the rest system and by the electric field at that
point,®

1F a8 = —%(E2—~B?).

B=vxE. (3.33)

In such a system the invariants (3.31) and (3.32)
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simplify considerably; one finds easily

faf“=E2—V2E2‘ (V-E)2=E2—(V XE)Z; (3'34)

and therefore,

Jafr=—%FosFE. (3.35)

The last equality is most easily demonstrated
directly by noting that in the rest system S both
sides equal Eq?% If the two invariants are equal
in one coordinate frame they are equal in all
Lorentz frames.

It follows that for the electrostatic case the
electromagnetic mass of the system is simply
[compare (3.27), (3.35), and (3.32)]

m=(4x)L [ (—1F oFF)dPo

= (8)1 f (E*~B?)d%s. (3.36)

The electromagnetic momentum four-vector is,
therefore, from (3.15),

Pr=—(167)71 [ FogF*Pprdlc  (3.37)

or

Pu=f [(E2—B?) Sz Jodbo. (3.38)

If we use the components of v* we can write (3.38)

as
Pr=v [ [(E*—B?) /87 JdPo=m,

P=qv [ [(E*—B?) /87 |d%c=vyvm.

It is important to emphasize that all equations
from (3.33) on are valid only for electrostatic
systems, 1.e., are special cases of the general results
which we discussed previously. In particular, the
electromagnetic energy and momentum (3.39)
and (3.40) are special cases of the generally valid
equations (3.23) and (3.24). The restricted va-
lidity is due to the use of (3.33) which does not
hold in general.

(3.39)
(3.40)

4. Systems with m=0

There are electromagnetic systems for which
the total electromagnetic four-momentum is a
null vector, i.e.,

P,Pr=0. (4.1)

These systems still have positive energy

Po>0, (4.2)

but they have no rest.mass. The mass can be de-
fined by P,P* as in (3.1) in which case (4.1) is
the special case m =0. Or, it can be defined by the
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energy tensor integral, i.e., the mass tensor M,
(3.10) and (3.12), which read for the electro-
magnetic case

m=—v,, [ 0% (z)d’. (4.3)

Both definitions yield the same result if m>0.
But when m =0 there is no rest frame and there-
fore, no timelike velocity four-vector v* and con-
sequently (4.3) has no meaning,.

In order to explain this point let us reecall that
the rest frame was defined by (3.13) provided
there exists a frame in which that equation is
satisfied. But if the integrated Poynting vector
never vanishes, i.e., if

MH=[ 0Mdic = (S(z))udio >0  (4.4)

in every Lorentz frame, no rest frame exists. In
that case v* is clearly undefined.

The momentum four-vector can of course still
be expressed in terms of an integral of the energy
tensor O over a spacelike plane,

Pr=[ 6w (z)d%s,. (4.5)

But the normal vector n* of d’¢*=n#d% is no
longer related to a rest frame by (3.8). The situ-
ation here is rather different. We are now dealing
with a closed system since there are no sources
in the system. It consists entirely of electromag-
netie fields. Thus,

8,67 =0, (4.6)

as in (2.1). In that case the integral (4.5) is in-
dependent of the choice of the spacelike plane
(see Sec. 6), and we can take n*= (1, 0),

Pr=f 09pydiec = — [ 084V .
In three-veetor notation this means [see (3.18)7]
P'=[ UdV@=(8m)7 [ (B*+B)dVe, (47)
P=[SdVi=(4r) "1 [ (ExB)dVq. (4.8)

These equations are generally valid for systems
with m=0 and for all frames S. They look like
(3.23) and (3.24) for m>0 in S,, but these should
not be econfused.

Systems with m =0 consist of electromagnetic
radiation with no sources present; the total mo-
mentum is given by the net flux of radiation. A
wave train of given direction and finite cross sec-
tion is a realistic physical example.
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5. HISTORICAL REMARKS

In the physies literature, one often finds the
expressions (4.7) and (4.8) for the electromag-
netic energy and momentum of zero mass systems
applied o systems with positive mass. The correct
expressions for the latter case, Eqs. (3.23) and
(3.24), are usually not used. This situation has
a historical origin which is not generally known.

By far the most influential physicists concerned
with the classical theory of electrons around the
turn of the century were Lorentz and Abraham.
This influenee was enhanced by the fact that the
latter’s book on electricity and magnetism, later
revised by Becker and edited under the names
of both authors, became the classic text on electro-
magnetic theory in German-speaking countries
and around the world. And it remained so for a
third of this century.

For nonrelativistic motion, (3.23) and (4.7)
are identical, so that no error is introduced in
the energy when the m =0 expression is used for
the m>0 case. But the expressions for P, (3.24)
and (4.8) differ even in the nonrelativistic limit.

The incorreet use of (4.8) for P in m >0 systems
can be traced directly to Lorentz. In 1906, Lorentz
delivered a series of lectures at Columbia Uni-
versity which were later published and which
became very well known. On p. 32 of the cited
edition one reads (we use our symbols in the
cited equations)’;

... our discussion shows the importance of
the veetor SdV g which has a definite direc-
tion and magnitude for every element of
volume, and of the vector P=f SdV, that
may be derived from it by integration.
Abraham [ Ref. 8] of Gottingen has applied to
these quantities the name of electromagnetic
momentum. We may term them so, even if we
do not wish to convey the idea that they re-
present a real momentum . . ..

