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given out in quanta, which represent the differences between
the cnergies in two steady states of motion.

When, however, the numerical value of the appropriate
constants in the formula of Ritz ig considered, it is found
that the magnetic forcss set up by the atom are not in
themselves sufficient to account for more than a small
fraction of the effect that would be necessary to give the
observed distribution of lines in spectral series.
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VL. On the Motion of the Lovent: Electron. By G. A.
Scuorr, B.A., D.Se., Professor of Applied Mathematics,
University College of Wales, Aberystwyth *.

URING a theoretical investigation of the origin of
X-rays T found it necessary to take into account the
effect on the motion of the electron of the reaction due to its
own radiation, and from this point of view examined some
simple cases of motion in order to gain a clear idea of the
result to be expected. The following communication in-
cludes these preliminary studies, but is also intended to serve
as an introduction to a more complete investigation to be
published later.

The Equations of Motion and Energy of the Electron.

1. The vector-equation of motion of the electron may be
written in the following form t

G-K=F . . . . . . .. . .(@©
where
mv .
= —, GV Y e e e e e e e e 2
G JA=g (2)
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G denotes the electromagnetic momentum of the electron in
the form due to Lorentz, K the reaction due to radiation,
i. e. the radiation pressure in the form due to Abraham 1,
and F the external mechanical force. If we accept the
Principle of Relativity for accelerated as well as for uniform

* Communicated by the Author.

t Schott, Electromagnetic Radiation,’ pp. 175, 176, 246 (quoted
below as E. R.).

1 Abraham, Theorie der Biektrizitit, ii. p. 128,
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motion, the expression (2) for the electromagnetic momentum
follows as a matter of course, but the expression (3) for the
radiation pressure requires a special hypothesis to justify its
introduction. It must, however, be borne in mind that the
deduction of the Lorentz momentum, as for instance by
Planck *, also implies the existence of a kinetic poteutial,
and that this has only been defined for reversible changes,
whilst accelerated motions of an electron involve radiation
and therefore are irreversible. 1, on the other hand, we
adopt the usual cquations of the Electron Theory of Larmor
and Lorents together with the liypothesis that the electron
occupies a finite though small region of space, whether sur-
fuce or volume, then the terms on the left of (1) represent
merely the first two terms of an infinite series. If a be a
length of the same order of magnitude as the linear dimen-
sions of the electron, and I a second length of the order of
the radii of curvature and of torsion of its path and of the
distance within which its speed is doubled, this series pro-
ceeds according to ascending powers of afl, and converges
with sufficient rapidity only when a/l is small compared with
1—pB%. When the acceleration of the electron becomes very
large, or its velocity nearly equal to that of light, the series
fails entirely ; indeed it is probable that under these con-
ditions the usual definition of the electromagnetic mass, im-
plied in (2), can no longer be upheld. For the rigid spherical
electron of Abraham this has been proved definitely by
Sommerfeld t; he shows that when the velocity of a uni-
formly accelerated electron is equal to that of light, the
largest term in the mechanical force on it due to its own
charge is proportional to the square root of the acceleration
when the latter is small. Unfortunately Sommerfeld’s
method cannot easily be extended te the case of the Lorentz
electron, so that it is impossible to be quite sure of what
happens here, but it does not seem likely that the result
would be very different. However that may be, it is clear
that the expressions (1), (2), and (3) must be used with
caution in cases where the velocity may be expected to
approach that of light, or in very strong electric or magnetic
fields, where the acceleration and curvature of the path of
the electron may reach large values. Thus we must be
careful in using them for an electron which approaches very
closely to the nucleus of Rutherford’s model atom, and in all
problems of a similar kind. May not the failure of the

# Planck, Sitzungsberichte der Preussischen Akademie der Wissen-
schaften, 1907, p. 8.
+ ¢« Zur Elektronentheorie,” Gittinger Nachrichten, 1904, p. 411.
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ordinary mechanics and older electrodynamics so often
alluded to Ly present-day investigators of theories of the
atom, be after all due to neglect of proper precautions and
to unjustifiable usage of confessedly imperfect analytical
expressions as much as to defects in the fundamental prin-
ciples of the electron theory ?

