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ON THE SUPPOSED GRAVITATIONAL ATTRACTION
BETWEEN TWO REVOLVING ELECTRONS.

By G. A. SCHOTT.

1. In a recent paper! A. C. Crehore claims to have proved that two
electrons, revolving with .uniform velocities* in circular orbits about
positive centers, in addition to their electrostatic repulsion exert on each
other a residual attraction, which varies inversely as the square of the
distance between the two centers. For diamond he finds this residual
attraction to be immensely greater than the gravitational attraction
and hence concludes, quite legitimately if his result be correct, that the
fundamental equations of the accepted Electron Theory require sub-
stantial modification. It is obviously imperative that Crehore’s result
be either verified or disproved.

The residual attraction is obtained from the electric force exerted on
an electron (1) by an electron (2), the magnetic effect being omitted
because it is smaller than the electric effect for low speed electrons,
This is true when the comparison is made with the large electrostatic
repulsion, but it cannot be assumed without question when the com-
parison is made with the small residual attraction. Thus it is desirable
to take the magnetic effect into account ab 4nmitio, although it will be
found to be inappreciable on the average for an amorphous medium,
but not necessarily so for a crystal; nor is the investigation rendered
more complicated by doing so. A great simplification however is effected
by omitting at the outset all terms which are of higher degree than the
second in the inverse distance between the two centers, for such terms
obviously cannot contribute to gravitational attraction. The following
investigation is based on Crehore’s equations for the electric part of the
mechanical force (loc. cit., pp. 453, 454), which have been verified,
except some obvious misprints, e. g., @; for a; in the last term of (49).

2. The Mechanical Force between Two Moving Electrons.—The complete
expression for the mechanical force is given by Crehore (equation (15),
p. 448) in the usual form. We have also RH = R X E, so that
R(qi X H) = ¢t X (R X E) = R(q:-E) — E(q;*R). Hence the total
mechanical force F is found from the equation

F/e: = E{1 — (q:"R)/cR} + R(q:*E)/cR. (1)
1 A. C. Crehore, Puvs. Rev., Sec. Ser., Vol. IX., p. 445, June, 1917.
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Its component along the line of centers is given by
(F-v)jres = (E-1){1 — (@-R)/eR}/r + R-D)(q-B)/Rre.  (2)

The components of the electric force E in the directions 4, j, k fixed in
the orbit of the first electron are given by Crehore’s equations (48),
(49) and (50), pp. 453 and 454. As we have already stated above we
shall only retain terms of the orders ! and 772%; in the latter we may
replace R by 7, but we must keep R in the former as well as in the circular
functions Cs and S.. It will be convenient to replace the codrdinates
(x, ¥, 2) by their values (X, YV, Z) where X, V¥, Z are the direction
cosines of the line of centers referred to the axes of 4, 7, & fixed in the first
orbit; we shall also introduce its direction cosines &, Y, ¢ relative to the
axes of 7/, j/, k¥’ fixed in the second orbit. Then we have

¢=Xcosa+ Zsina, {=Zcosa— X sina. (3)

Rearranging the terms retained in Crehore’s equations more conveniently
for our purpose we find

(E-i)7243/es
= — X{1 — (C1Cs + S1.5s cos a)Bar/as + (£S5 + YV Co)Bo2r*/R3as}
— c0s a{B(1 — B?) Ca — B2Se[£Ss + Yy — 2(X.S1 + Y Ci)an/as]
+ B22Y7r3 R — B2Ser/RPaz} + Si(£Se 4 Y Co)Bo%ay/as, (4)
(E-j)rrd¥/e
= — V{1 — (CiCs 4 S1.S; cos a)Bstarjas + (£S. + Y Co)Ba2rY/R3a,}
+ Bo(1 — B)Ss + B2Ce[ES: + Vo — 2(X.S1 + YV (iaw/as]
+ B:38r3/ R2ay + B2 Cor?/Rias + C1(£S: + Y Go)B%as/as, (5)
(E-k)r243/e,
= — Z{1 — (CiCs + S1.5; cos a)B22a1/as + (£Ss + YV Cs)Bs2rY/R3as}
— sin a{Be(1 — B2 Co — B2Se[£S: + Yo — 2(XS1 + Y i)ai/as)
+ B3 Y73/ R2ay — Bo2Sert/Rias}. 6)
3. In order to find (E-r), which is 7 times the component of the electric
force along the line of centers, we must multiply (4), (5), (6) by X, Y, Z
respectively and add the products together. The large terms of order

