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Causality in classical field theories must be inserted by hand by choosing the retarded solution. It is
shown how apparent contradictions in the Coulomb gauge can be resolved and that a causal
Coulomb field exists despite the appearance to the contrary. Similarly, it is shown how Newtonian
gravitation leads from action-at-a-distance to a causal field when a first-order correction for space–
time curvature is applied. ©2002 American Association of Physics Teachers.
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I. INTRODUCTION

In both electromagnetic theory and nonrelativistic gravi
tion theory,action-at-a-distanceforces exist: Coulomb’s law
and Newton’s law of gravitation. The electrodynamic fiel
have advanced solutions and retarded ones, but only the
ter are causal. The existence of action-at-a-distance a
causal forces implies an apparent self-contradiction in
formalism.

Classical physics does not contain an arrow of time,
only exception being the law of entropy for macroscop
systems. However, I have recently shown that this claim
not correct when the physical principle of causality is tak
into account: the equations of motion of extended class
particles thendo contain an arrow of time.1

The principle of causality states that no effect can oc
outside the future light cone of its cause. This principle m
be introduced as a condition. In electrodynamics, this con
tion is imposed by choosing the retarded solutions of M
well’s differential equations. However, there seems to b
problem when the Coulomb gauge is used: it leads to
action-at-a-distance force. A paper by Brill and Goodma2

discusses this problem, but they show only the consiste
between the Coulomb gauge and causality and do not e
cate the cause of the apparent contradiction. The text
Jackson3 deals only with the special case of a flashing dipo

For gravitation, causality is absent in Newtonian theory
which the force is strictly an action-at-a-distance force. Af
all, this theory involves astatic interaction just like the time-
independent Coulomb field. However, if one goes beyo
Newtonian theory evenonly to first order to take into ac-
count space–time curvature—the linear approximation
Einstein gravitation theory—one can obtain a causal solu
in the same way as in electrodynamics.

In Sec. II, I shall discuss causality for the electric field
a preliminary to the problem raised by the introduction of t
Coulomb gauge. The latter is the subject of Sec. III. T
gravitational case is dealt with in Sec. IV.

II. THE ELECTRIC FIELD

For the sake of completeness, I begin with a few we
known equations. It is sufficient to discuss only the vacu
form of Maxwell’s equations. To minimize unimportant fa
tors, I shall use Gaussian units withc51. The inhomoge-
neous equations are

“ÃB2Ė54p j , “"E54pr. ~2.1!

They imply the differential equation of charge conservatio
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“"j1 ṙ50. ~2.2!

The homogeneous Maxwell equations are

“ÃE1Ḃ50, “"B50. ~2.3!

If we take the curl of the first part of Eq.~2.3! and substitute
the time derivative of Eq.~2.1!, we obtain the differential
equation for the electric field,

hE54p~] j /]t1“r!, ~2.4!

whereh5“

22]2/]t2.
The causality condition can now be imposed by choos

the retarded solution of Eq.~2.4!. The retarded Green func
tion is given by

hDṘ~x!52d~x!, DR5
1

4pr
d~ t2r !. ~2.5!

Equation~2.5! implies that for any functionf (t,x),

4pE DR~x2x8! f ~ t8,x8!d4x8

5E d3x8 f ~ t2ux2x8u,x8!/ux2x8u.

If we use this Green function, the retarded electric field~the
word ‘‘field’’ is used here for what is often called ‘‘field
strength’’! is

E~x!524pE DR~x2x8!@] j ~x8!/]t81“8r~x8!#d4x8.

~2.6!

E(x) is the field atx5(t,x) that is generated by the curren
and charge densities at the retarded pointx85(t8,x8), where
t85t2ux-x8u. For the special case,] j /]t50, one obtains,
using integration by parts,

E~ t,x!52E d3x8r~ t2ux2x8u,x8!“~1/ux2x8u!. ~2.7!

E(t,x) is the retarded Coulomb field; Eq.~2.7! shows the
causal nature ofE explicitly.

III. POTENTIALS AND GAUGES

Potentials are introduced to simplify the field equations.
particular, they make the homogeneous Maxwell equati
into identities so that only the inhomogeneous equati
need to be solved. They have no physical significance
classical physics, and only the fields are observable. Gau
411p/ © 2002 American Association of Physics Teachers
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are introduced to put conditions on the potentials, beca
otherwise there is too much freedom for their choice. But
matter which gauge is used, the fields are defined by
potentials:

E52“w2Ȧ, B5“ÃA. ~3.1!

The best-known gauges are the Lorenz4,5 gauge and the
Coulomb gauge. The Lorenz gauge is also called the cov
ant gauge, because the potentials transform as compone
a four-vector,Am5(w,A). This gauge is characterized by

“•A1ẇ50. ~3.2!

