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SUMMARY.

The aim of the paper has been the establishment of a
system of internal ballistics, based on the assumption of the
particular forms we lhave recently put forward for the
equation- of- state of propellant gases and for the rate of
burning Jaw of stabilized colloidal propellants. The main
analysis has centred round the conditions obtaining during
the propellant combustion phase, and these are chiefly
discussed in Sections 11I. and IV.  An abridged procedure

has been outlined in Section V. together with a brief
reference to particular features of the motion both durin
and immediately subsequent to propellant combustion. The
analysis has been specifically restricted to supposedly known
conditions, no attempt being made to deal with wider
applications, an adequate discussion of which would compel
as a preliminary the introduction and detailed examination
of several essential criteria not required for the immediate
purposes in view.

In conclusion, we desire to express our thanks to Captain
A. C. Goolden, R.N., for his encouragement and interest in
the work, and to acknowledge our indebtedness to the
Director of Artillery, the Director of Naval Ordnance, and
the Ordnance Commiittee for their courtesy in sanctioning
publication,

LIX. The Electromagnetic Field of a moving uniformly
and rigidly Electrified Sphere and its Radiationless
Orbits. By G. A. Scmorr, F.R.S., University College
of Wales, Aberystwyth *.

1. lT is very generally assumed that an electrified

body in accelerated motion necessarily loses
energy by radiation at a rate proportional to the square
of its acceleration. In the course of an investigation
carried out recently, 1 have discovered a case in which
this assumption is certainly false on the basis of the
Electromagnetic Theory of Maxwell and its further
developments by Larmor and H. A. Lorentz. In order
to make quite clear what is involved let us consider
a concrete example : imagine a metal sphere suspended

* Communicated by the Author,
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by a fine metal wire in such a manner thatit can be earthed
-or insulated at will. Surround it by a closely fitting
insulating coating, e.g., two thin hollow hemispheres
-of ebonite fitted together, and then place around the
who'e and concentric with it a larger insulated metal
.sphere made of two hemispheres with a very small
hole through which the suspending wire passes without
touching the outer sphere. Now connect the outer
metal sphere to one pole of a battery and the inner
-one momentarily to the other pole, and again insulate
the latter sphere. This receives a charge which resides
-on the ebonite in contact with it according to the theory
of Maxwell and a well known experiment of Faraday.
Remove the outer metal hemispheres and also the
.ebonite hemispheres. Joining the latter together we
obtain a very nearly uniformly charged insulating sphere,
and, if the ebonite insulated perfectly, the charge would
remain uniform however the sphere moved about as
a whole. This charged ebonite sphere is a concrete
-.example, realized approximately, of what is meant
in the present paper. It will be shown that, if the centre
of such a uniformly and rigidly electrified sphere describes
a closed orbit of any form with a suitably chosen period,
and the sphere rotates with such an angular velocity
that every point of it describes an equal and parallel
orbit, then the electromagnetic field due to the sphere
at a sufficient distance is a static field, and therefore
no energy will be radiated to infinity. The motion
of the sphere must be one of pure translation without
any spin.

2. In order to prove this result we start from the
following expressions for the scalar potential ¢ and
vector potential a *

—_ ij deJ. J eiﬂ("T'R)dep,/R ... (1)
2

a=~1jdej J ewt=-Rdrdp/R, . . (2)
2

—_— -

* Schott, Ann. der Physik, xxvi. p. 637 (1907); ¢ Electromagnetic
-Radiation,’ ch. II. §9, eqs. (12) and (13).
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where v is the common vector velocity of every element

de of the charge on the sphere, and R is the distance

of joht? field point from de, both at the time . To simplify
printing and writing the unit of time has been taken
to be the time taken by an electromagnetic disturbance
to travel unit distance. To return to the usual unit
we replace ¢ and 7 by ¢f and ¢7, and v by v/c.