7~la;~! in the three equations cancel on account of (3), and we obtain
the equation

(E-r)rd3fes = — 1 + Bo(1 — BH(VSe — £Cy) + B2(ES: + V()2
-+ {C1C2 + Slsz cosa — (XSl -l— YCQ(ESz -+ YCz) }622(11/(12. (7)

All large terms have cancelled out; in what remains we may put to a
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first approximation, using Crehore’s equations (38), (39) and (43),
A =1 (Q2R)/CR =1 — B2(Y52 —_ ECz) = Kz. (8)

To the same approximation we may put for the factor of (E-r)/r in (2),
using Crehore’s equations (38), (39) and (42),

I —(@R)/eR=1—B(VS1 — XC) = K. (9)
To find the second term of (2) we multiply (4) by 8:Ci, (5) by — B1S1,-

in accordance with Crehore’s equation (42); and add, obtaining
(qi-E)r243/ce;
= Bl(YSl —_ Xcl){I —_ (CICZ + 5152 COS a)622a1/(12}
= BiBe(1 — B2%) (CiCs cos a + 51.5y)
+ 61622<C152 Cos o — 51C2){552 -+ YC, — 2(X51 =+ YCl)al/@}
+ BB { C1Ss cos & — S1Cy + (Vi1 — X C)(£S: + V) }r‘*/ﬁ*'*az} (10)
— BBV Cy cos a + £81)73/Roay.
The terms in the three first lines are small and only give rise to terms of
order 72 in the force, so that here we may replace A by its approximate
value K; as above.
The others, however, bracketed together, are large and give rise to
terms of order #~la;~! in the force, and therefore need special treatment.
We must retain terms of order a;/7 and a»/r both in 4 and R, and in the

functions S; and C; of R; these are distinguished for the moment by a
bar over them. We find from Crehore’s equations (38) and (39)

R=7r— (XS + YC)ar + (£S5 + YCas + p/2r,
p = {I _ (XSl + YC1>2}(112 + {I — (ESZ + YC2)2}(122 (II)
— 2{C1Cs + $iSs cos & — (XSi + YC)(ESy + YCo)}araa. |

The term p/2r is clearly of the second order, but is required nevertheless
as we shall see below. We may write to the first order

R=7r— (XSl + Yc1)dl + (ESZ + YCz)dz,
(Sz, Cz) = (sin, cos)[ws(t — R/c) + 6],

whence o _
(52, C2> = (527 C2) + (_ C2, 52)62(R - R)/az.

Substituting in the first equation (11) and using (8) we obtain

R =R+ p2Kyr, (S5, C) = (Sy, Co) + (— G, So)Bap/2Koras.  (12)
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With the same notation we find by Crehore’s equation (43) and by (12)
AR = R — (@-R)/e
= Kor — {XS1 + YCi + Bo(S:Cs cos o — C1Sy)}ay
+ (£S5 + YCas + pf2r,

where
Ez =1 — 62(Y§2 - 552) = K, + (ESz -+ YC2)622p/2K2m2.

This is required to the first order for substitution in the last two lines of
(10); bearing in mind that p is only of the second order we find to the
first order

AE = Kz?’ _ {XS1 + YCl + ,32(81C2 COosS o — Clsz)}d]_
+ (£S: + YCas + (£S: + Y (2)Be2p/2Kras.

From this equation together with (11) we find

rYA3R%ay = 7/Kydas + 3{X.S1 + YCi + B:(SiCs cos @ — CuSa) }au/Ky'as

— 3(ESe + YG) /Kot — 3(£S: + YG)B2[{1 — (X S1 + Y y)?as?

+ {1 — (£S; + YC2)?}a? — 2{C1Cs + S1.5; cos a

— (XSi + YC)(ES, + YCo)}mas]/2Kas?, (13)
1Y AR, = = 1|Kyay — (XS + YC)ay/KoPas + (£S2 + Y o)/ Ko?

+ 3{XS1 4+ YCi + Ba(S:1C cos @ — C1.Ss) }ay/Kotas

— 3(8S: + YGo)/ Kot — 3(£S: + YG)B2[{1 — (XS1 + YCi)?lar?