The inhomogeneous Maxwell equations in the Lorenz ga
become

hA524p j , hw524pr. ~3.3!

Together with the gauge condition~3.2!, they imply the dif-
ferential law of charge conservation~2.2!. In this gauge,
there is no problem ensuring causality by choosing the
tarded solutions of Eq.~3.3!,

A~x!54pE DR~x2x8!j ~x8!d4x8,

~3.4!

w~x!54pE DR~x2x8!r~x8!.

These solutions for the retarded potentials yield the retar
fields by substitution into Eq.~3.1!.

The Coulomb gauge~also called the radiation gauge or th
transverse gauge! is not a covariant gauge. The potentials
this gauge do not form a four-vector. This gauge is char
terized by

Ai50. ~3.5!

This condition suggests that we should separate all th
vectorsV into longitudinal ~irrotational! and transverse~or
solenoidal! components,V5Vi1V' ; this separation is
unique. These components are defined by

“"V'50, “ÃVi50. ~3.6!

The Coulomb gauge condition~3.5! thus implies A
5A' . From the Maxwell equations~2.1! and the definition
of the fields in terms of the potentials, Eq.~3.1!, one deduces
not only the differential equations for the potentials,

hA'524p j' , “

2w524pr, ~3.7!

but also the relation

4p j i5“ẇ. ~3.8!

For later discussion, it is important to realize thatj i is not a
component ofj , but a highly nonlocal function of it,

j i~x,t!52
1

4p
“E d3x8

ux2x8u
“8• j ~x8,t !. ~3.9!

The differential charge conservation law also breaks
into two parts,

“• j'50, “• j i1 ṙ50. ~3.10!

We are now ready to examine the question of causality
the Coulomb gauge. There is obviously no problem for
vector potential because from Eq.~3.7!, we have
412 Am. J. Phys., Vol. 70, No. 4, April 2002
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A'~x!54pE DR~x2x8!j'~x8!d4x8, ~3.11!

which yields the retarded fieldE'(x)52]A'(x)/]t. But for
the scalar potential, Eq.~3.7! gives the instantaneous an
thereforenot the retarded potential

w~x,t !5E d3x8

ux2x8u
r~x8,t !, ~3.12!

so that

Ei~x!52“w~x,t !52“E d3x8

ux2x8u
r~x8,t ! ~3.13!

is also not retarded; it is aninstantaneous~action-at-a-
distance! field. The surprise here is that a relativistic theo
with retarded initial conditions would lead to such a field.
there a contradiction in the theory so that it is interna
inconsistent?

The answer lies in the nature ofEi . Just likej i , Ei is also
a highly nonlocal function ofE with the identical defining
relation asj i to j in Eq. ~3.9!:

Ei~x,t !52
1

4p
“E d3x8

ux2x8u
“8•E~x8,t !. ~3.14!

Using the second Maxwell equation~2.1!, this relation im-
plies Eq.~3.13! trivially. A comparison with Eq.~2.7! now
shows that thisnonlocal relation of the longitudinal field to
the total field is exactly responsible for turning the retard
field E due tor in Eq. (2.7) into an instantaneous (action
at-a-distance) fieldEi due tor in Eq. (3.13).

When the retarded fieldE in Eq. ~2.6! is separated into'
and i components, the fieldE' is a retarded field in agree
ment with the field derived from Eq.~3.10!, but the fieldEi

is also retarded,

Ei~x!524pE DR~x2x8!@] j i~x8!/]t81“8r~x8!#d4x8,

~3.15!

in apparent contradiction to Eq.~3.13!. But when one elimi-
natesj i andr in favor of the scalar potentialw @using Eqs.
~3.8! and ~3.7!#, one finds

4p@] j i~x!/]t1“r~x!#5“ẅ2““

2w52h“w.
~3.16!

And when this result is inserted into Eq.~3.15!, the h op-
erator can be transferred to theDR function by differentiation
by parts.~The surface terms can be shown to vanish.! One
thus obtains

Ei~x!5E DR~x2x8!h8“8w~x8!d4x8

52E d~x2x8!“8w~x8!d4x852“w~x!. ~3.17!

Equation~3.17! is of course the same as~3.13! because of
relation ~3.12!.

But ~3.17! seems to express a ‘‘miracle:’’ it claims thatthe
retarded fieldin Eq. ~3.15! equals the instantaneous fieldin
Eq. ~3.13!. The static nonretarded Coulomb field is the res
of a ‘‘conspiracy’’ in which the relations between the sourc
j i and r and the scalar potential are such that the retar
Green function is eliminated. Just as we have seen in
412F. Rohrlich
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~3.13!, an instantaneous field is obtained because the no
cality of j i exactly compensates the retardation effect. T
compensation leads from the retarded field in Eq.~2.6! to the
instantaneous one in Eqs.~3.13! and ~3.17!.