We assume that the integration with respect to de
can be interchanged with those with respect to ¢ and u ;
gzeu \?hilﬁy o}f1 this change of order of integration, as

s the characte i i
e s he chatac r of the integrals (1) and (2), is

Let the total charge on the sphere be e, t i
the distance of the field-point froII)n the centre }:: i?r?euj Z’
and the .angle between r and the radius to the eleméng
de, y. Since there is symmetry for the sphere and its
charge about r, we may write

R2=a?+r2—2ar cos y, de=1}esin ydy=eRdR/2ar . . (3)

Changing the order of int ion i i
(3) mo ot Integration in (1) and using

«0

o
e ot piM(E—T R;
¢>=—~—§ ‘ e 0drdp \ ™, g
dna) | r
O g R1
L @ .
_ e erit—T—Ry)__ pip¢~1-R,)
dmg, S drde
—0 =

e ( dr( si —_—r— i :
e I J sin p(t—r Rl):zm p(t—7—Ry) dp,
o

(4)
where R; and R, are the least and greatest di
of the field-point from the sphere, bothg taken pi?ﬁ?\tz?
The last expression is derived by dividing the ran e
of integration for u into two, from —e to 0 and fro%n
0 to «, and changing the sign of u in the first half
In the same way we obtain from (2) an expression for

a differing from (4) only by an additi i
the integral with respect écro 1-3.7 rdditional factor v in

3. In order to make further i
_ ; progress we must consider
the kinematics of the problem briefly. As the cerlltig-
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of the sphere describes its orbit, whatever it be, the
sphere sweeps out a region ‘of space bounded by the
envelope of the.moving sphere ; this envelope can also
be generated by a great circle of the sphere, whose plane
always remains normal to the path of the common centre.
Two cases arise : in one the envelope does not intersect
itself, and consists of a single sheet of tubular form,
either extending.- to infinity or forming a closed ring ;
in the other it intersects itself and consists of two sheets,
an outer sheet generated by the outer part of the moving
great circle, and” an inner sheet generated by the inner
part. Any field-point, outside the single sheet of the
envelope in the first case, or the outer sheetin the second,
is such that r>a for every position of the moving sphere ;
any field-point inside the inner sheet of the envelope
in the second case is such that r<<a for every position
of the moving sphere. Every other field-point is such
that r>a for some positions of the moving sphere,
and r<a for others. The first two types of field-point
are comparatively easy to deal with, especially the
first (r>a always); we shall call this type an outer
field-point, and restrict our investigation to it, because
it leads to general and interesting results.

4. Outer field-point : r>a, Ry=r—a, R,=r+0.

The arguments of the two sines in (4) become
p(tta—7—r) and p{t—a—7—r7)
respectively, and the corresponding integrals with respect
to p are discontinuous Dirichlet integrals, whose values

are

+ a2 for T4r Sita, or t—a,
as the case may be. They are easily reduced by means
of the substitution

O'=’T+T, foJ.=1—l-"ir:‘:[§, d’Tzc‘ig, . . (5)
dr dr

where K is a Doppler factor and is positive so long as

the velocity v of the sphere is less than ¢, the velocity

of light. We shall suppose that this is so, and then o

increases continually from — e« to o« as T increases
between the same limits. We obtain at once from (4)
{7 edo
"S—J,_am}{;’ .. (8
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and in precisely the same way

t+a oydo
a— -
t_a 2“Kr . L] - L3 . . . (7)
Returning to the usual units by replacing ¢ and ¢ by

¢t and ¢o and v by v/c we obtain

ttae pedg ,
"J,a,ﬂdKr" s .. (6)
. J ttale eydgy 7

e 2Kyttt (7)

where now we have
. r d’T_ dr ’
o=r+ Ko =14+ . . . . .()

5. These expressions can be written in another more
suggestive form. Let 7, be the time at which a dis-
turbance would have to be emitted from the centre
in its position Q, in order to reach the field-point P
at the time {—ajc, and let 7,, Q, correspond similarly
to the time #4a/c, just as 7 corresponds to . Also let

Q,P=r;, Q;P=r,;
then by (5)

T a
7'1—*'[1 == Tz+7;2=t+ql~ < - . (8

Further, let ds be the element of arc described by the
centre in the interval from 7 to 74dr, and ds the same
element regarded as a vector. Then we have

cId{g =cd7=@8=%s, VIC? =vdr=ds, B=v/c
as usual. Then (6),"(7’) and (8), give
QG eds
qumﬁr .
‘QQ eds
- o 2ar (10)

In words, ¢ is the electrostatic potential at P due
to a distribution of charge along the arc Q,Q, of the
orbit of the centre of the sphere with line density e/2a8,
whilst a is the vector potential of the same arc when
it carries a uniform current of strength ¢/2a.
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Since the positions Q;, Q, of the centre of the sphere
depend on the time ¢ as well as on the coordinates of the
field-point P in accordance with (8), ¢ and a will both
depend on the time ingeneral. But, when the orbit of the
centre is periodic, ¢ and a can become independent of the
time, although they will still depend on the coordinates
of the field-point and the nature of the orbit.