2. The equation of energy may be derived from the equa-
tion of motion by multiplying it scalarly by the velocity v;
after a few simple algebraic transformations it. is obtained in
the following form *:

T—Q+R=0F), . . . . . . . . (4

Y__ _o’n [“ 1,74_ ‘

where

2ce (V) .
= 37(;2-—_‘/0—255’ . . . - . . . (b)
_2l[ ¥ ()
R= 3 (@— %) + (02__,02)3}~ . (D

Here T denotes the kinetic energy of the electron and is
given by (5) in the usual form; (vF) gives the rate of
working of the mechanical force ; the remaining terms in
(4) are derived from the radiation pressure. Of these R is
essentially positive and denotes the irreversible rate of loss
of energy duc to radiation; the expression (7) is the well-
known one due to Liénard. On the other hand, Q repre-
sents a reversible rate of loss of energy; hence —Q must be
regarded as work stored in the clectron in virtue of its
acceleration, so that we may speak of it as acceleration
energy. Its existenceisa direct consequence of a mechanical
theory of the wther t.

3. In order to simplify the equations as mnch as possible
it is convenient to introduce a new system of units; we shall
choose the

new unit of length =2¢/3¢%n=183.10"%cm.,
” ,,  time  =2¢/3Em=06"1.10"% sec.,
" . velocity=c¢=3. 10" cm.[sec.
’s , force =3¢tm?[2¢*=43.10% dyne,

s , energy =cm=78%.10""cerg.
The numerical values given in the last column have been
* I5, R. pp. 176, 177,

+ E R p. 9
K2



52 Prof. . A. Schott on the

calculated for the electron with e=465.10"1E.8.U. and
e/em=1'77.10". When the new units are used we must
replace the factor m in (2), 2¢*/3¢ in (3), ¢*m in (5), and
2¢’[3 in (6) and (7) by unity, the quantity Bin (2) and (5)
by v, and the velocity ¢ in the expression ¢?—o? in (3), (6),
and (7) by unity.

4. Introduction of a new time-variable—Using the new
units we put *

*t
=\ VA=vdt. . . . .. (8
0

We shall use an accent to denote differentiation with
respect to the new time-variable 7, but for the sake of brevity
.shall use the symbol w to denote the velocity relatiye to .
Then we find in succession

v=wy/(1—v%)= szwﬁ?),whence \/(1 —v?) = \/‘(11-{— ,wf?) ,

. W (ww)w

VEIxwe T (1-{— w?)?’

s W (wwhwH3(ww)w +wiw  d(ww)’w
T+ wh)® (L) T @ty

Substituting these values in the expressions (2), (3), (5), (6),
and (7), we find

G=w, e e e (9)

= Y n_(WWSEL W

x_\/(1+w2)_{wz e vy 0

T=y/(14+w®)-1, - . . . . . . . . (11
(w&')

Q= y(lng) = . . . . . . . . . . (12)
e
R=w'2—(1-%§£2-.. e T

With these valnes the equation of motion (1) becomes
w—w'+Rw=Fov/(1+0%). . . . (14)

Similarly the equation of energy (4) becomes
T'—T'+R(T+1)=(wF). . . . . (13)

The curious similarity of form of the last two equations is
worthy of remark.
* . R. p. 292.
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Rectilinear Motion,

5. As an example of the use of the equations we have
obtained, we shall now consider the case where the electron
moves in a straight line under the action of an electrostatic
field in the same direction. We shall take the straight line
as the axis of @, so that w'=w'=a’. Then we find from
(13) and (14) respectively:

/2

w
R=i+w2, . . . . . . (16)
12
w —w'+ lﬂf’aé=h‘¢(1+w2).. ¢ C))

In order to reduce these equations to a simpler form we
write

w= sinhy, whence v=8= tanhy, and T= coshy—1, (18)
(16) and (17) now give

R=x"% . . . . . . . (19)
x=x'=F. . . . . . . . (20

When F is known as a function of 7, (20) may be solved at
once in the form

x-.—_-jTB‘tZT—eTfFe"dT+A+BeT, Lo
0 - 0

where A and B are arbitrary constants to he determined
from the initial conditions. A third arbitrary constant will
be introduced when we determine . from the differential
equation x=w=sinh y, but we may make this constant zero
by choosing the origin of coordinates so that x vanishes
when ¢ and 7 vanish.