Two side remarks are in order here. First, this proced
teaches us the following trick: any functionf (x) can be
made into a retarded integral in the following way:

f ~x!5E d~x2x8!d4x8 f ~x8!

52E h8DR~x2x8!d4x8 f ~x8!

52E DR~x2x8!d4x8h8 f ~x8!,

where the surface integrals are assumed to vanish. Sec
the above results could also have been obtained for an
vanced rather than a retarded interaction;DR would then be
replaced byDA , and the argument carries through in exac
the same way.

We can now summarize the lessons we have learned a
the peculiarities of the Coulomb gauge.

~a! The Coulomb gauge condition~3.5! leads to the Cou-
lomb potential~3.12!, which is not retarded. The cor-
responding field,Ei in Eq. ~3.13!, is therefore also no
retarded and leads to an instantaneous~action-at-a-
distance! interaction.

~b! This result is a consequence of thenonlocal relation
between the longitudinal fieldEi and total fieldE in
Eq. ~3.14!.

~c! From Eqs.~3.15! and~3.16! we see that thenonlocality
of ] j i /]t combines with the“r term so as tocancel
the retardation exactly, yielding an instantaneous inte
action via the longitudinal fieldEi .

~d! Finally, if “• j i vanishes, the charge densityr becomes
time independent according to the equation for cons
vation of charge, Eq.~3.10!, so that causality become
a moot question.

IV. THE GRAVITATIONAL CASE

Historians tell us that Newton was quite unhappy over
fact that his law of gravitation implies an action-at-a-distan
interaction over very large distances such as that between
sun and the earth. But he was unable to resolve
problem.6 With the aid of general relativity, one can sho
that even a first-order correction to his law produces a ca
interaction. I shall only sketch how this result arises, an
refer the reader to the excellent text by Rindler7 or to other
texts on general relativity for further details.

Newton’s law of gravitation,

F5GmM/r 2, ~4.1!

violates causality, because it does not take into account th
takes a certain time for the interaction to travel from t
sourceM to the massm on which it acts. In Einstein’s theory
of gravitation~general relativity!, interactions propagate with
the speed of light, and gravitation is the result of a curvat
of space–time due to the sourceM rather than due to a force
Its field equations are

Rmn5k~Tmn2 1
2gmnT!. ~4.2!
413 Am. J. Phys., Vol. 70, No. 4, April 2002
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Here,Rmn is the Ricci tensor~a contraction of the curvature
tensor!, k is the coupling constant,k58pG, and the matter
tensor is assumed to be that of dust,Tmn(x)
5rum(x)un(x).

Because curvature depends on the derivatives of the m
ric tensor,gmn , Einsteinian gravitation can be described
first order as small deviations from the metric for flat spac
time, hmn , so that

gmn5hmn1hmn , ~4.3!

wherehmn is small compared tohmn . In this approximation,
the field equation~4.2! becomes7

hhmn522k~Tmn2 1
2hmnT!. ~4.4!

As in the electromagnetic case, one can impose caus
by choosing the retarded solution,

hmn~x!52kE DR~x2x8!

3@Tmn~x8!2 1
2hmn~x8!T~x8!#d4x8. ~4.5!

To show that this equation reproduces the equation
Newtonian gravitation theory, consider its static limit. In th
limit, all components ofTmn vanish exceptT005r. Equation
~4.4! then reduces to~again usingc51!,

“

2h00528pGr, ~4.6!

while all the otherhmn vanish. Equation~4.6! is of course
exactly the equation for the Newtonian gravitational pote
tial w. But because the Newtonian and the Einsteinian gra
tation theories have completely different pictures of gravi
tion, the symbols in the equation must be reinterprete8

Thus, the componenth00 of the correction to the Minkowsk
metric tensor is to be interpreted as the Newtonian poten
~except for a factor of 2!, h0052w. Equation~4.6! then be-
comes

“

2w524pGr, ~4.7!

and the Newtonian gravitational force acting on a massm is
F5m“w.9 ~Note that the gravitational potential has differe
dimensions than the electric one.!

Of course, one could play the same trick~3.14! as in the
electromagnetic case. But it seems without justification he
Instead, let us return to Eq.~4.5!, the solutionof the differ-
ential equation forhmn . We see that thesolution is retarded.
If we take the Newtonian limit, we find the desired result

h00~x!5216pGE DR~x2x8!@r~x8!/2#d4x8.

The Newtonian gravitational potential is therefore

w5h00/2524pGE r~ t2ux2x8u,x8!d3x8/ux2x8u,

~4.8!

so that the Newtonian gravitational forceF5m“w is now
retarded. By keeping the time derivatives in the differenti
equation forh00, the requirement for causality can be me
Because the Newtonian theory is entirely static, retardatio
not possible until the correction due to deviations fro
Minkowski space is considered.
413F. Rohrlich
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