6. Periodic orbit.—The orbit is necessarily a closed
curve fixed in position; let the time of one revolution
be T. Obviously the values of ¢ and a will generally
repeat themselves after any interval which is an integral
multiple of T, for the end points Q,, Q, of the arc con-
cerned in (9) and (10) will be the same as they were
originally. Moreover, we see from (8) that Q, will
coincide with Q,, whenever 2q is equal to ¢T, or an integral
multiple j thereof.

By considering this periodic orbit as the limit of
j ultimately coincident turns of a spiral, we deduce
that, when 2a = jc¢T, where j is an integer,

d

$— §2‘;BST ¢ 1))
eds

) £ (1%

where each contour integral is taken once round the orbit.

We can confirm these results by deriving them directly
from (6’) and (7') by a very convenient, though not
rigorous, symbolic method. For the sake of brevity

write
- 1]

where D denotes the operator d/cdt with the usual unit
of time. Then we obtain from (6')

b=, e {F(t,—}— ‘3) —F(t—g } = »;a (e —e~D)F(t)

sinh aD '
=2 L&l - (13)
Similarly (7') gives
smh aD
= { cKr] (14)



758 Prof. G. A. Schott on the Electromagnetic

In words, we can obtain the retarded point potentials
due to the uniformly and rigidly charged sphere, with
charge e and radius e, in purely translatory motion,
by operating with sinhaD/aD on the corresponding
retarded point potentials due to a charge e concentrated

at the centre.

Since the operator sinh aD/aD is an even function
of aD, we can replace aD by iwa/c, when the function
operated on is a simple harmonic function of w?.

Now, when the motion of the centre is periodic with
a period T, the point potentials can be expanded in

Fourier series of the types

el 3 2t ;e 2mnd
[K‘r]—,fo ®, cos 7’ +&y sin -T—) . (15)
ev i 2mnit . 2mnt

= A, — n s
[cKr] ni\',‘o cos T --Ax' gin T ) (16)

where the coefficients are functions of the coordinates
of the field-point and of the parameters defining the

-orbit.
Then we obtain from (13) ... (16)

g sin (27na/cT) 27t , . 2nnt
é= iom’ (Ql cos B\ + @, sin T (11)

-, sin (2mna/eT
am SR CTE) (4 os T a2 (1)

2, 2mnajcT

When T=2a/cj, the factor outside the brackets in
(17) and (18) reduces to sinznj/mnj ; it vanishes when j
is an integer for all values of n except zero, and then
reduces to unity. Hence in this case we obtain

by ) T edt jg_[weiz_f_. eds
T T KrZ2e), ) 2a8r,’

-
1 Tevdt_jy evdr . [ eds
a‘“‘TJ cKr ’27;.07:-7}.27”-’

0
which are identical with (11) and (12).

7. Since the line density of the distribution along the
.orbit is e/2aB, the total charge for j turns is

. feds . (" ecdr _ jecT
J 2aﬁ_‘7 o 20 2 —%
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as might have been expected. Moreove

purrelnt in lizhe {1 coincident turns is je/2a, wgéntill(:e ggf)?tl:
is only reckoned once. Henc

is theyfollowing once. T e wWe can express our result

When the centre of a uniformly and rigi
sphe.re, with charge ¢ and radius a?r in purelg}lrdgag:}lzz%id
motion, descr:ibes a closed orbit periodically in a timz
2a/cj, where j is any integer, the electromagnetic field
at ;Eerylouti;:er point is a static field.

e electrostatic potential of this field is

as that due to a charge e distributed along t1;3}}11(:; ?)igli?;
of the centre with a linear density varying inversel
as the velocity of the centre, which is the same as tha{
of every point of the sphere, and the magnetic field
is the same as that due to a uniform steady current
of strength je/2a flowing round the orbit of the centre
in the direction of its motion.

At great distances from the orbit the electric force
varies inversely as the square of the distance and the
magnetic force inversely as its cube, so that the total
flow of energy across a large sphere enclosing the orbit
1s zero in the limit as the radius approaches infinit
and the radiation from the moving sphere is zero i
usually ._deﬁned, although there is acceleration. »

This is true only when the motion of the sphere is one
of pure translation ; spin always produces radiation

It is noteworthy that the dimensions of thege radiétion-
lefssé 1(1)1'b1t§l are geilerfa,lly small compared with the diameter
of the sphere. In fact, the perime ] it wi
oot raprdlit P ter I of the orbit with

T —_
Z=L vdr=vT=2aflj, . . . . . (19)

where §8 is the time average of v/c along the orbit. When
this is less than unity, as we have supposed, the ﬁerimeter
of the orbit is less than the diameter of the sphere and
may be much less, if B is small, or j large. Thus the
orbit of the centre lies entirely inside the sphere, in fact
ir}llside the inner sheet of the envelope, which ’has two,
sheets.