6. Determination of the arbitrary constants A and B.—One
relation can be obtained at once between A and B, for we
ace at liberty to choose the origin of time so that v, and
therefore also 1y, vanishes when 7=0. This condition with

21) gives

A+B=, C (22

Substituting for A in (21) we obtain

x=§TF¢lT—ef TFe""d7+B(e”—l). .. (23)
‘ 0

0
Bearing in mind our choice of the origins of space and time
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and using (8) and (18), we find
T
.’e‘:f sinhydr, . . . . . (24)
t:‘ 1-coshx L ¢:1)
Yo

We have now fully utilized the initial conditions so far
as they relate to the initial values of the coordinate and the
velocity of the electron, but there still remains an arbitrary
clement—the arbitrary constant B in (23) to be determined.
Here we are brought face to face with one point of difference
between the ordinary mechanics of Newton and the electron
mechanics founded on the electron theory. Very slight con-
sideration shows that the presence of “the third arbitrary
constant is dne to the fact that the equation of motion of
the electron, (1), or (14), or (17), when regarded as a dif-
ferential equation for the coordinate, is of the third order,
and that the differential coefficient of the third order arises
from the radiation terms. It is important to bear in mind
that these terms must be present whether we adopt the
Theory of Relativity for accelerated motions, or base our
mechanics on the hypothesis of the extended electron ; only
in the latter case every additional term of higher order which
we introduce into our equation of motion brings with it
another arbitrary constant. These additional arbitrary
elements, in so far as they must be determined by the initial
conditions, represent the effect on the motion of the electron
of its past history, a point which I have empbasized on
previous occasions *. Unfortunately, the past history is un-
known in many problems, and thercfore we are compelled to
make some additional hypothesis to overcome the difficulty.
We must choose it so as to preserve the continuity of the
electron mechanics with the ordinary mechanies, which we
know suffices in all cases where the veloeity of the electron
is infinitely small compared with that of light: thus the
proper hypothesis suggests itself, namely, that in these cases
Newton’s Laws of Motion hold without alteration. Henco
we assume provisionally :

When the wvelocity of the electron is zero, its aceeleration is
equal to the external mechanical force per wnit mass.

This hypothesis has the advantage, as we shall see later,
that it leads to simple results which can be controlled by
experiment.

* Schott, Annalen der Physil;, 1908, p. 63; E. R. p. 155.
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7. In order to apply the new hypothesis to our problem
we mnst find the acceleration. From (18) together with

the expressions given in § 4 we obtain
- w ’ 9
= g =5 'h3 . . . . . .46)
V= (TG ) sech®y . x (

Again we find from (23)

y:{B—rb‘e-nh}ef. @D
0

Hence applying our new hypothesis we obtain
B=y/=¥, . . . . . . .. (28)

where the suffix is used to denote initial values. Substituting
this value in (23) ... (25) we get finally

X—_—"TFJT—E':, Tl"e""d7+Fo(e"—1),. ... 29
] 0

=f "sinh {f " Fdr—e 5' " FeTdr+ Fu(ef—l)}dr, (30)
LY&] v 1)

t=frcosh{ ( TthT.-er‘ TFE""(lT+FU(e"'-1)}dT. (31)
L) v 0

(VA

Weo also find from (19) and (29)
2
R:{FO—jTFe’TJT} L € %))}
0

In order better to appreciate the import of our hypothesis
we shall now apply the solutions (29) ... (32) to the particular
case of a uniform force. ] _

8. Exvample—Motion of a Lorent: electron_in a umform'
electrostatic field parallel to the line of motion. I have .a]ready
treated this example elsewhere * but without taking the
radiation pressure into account.

In the present problem I is a constant, so that we may
omit the zero suffix as no longer necessary. Then we find

x=Fr, Fuo= coshx—1, Ft= sinhy, R=F% . (33)

Eliminating y between the sccond and third of these equa-
tions, we obtain precisely the sume relz‘ltl_on betw_etfn z and ¢
as we do when we neglect radiation. This surprising result
is a direct consequence of the hypothesis of §6 ; in order to

* E. R.p. 181.
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understand this better we must examine the energy relations
of the electron.

From (11) we obtain by means of (18) and (33)
T=coshy—1=Fu. . . . . . (34)

This aquation shows that the whole of the work done by
the external field is converted into kinetic euergy of the
electron, just as if there had been no radiation at all. None
of it is radiated.

Again, from (12) we find by means of (33) and (34)

Q=T'=sinhy.y'=F%=Rt. . . . (35)

Thus we see that the energy radiated by the electron is
derived entirely from its acceleration energy ; there is as it
were an internal compensation amongst the different parts
of the radiation pressure, which causes its resultant effect to
vanish.