In his lectures, Lorentz then proceeds to com-
pute the energy and momentum of the electro-
magnetic field surrounding a moving charge using
the above expression and is led to a result in-
consistent with translation invariance. For ex-
ample, in the nonrelativistic limit P =4mv, where
m=FE/c¢.

It appears, therefore, that Abraham first sug-
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gested the use of the Poynting veetor as electro-
magnetic momentum density n general, after
it was found to be the correct expression for radi-
ation. This uneritical application of (4.8) to
other than m =0 systems such as to the Coulomb
field of a charged particle was taken over by
Lorentz. It thus received undeserved endorsement
from the highest authority in the field. As far
as one can tell, the resultant inconsistencies were
never blamed on Eq. (4.8) as inapplicable to
Coulomb fields.

6. DISCUSSION

This section is conveniently divided into four
separate parts referring to rather unconnected
aspects of the preceding exposition.

{a) By a generalization of Gauss’ integral
theorem to four-dimensional Minkowski space one
can prove the following theorem: The integral
in (3.4) will be independent of the choice of the
surface normal n* of d®%* if and only if the in-
tegrand T is divergence free [i.e., (2.1) holds].?
In Sec. 4, where the system with m =0 is closed,
this theorem applies so that ## on (4.5) ecan be
chosen arbitrarily (as long as it is a timelike unit.
vector). On the other hand, in Sec. 3, where the
electromagnetic field is not a closed system by
itself so that (4.6) does not hold, the integral
representing P# Eq. (3.16) is not independent
of the surface normal. Rather, the normal is fixed
to the motion of the system by (8.8). This means
that one integrates always over the hyperplane
which is the transformed three space of the rest
frame. Only in this way can this open system yield
a meaningful momentum four-vector.

It is clear that the above theorem establishes
o relation between the differential conservation
laws [such as (4.6)7 and the integral conserva-
tion laws P#=const.

One way of stating the error made in the older
literature, as given in Sec. 5, is to say that they
treated the Coulomb field as if it were a closed
system; they computed the momentum integral
as if it were independent of the choice of the sur-
face. Since the Coulomb field by itself is open,
this is not so.

(b} In Eq. (3.14) an eigenvalue problem for
Mw is indicated. This is a somewhat different
problem from the eigenvalue problem of the
energy (density) tensor 0+, The latter is more
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difficult.!® It leads to the result
m=(16m) 7L [ [(FugFt)?

+ (3FPeupsF ) JdPo,  (6.1)

where €wpys=-+1, —1, 0 depending on whether
aBys is an even or odd permutation of 0123, or
neither. The first invariant under the square root
is known from (3.32). The second one is

$FPe s FP =EB. (6.2)

For electrostatic systems, this invariant vanishes
because it vanishes in S;. Then (6.1) reduces to
(3.36). In the general case, the identity of (6.1)
and (3.27) is not obvious since it holds only for
the integral but not for the integrand.

(¢) The considerations of See. 3 can be ex-
tended to dielectrie media. If ex£1, u=£1, we shall
have D and H in addition to E and B. These two
three vectors form an antisymmetric tensor H#*
analogous to F*. The electromagnetic energy
tensor is then

Or'= (4m) = (PreH o+ g Fogll™),  (6.3)

and the results of Seec. 3, especially (3.27) and
(3.37), generalize in an obvious way.

(d) Two recent papers by Butler refer to the
subject matter of the present work.! In Bl he
claims to derive ‘“...a new equation for the
energy density dU/dV ...of a clagsical maero-
seopic charged body...”. But his equation is
our (3.39) and is not new since it is a special case
of (3.23) which is contained in Ref. 2 and in other
places. In fact, Ref. 2 is never mentioned by this
author.

In B1 we read “we now show that Rohrlich’s
equation . .. can be simplified . ..”. But the au-
thor then proceeds to derive the electrostatic case
from the general case, thus making a specializa~
tion rather than a simplification. But the Trouton—
Noble experiment is certainly a good example of
the usefulness of (3.39), and the author must be
given credit for treating correctly an often con-
fused subject matter.
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The results for the momentum four-vector ob-
tained in Bl and B2 are not new® and are just
(3.39) and (3.40). However, the author prefers
to express the invariant d®¢ =dV gy by the Lorentz
contracted volume dV =dV /v, so that ds in
these equations is replaced by vdV in Bl and B2.
The results are, however, not general and pertain
only to electrostatic systems; the general expres-
sions for the electromagnetic energy and momen-
tum were given earlier’ and are rederived here,
Egs. (3.23) and (3.24). Furthermore, Bl and
B2 do not explain why the m =0 expressions are
not applicable to m>0 systems.

The history of the confusion in the literature
on this topic was sketched some time ago' and has
now been elaborated in more detail in Sec. 5.
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