4+ {1 — (£S: + YCo)?}a2 — 2{CiCs + Si.S; cos a

— (XS + Y1) (£Se + Y (o) }awas]/2Ksbas. ’ - (14)

Lastly we find to the same order by means of (11) and (12)

CiSscos e — S1Co + (V.S; — XC)(£Se + YCo) = CiSz cos a — SiCs
+ (VS) — XC)(£S: + V) — {CiCacos a + SiSe
— (VS — XC)(YS: — £C)}Bal{1 — (XS1 + YC)2lag
+ {1 — (£S2 + Y o)%la? — 2{CiCy + S1Ss cos a
— (XS + YC)(£Se + Y o)} aas)/2Koras. (15)

Substituting from (7), (9), (10) and (12) in (2) and using (8) in the small
terms and (13), (14) and (15) in the large ones we obtain the final expres-
sion for the mechanical force between the two electrons. From Crehore’s
equation (38) and our equation (11) we see that (R-r) and — Rr differ
only by a quantity of the second order, so that to our approximation the
factor of (q:+E)/c may be put equal to negative unity. In this way we
find after some rearrangement
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(F-1)r/eses = — K1/ Ko?+ (£Sa+ YV C2)?B2 K1/ Ko® — (V. Sa — £C2) B2 Ky [ K

+ {Clcz + 515’2 COs « s
— (XSt + YC)(£S: + Y o) }B2Kian/KoPaz ).

+ [{2(C1S;s cos a — S1Cy) A
— Bo(YCicos o + £51)} (XS + YY)
+ (GG + 1S cos a)(VSy — X C)18ibar/Keda
— [3{XS1 + YCi + B2(S:Cs cos a — C1Sa} { C1S: cos o
— 51Cy — Bo(YCi cos a + £S1)
+ (VS — XC)(£S: + Y o)}
+ Be{CiCy cos a + S1S; — (VS — XC)(VS, — £C)}-
{CiCy + S1S:2 cos o
— (XS + YO)(ES: + YGo)}1B8i82%ar/ Ko'a,
— 3{CiSacos a — S1Cy + (V.S1 — X C1)(£S: + Y (o)
— B2(YC cos « —i—‘ESl)}.
{C1C2 + S1.5:2 cos « .
~ (XS1 + YC)(ES: + Y o)} (&S, + Y Co)BiBatay Koas

—_ [YS1 — XC1 —_ ﬁz([ —_ [322)(C1C2 COS « + S1S2)
+ 1322{ C152 Cos a — S]C2
— Ba(YCicos a + £S1) } (£S52 + Y 5y) 181/ Ko?

' + 3[C1S: cos a — S1Ce
+ (VS1 — XC)(£S: + YCy)

— B2(YCicos a + ESDI(ES: + Y (o) BB Ko*
+ {1 — (XS 4 YG)a? 4+ {1 — (£S5 + YG)?*la?l{ GiCe
cos a + 515y — (VSy — XC1)-(VSy — £Cp)} 818232 Kataz?
+ 3[CiSe cos @ — S1Ce + (VS1 — XC) (S + Y G5y)
— Bo(YCicos a + ESH][{1 — (XS1 + YCi)?las?
+ {1 — (S + YC)*}a?(£S2 + Y Co)Bir*/2 K0y
— [CuSs cos o — S1Cs + (VS — XC)(ES; + YCy)
"= Ba(YCi cos a + £S1)18iBr/Kadas. )

27

| (16)

>

This equation affords the material for the remainder of the present
investigation. It consists of three groups of terms shown bracketed
together; the first three lines include the electric force terms used by
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Crehore, together with certain of the magnetic force terms, which are
characterized by the presence of the speed 8; as a factor occurring in
the quantity K defined by (9). The second group of thirteen lines consists
of magnetic force terms of the second degree in the circular functions
Sy, C1, which have the frequency wi, being defined by Crehore’s equations
(31); these are accompanied by the circular functions S, Cs, of frequency
ws, defined by Crehore’s equations (32). The third group of thirteen lines
consists of similar functions, but of the first and third degrees in .Sy,
(i, and in the last two lines of all they include large terms of the order
r/as, all the rest being small.

We shall begin by following Crehore’s procedure, checking his result
and examining his assumptions critically, with a view to explaining his
anomalous conclusions. On the basis of this critique we shall then
formulate a more correct procedure.

4. Crehore’s Process of Time Averaging.—Taking only the terms in
the first three lines of (16) we put $; equal to zero and K; equal to unity;
this amounts to omitting all magnetic force terms, a procedure adopted
by Crehore for the sake of simplicity, but one which requires justification.
Moreover Crehore puts the quantity K also equal to unity, on the ground
that the speed . is small, and takes the time averages of Si, C1, Ss, Ce
and of their products equal to zero, and those of their squares equal to
one half. On these assumptions we obtain at once

(Frrjee = —1+ 58+ V)t = — 1+ 31 — 22 (17)

The bar over the symbols denotes time average as always hereafter in
this paper. The first term, — 1, gives the electrostatic force, the second
the residual attraction according to Crehore, in full agreement with his
equation (54), p- 456, as we see from our equation (3).