The total energy radiated is on the present hypothesis
only a very small fraction of the kinetic energy, unless the
external force be exceptionally large. From (33) ... (35) we
find by means of (18)

Rs FSEX.,_F

_ Fsinhy L+ v(1—e)
T ™ coshy—1

I=v(i=w - - 39

In applying this equation we must bear in mind that we
are using the new units of §3; hence when we return to
C.G.8. units we must replace F by 26 F 3t =263 X /3¢4ms,
where X is the electric force in E.S.U." From the value of
the new unit of force given in § 3, viz. 4-3. 10° dyne, and
that of e, viz. 4'65.10°2° BE.S,U., we find that I¥ in (36)
is equal to 1'08.10-%, and that Re/T is about 4-03. 10-1¢
when X is 30,000 volt/em. and v or B is 0-5.

9. In order to test the truth of the hypothesis of § 3 we
must examine what happens when it fails. Still confining
our attention to the case of an electron nioving in a uniform
electric ficld along the line of motion, let us return to equa-
tions (18) and (23)... (25), which are true quite independently
of the hypothesis in quesiion. Bearing in mind that F as
well as B is a constant, we see that we may write instead

of (28)
B=F(1+8), . . . . . . (37

where & is another constant, . e. a quantity independent of
X or v, but generally a function of F, We may regard & as
a measure of the deviation of our hypothesis from the trnth.

R=F1+8e}=F2{1+8—71+y/F}?,

= ‘xfi_nh Xax _ X sinh xdx
0 l+66; - 0 m‘ . . . . . . .

X , X ‘
e cosh ydy _ _ cosh ydy i}
o 1+8€m 14+8—7+y/F

j

v X
Rdt= Fr {1+ 8e7} cosh de:F‘ {1+8—71+x/F} cosh ydy.
Q o0

0
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We now find instead of (33) -
x=F{r+8(e—1)}, R=F{1+8r}?, . . (38)
while we have as before

‘T ‘T
v=RB=tanhy, & =J sinh ydr, ¢ =J cosh y drz.
0 0

Changing the independent variable from 7 to 5 we obtain

N
\

0

/

The equations (38) and (39) show that the analytical
character of the solution is completely altered by the failure
of the hypothesis under consideration ; what change will be
produced in the numerical results depends on the magnitudes
of B, F,and 8. In estimating this change we must bear in
mind that what we measure by experiment is the increase of
velocity produced in a measured distance by a field of known
strength, and perhaps in certain cases the total energy
radinted in the process. Knowing 8 and therefore X we
can calculate . and the energy radiated by means of (39);
but in order to measure 8 independently of the hypothesis to
be tested we must not use a deflexion method, either with an
electric or a magnetic field, becanse that would again involve
the hypothesis and require very troublesome calculations.
We must measure the kinetic energy, ¢. g. by a thermopile,
and thence calculate y and 8 by means of (18).

When the exponential termn in (38) for y is negligible in
comparison with the first, we have the case already considered
in §8; for the sake of brevity we shall speak of it as the
Newtonian motion. On the other hand, when the exponential
term preponderates we have another extreme case, which we
shall call the exponential motion and shall now examine.

10. The exponential motion.—We retain only the expo-
nential term 1n (38), and accordingly only the term x/F in
the expression 1+8—~7+4-%/F, which occurs in (39). " Then
the denominators in the integrals for & and ¢ vanish at the

(39)
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lower limit, so that ¢ becomes infinite although # remains
finite. For this reason it is convenient to extend the in-
tegrals from a finite lower limit y, to the upper limit y,,
the suffixes , and , being used to indicate initial and final
values respectively. Using the notation of the exponential
integral we find from (39)

Xl sinh , 1 . . . .
b= ER Xy = B () — Bilg) — Bi(—x0) + Bi( =)}
o xo -

(Moo, 1

X

o

J
These expressions involve neither F nor 8, but only x, and
X1, $0 that in this extreme case of the exponential motion
the result depends only on the initial and final velocities of
the electron, and not at all on the strength of the field or on
the precise value of 8. This fact of itself is sufficient to
prove that the exponential motion is not realisable experi-
mentally, at any rate not with the electric fields at our
command; a numerical example may make this clearer.

Let us take the case of an electron which has its speed
increased by an electric field of 27,700 volt {cm. (giving I
equal to 10-1#) from B8,=001to B, =030, i. e. from x, =001
to ]=0'31.

«"ith the help of tables of the exponential integral * and
of the hyperbolic functions we obfain the following results
tor the two limiting motions : —

Newtonian motion.
TUnits of § 3.
4'8.1012 0'88 0-302

Exponential motion.
C.G.S. units. Units of § 3.  C.G.S. units.