8. Application to problems of atomic structure.—Havi
now established the principal result of our inv;astig:;:)l:lg
we may perhaps be permitted to indulge in a little’
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speculation, and, though models of the atom and its
constituents, especially classical ones, are out of fashion,
enquire whether such models, constructed out of charged
spheres, like the one considered above, may not, after
all, be of use in the elucidation of atomic problems.
The chief difficulty has always been that stationary
electric charges cannot form a stable system, whilst
charges moving in closed orbits cannot be permanent
in the presence of the radiation hitherto always supposed
to accompany them ; but a charged sphere, such as ours,
is not necessarily subject to the latter objection. Ob-
viously it does not help to account for Bohr’s radiationless
electron orbits, for, if one of our spheres were used as
a model of the electron, the radiationless orbits of its
centre would be far too small, since they would lie
entirely inside the electron, as we saw in the last section.

But this very fact suggests that, if two of our spheres
were taken as models of the electron and proton, it
might prove possible to use them to construct a per-
manent model of the neutron, possibly also permanent
models of atomic nuclei; for we require radiationless
orbits of nuclear dimensions, which can be provided
by our spheres, if they are of such dimensions, and
have no spin. In this connexion the experimental
fact that the electron loses its spin, when it enters and
exists inside the nucleus, is very suggestive.

Thus take a uniformly and rigidly charged sphere,
with charge e and radius a, as model of the proton,
and a similar sphere, with charge —e and radius o,
as model of the electron, both without any spin. Suppose
that under their mutual attraction their centres describe
periodic orbits about their common centroid in a periodic
time T. From what we proved above it follows that
they will not lose any energy by radiation if

T=2ajcj=2a’[cj’,
where j and j' are integers. For this to be possible
a and ¢’ must be commensurable and we must have
J ij=a’ ra=m:m’,
apart from relativistic corrections, where m and m’
are the masses of the proton and electron, which are

approximately as 1850:1. The average linear dimen-
sions of the two orbits must be less than a/nj and a'/nj’,
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the greatest values being less than the radius of the
proton, and therefore extremely small. Thus the ae-
celerations are exceedingly great, but nevertheless there
is no loss of energy due to radiation. The orbits and the
proton itself are completely inside the electron—in fact,
inside the inner sheet of the two-sheeted envelope of
the electron. If under these conditions the mutual
attraction proves to be such that a periodic motion
of the type contemplated is possible, we shall have
a stable and permanent model of the neutron, which
could, however, be disrupted by disturbing forces powerful
enough to pull the proton out of the electron. The
study of such a model must be left for a future investi-
gation ; if it should prove successful, we might be able
to attack the problem of the structure of more complicated
nuclei with some hope of success.

LX. On the Definition of Distance in General Relativity.
By I. M. H. ETHERINGTON *.

§ 1. Introduction.
IN recent papers Professor E.T. Whittaker + and H. S.

Ruse] have discussed the problem of defining, in a
general Riemannian space-time, the concept of distance
between two particles, as distinct from that of interval (or
iutegrated line-element) between two events. The problem
has also been considered by Dr. R. C. Tolman § -with
reference to particular metrics. Ruse’s procedure is purely
mathematical, being a natural extension of the concept of
spatial distance in Special Relativity. Whittaker and
Tolman, on the other hand, related their definitions to the
astronomical methods of calculating great distances, such as
those of the extragalactic nebulw. These methods depend
ultimately on a comparison of absolute and apparent bright-
ness, it being assumed that brightness decreases with the
square of the distance; or, alternatively, on a similar

* Communicated by Prof. E. T. Whittaker, Se.D., F.R.S,

+ Proc. Roy. Soc. A, exxxiii. p. 93 (1931).

1 Proc. Roy. Soc. Edinburgh, lii. p. 183 (1932).

§ (i.) Astrophys. Journ. Ixix. p. 245 (1929). (ii.) Proc. Nat. Acad.
Sei. xvi. p. 511 (1930).
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