5. In examining this procedure closely we notice that the deliberate
neglect of the magnetic force terms is of doubtful validity, because,
although the speeds 8; and B; are actually small quantities, and therefore
the magnetic force terms in (16) are small compared with some at any
rate of the electric force terms in the same equation, they may never-
theless not be small compared with the residual attraction in (17),
which is itself small. This applies more especially to the terms in the
last line of (16), for they have the large factor 7/a; and accordingly
require particular attention.

A more serious objection may be urged against Crehore’s procedure of
putting the quantity K, equal to unity on account of the smallness of 3.
In fact small quantities of the order B, are retained in forming the
residual attraction, and we shall see below that the terms omitted in
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consequence of this procedure actually suffice to cancel the supposed
residual attraction.

Lastly the method of finding time averages is not rigorous. It is
indeed allowable to put the time averages of Si, C: equal to zero, for
these latter are true circular functions of the time ¢, as we see from Cre-
hore’s equation (31). But the same thing is not true of S., Cs, for we
see from Crehore’s equations (32) and (39), that their argument involves
the distance R, which is itself a function of S, Ci, S, Co. It is not even
a periodic function of the time ¢, unless the angular velocities wi, ws
happen to be commensurable; this Crehore expressly supposes not to be
the case, for it is difficult to see how so special an assumption could
be of use in explaining so universal a phenomenon as gravitation.

Thus a correct procedure must not only take this fact into account,
but must also retain the factors Kj, Kz in (16) and include the magnetic
force terms in its purview. It may however be stated at once that the
third group of terms in (16), including the large terms in the last line,
will disappear from the time average, owing to their being of odd degree
in Sy, Ci, and in consequence of the assumed incommensurability of the
angular velocities wi, ws.

In order to complete the determination of the average force between
the two kinds of electrons we must average the result obtained for all
orientations of the two orbits with respect to the line of centers.

6. Correct Procedure of Averaging.—A correct procedure must be based
upon Crehore’s equations (31), (32) and our equation (11), which may
be written to the first order

(S1, C1) = (sin, cos)[wit + 61], (Se, Co) = (sin, cos)[ws(t — R/c) + 62],
R =7 — (XSl —I-' YCl)al + (ESZ + YC2>a2.
When the values of Si, Ci, \Se, Ce are substituted in the last equation, it

becomes analogous to the well-known planetary equation of Bessel, a
fact which suggests the following convenient substitutions: ’

=1 —7rjc+ {6 + tan"'(V/§) 4+ 7}/ws — & sin ¢/wy, (18)
¢ = wit + 6; + tanY(V/X) + =, (19)
¥ = w(t — R/c) + 05 + tan~1(Y/§) + =, (20)
8§ = r/c — {6 + tan"}(V/E) + 7}/ws + {6 + tanY(V/X) + 7}/w1, (21)
a=p+v(X*+7), e=48V(E+ 1, (22)

where 81 = aiwi/c, B2 = asws/c as before. These equations give

XSl + YC1 = — € sin ¢/Bly YS1 - XC1
SSz —|— YC2 — €2 Sil’l \[//62, YS2 el ECz

€1 cos ¢/B1, (23)
& cos ¥/Ba.  (24)

it
I
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Substituting from these equations in the expression given above for R
we obtain
R=v + €1 sin ¢'al/61 — € sin 1,0-02/62. (25)

Eliminating ¢ between (18) and (19) and using (21) we obtain
¢ — e sin ¢ = wi(r + 5). (26)
From (9), (23) and‘(26) we find
Ki=1—¢cos¢ = wdr/dp, (27)

where the differential coefficient is partial, ¢ being kept constant.
Again, eliminating ¢ and R between (18), (20) and (25) we obtain

Y — e sin Y = wer. (28)
Lastly we find from (8), (24) and (28)
Ky =1 — € cos 30 = wzaT/alll, (29)

where the differential coefficient is again partial, but with e kept
constant.