55.10~ '

By =Ty e

t—%, .. 5:05.1013 1:86.10—-1¢ 3458 21.107%#

§' rae... 305,100 24 .10-21 0049 39.1078
[t}

A comparison of the numbers in the last four columns of
this table shows conclusively the enormous difference between
the two limiting motions, and there can be no question that
the Newtonian motion is in far better agreement than the

exponential motion with what we know from experience.

Even if the hypothesis of § 6 be not exactly true, its deviation

# Dale, ¢'Tables of Mathematical Functions,” p. 85 and p. G4

Q{Ei(Xl) - EBi(xo) +Ei(=x)—Ei(—xo) } + (40)

'8

22
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from the truth, as measured by the number &, must be-ex-
ceedingly small. In order to obtain some idea of its amount
wel; must study the general motion of §9 a little more
tully. '

11. The limits of accuracy of the hypothesis—As we have
wlready remarked in § 9, the theoretically best method of
testing the hiypothesis in question depends upon a comparison
of the kinetic energy, T, acquired by the electron with the
work, F.r, done by the external field. We see from (18)
and (39) that T differs from Fa by a finite amount, the
difference heing derived from the acceleration energy of the
clectron, Suppose then that as a result of experiment we
tind

,
T=coshy—1=(1+f)Fa=(1 +f)F( sinh ydt,  (41)
<o

where 7 is a number, which is probably a small fraction with
the same sign as 8. We must express 8 in terms of f by
means of (38), (39), and (41). Let us substitute for x in
(41) its expression in terms of 7 and & given by (38), expand
both sides of the equation in ascending powers of I'der by
means of Taylor’s theorem and integrate with respect to 7.
Rearranging the terms according to powers of Fée™ we find

+ Fsinh I'8)

(1+7F)em sinh F(r—8) — (1 + 1) FeT cosh F(7—8) + (L + 1 F (cosh Fd

11+

_+ K coshiB )]
(4 +7F*)e’r cosh F(r—8)—2(1+ f)Fe*rsinh F(1—38) — (1+/) I°(2 sinh I'&

2(4—F%)
fleosh F(r—8)—1} —(1+){cosh F6—-1}.

We must combine this equation with (38) so as to climinate
7 and determine 8, but the calculation is so difficult that the
result will hardly repay the labour expended; hence we shall
content ourselves with finding limits for &.

We first observe that the series on the left side of (42),
being derived from ecxponential series by integration, is
absolutely convergent for all values of Fée”, and that the
coefficients of all powers of F§ increase with t provided
that tanh F(7—8) is greater than fF, a condition which is
satisfied in actual experiments on account of the smallness of
. Hence the first term on the left, which for such values
of 7 has the sign of 8, is less than the right-hand member
when 8 is positive, and of course / also positive, but is

(42)
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greater (numerically) when 8, and of course J> is negative.
Thas when 8 is positive, we can obtain an upper limit for its
value by owitting all positive terms in the factor of Fé and
all negative ones in the right-hand member of the equation.
In this way we find

Fdem{ tanh F(r —§) — (1 +/)F} < f{1— sech F(v=8)}.

This expression can be simplified very considerably without
raising the limit appreciably in any actual experiment. In
tact we see from (38) that F(r—8) is loss than x or tanh~13,
whence we easily prove that sech F(r—38) is greater than
v (1—8%, and tanh F(r—&) greater than 8~ F8er, so that

FSGT{B-(I"I']“)F—-FSGT} <f{] — \/(1_62)}-

From this equation we find, again making use of (38), that

oy 1= B\L2F
3 QI B2F(
8¢t < (B/2Y) e (1+B> o

N )
. . AB—(1+ T} o
provided that r< Hi=vi=@) -

Of course, as we have stated above, (43) presupposes that
3 is positive.

12. Hitherto no experiments appear to have been
made in which both the kinetic cnergy and the work done
by the external field have been nieasured directly as our
investigation supposes, but in the course of some determina-
tions of e/m the fall of potential has been measured directly,
while the speed of the electron has been determined, usually
by means of the deflexion produced by a known magnetic
tield. The calculation of the speed, and hence of the kinetic
cnergy, from the magnetic deflexion involves an error due
to the radiation, presumably of the xame order as J but un-
known, so that experiments of this kind cannot be expected
to supply us with an accurate value of §. Novertheless they
may be expected to give us some information as to its order
of magnitude.

One of the latest determinations of this kind has been
made by Hupka * for velocities ranging from one quarter to
one half of the velocity of light and falls of potential from
4000 to 20,000 volt/cm. measured to within about 1 in 400,
Assuming ¢fm to be 1°77 . 107, Hupka calculated the velocity
B from the measured tall of potential by means of the Lorentz
formula (18) for the kinetic energy, of course neglecting
the effecct of radiation which we wish to estimate. In hi

* Hupka, dnn. der Phys. 1910 (1), p. 169.
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experiments he measured the magnetic ‘for.ce required to_-
produce a prescribed radius of curvature m.the path (_)t
the electron, and compared theiv produet w{th th(? ratio
B/v (1—8% to which it should bLe proportional for the
Lorentz electron. This proportionality was found to .ho.ld
throughout. the whole range of the measurements to \\'}tlnn
ztboutbl in 4000. It is obvious that this constancy of the
ratio of the two quantities to be compared could onl.?' l')(*
possible either if the hypothesis were nearly true, or if in
the event of its failure the errors compensated each other
exuctly. Of course it is extremely improbable that t.he eﬂ.ect
of radiation on the kinetic energy should balance its effect
on the magnetic deflexion so as to produce exact compensa-
tion, but in the absence of a complete theory of the magnetic
defloxion absolute certainty is impossible. We may, however,
draw the conclusion that the number f, which measures the
difference between the kinetic energy and the work done by
the external field, is of the same order of magnitude as the
errors in Hupka’s experiments. By far the greatest errov
is that in the determination of the fall of potential, given
above as 1 in 400; hence we conclude that 7 is about 1/400.

From six experiments with about equal falls of potential
we find that the fall of potential used by Hupka for a velocity
B=05 is nearly 20,000 volt/cm., which corresponds to
[=7-2.10"%. The corresponding upper limit for /' given
by (43) is 047, which is far beyond the error possible in
the experiments ; hence we may apply (43). On account of
the very small value of F, the last factor of the right-hand
member of the first equation is alone effective in determining
the order of 8. Taking logarithms of both sides we find

Logi(1/8) > 10, . . . . . (44)

13. Let us now consider the casc where 8§ is negative.
From (38) we see that F(r—8) is greater than y, so that
the whole investigation of § 12 applies provided that the
sign *less than 7 be replaced by ¢ greater than.” Thus (44)
gives a lower limit for —é. o
~ We may, however, obtain an upper limit for —§ by a
difterent line of argument, based on the fact t.-hat according
to (38) x increases to a maximum as T increases, and
thereafter diminishes again. The maximum is given by
r=log (—1/8) and is equal to F{log(—l/S)—l—B}, and
there is a corresponding maximum value of B, which is
tanh F{log (—1/8)=1—8¢{. Kxperiment shows no trace of
the existence of such a maximuam, so that we may he sure
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that if it exists the velocities hitherto found for clectrons lie
very much below it. 1f therefore we caleulate the vulue
of (—1/8) from the highest value of 8 found for a given
value of I, this will certainly give us an upper limit for —3.
In this way we find

s . 1_B>1,2F -
'—86 < € (1—-*-—6— v e e e (4':))

With the same experimental data that we have used in § 13
we find

Log(—1/8) > 10%,

practically the same limit as in the former case.

Hence we may assert as a result of Hupka’s experiments
that the deviation 8 of the hypothesis of § 6 from the fruth
amounts to less than one part in the ten-million-millionth
power of ten for a field of 20,000 volt/cm. This is the same
thing as saying that for an electron moving with a velocity
small compared with that of light in an electric field of the
intensity stated, the acceleration differs from the mechanical
force per unit mass by a fraction & at most, in excess or
defect,. T R

It is possible that the deviation & may depend upon the
intensity of the electric field, but the experiments give no
certain information ou this point. The probable error seems
to be rather smaller for & field of 5000 volt/cm. than for the
stronger field, but the number of determinations is too small
to afford a decisive result. Consequently it would be unsafe
to draw any definite eonclusion frem the experiments re-
specting the dependence of & on the field-intensity. What-
ever this may be, it does not appear to be very considerable ;
hence it seems probable that our hypothesis may also be
applied to variable tields of intensities of the same order of
magnitude as those used in these experiments,

Since according to §6 the hypothesis is equivalent to
Newton’s Second Law of Motion for slowly moving electrons,
we have verified this law to a degree of accuracy far beyond
that attained in astronomical investigations.

How far the law can be applied to electrons starting from
rest in very intense fields such as those inside and close to
the atom remains doubtful.