These expressions must be used in (16), and the result averaged over
an interval of time which is very long compared with each of the two
periods 27/w;, 2m/we; this is necessary on account of the incommen-
surability of the periods. We must multiply by d¢/T, or more conven-
iently by dr/TK;, and integrate with respect to 7 from o to 7', where T°
is very large compared with 27/w; and 27/w;. The integrand must be
expressed as the sum of a number of products, whose factors are series
of sines and cosines of integral multiples of the respective arguments
wi(r + ), wer; this can be effected by means of (23) and (24), combined
with (26)—(29), which latter are of the form of the planetary equation

of Bessel and lead to series of Bessel Functions. Since w; and w; are
" assumed to be incommensurable, the only terms contributing to the time
average are products of factors, all of which possess a constant term;
all terms involving series without a constant term as factors may be
omitted altogether.

For the sake of brevity we shall use the symbols .S and C in place of
sin and cos respectively.

7. The Electric Force Terms.—For the sake of comparison with Cre-
hore’s result we shall commence by considering the electric force terms,
which consist of the first group in (16), but we shall retain the factor Ki,
because this facilitates the calculation without making any serious
difference to the argument.
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By means of (18)—(24) we obtain

(F-1)rjeres = — Ky Ko 4+ S+ eKi/Ko? — Cy-B2? Ki/Ko?

+ {Z(XCo + YS$)C¥ — ¢(YC

— XS¢)SY)Sa-BiB:3K1a1/ € eKota; + {(CaCdCy

+ S¢SY)B? — SPpSy- e?} feerK1a1/freaKoPas. (30)
When we multiply by dr/TK,, the factor K; cancels out, producing the
simplification alluded to above. We begin with the first line, from

which ¢ has disappeared entirely with the cancelling out of K;; from (28)
and (29) we find the well-known Bessel Function expansion

1I/Ko = 1/(1 — Cy) =1 + 2 i]k(kez) cos kwar. (31)

Multiply this equation by e and differentiate the product partially
with respect to e, keeping r constant and treating ¢ as a function
of e as well as of 7. Then dy/de = sin ¥/Ks, by (28), and we find

I/I<22 - SQ¢'€22/K23 =142 Z {]k(kez) + kE2J}c’(kéz)} COS RweT. (32)
1

We may also write

C¢/K23 = 62/(1 — 622)3/2 + ZAk cos kwsrt. (33)
. 1

The constant is easily verified by means of (29), whilst the values of
the coefficients A are not required for our purpose. When we sub-
stitute from (32) and (33) in the first line of (30) and average with respect
to the time, all terms disappear except the constants, and we find

(F-r)r/eies = — 1 — Ble?/(1 — e?)3/2 (34)

This expression gives the complete value of the right-hand member of
(30) when averaged, for the last three lines in every term involve either
S¢ or C¢ as a factor. But we find in the usual way from (26)

S¢ = 2 Z':) (key) T (ke sin kwi(r + 8), (35)

Co =2 2 k1T (key) cos kwy (1 + 8). (36)
1

These series have no constant term and therefore contribute nothing to
the time average, so that (34) really gives the complete expression
required. :
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Comparing (34) with (17) we see that Crehore's residual attraction has
completely disappeared and been replaced by an additional small repul-
sion. This result is true to every order of B; and B,, and not merely
approximately. On examining the process in detail we see that the
inverse powers of K, which occur in (32) and (33), on expansion give
terms involving &?C%J, and these on averaging not only annul Crehore’s
residual attraction, but give in addition the lowest terms in the repulsion.

8. The Magnetic Force Terms.—We must now complete our result
by taking into account the magnetic force terms consisting of the last
two groups in (16). They differ from the first group by the absence
of the factor K; in the numerators, and the consequent appearance
in the process of averaging of this factor in all the denominators, in
addition to the powers of K, already present. We may dispose of the
third group of terms at once, for, as we have seen above, they are of
odd degree in S¢ and C¢, the highest power being the third. It follows
that each term of the third group involves one or other of the four
factors (S¢, C¢, S3¢, C3¢)/Ki. But we easily deduce the following
expansions from (26) and (27)

Sie/Ky = Si¢/(1 — eCo)

= }?: {Jk_i(kél) - Jk+i(k€1)} sin kw1<T + 5), ) (37)
Ci¢/Ky = Ci¢/(1 — e1C¢)

= ‘Z; {Jk_i(kﬁ) + ]k+1‘(k61)} COSs kw1(7' + 5). (38)

Neither series has a constant term and therefore contributes nothing
to the time average. Thus all the terms of the third gfoup disappear
on averaging, confirming what was said above.

Turning now to the second group of terms in (16), which are all of the
second degree in S¢, C¢, we see that each term involves one or other of
the three factors (1, S2¢, C:¢)/Ki, of which the last two vanish on
averaging on account of (37) and (38). The first factor only arises from
the two square factors (S%¢, C2¢)/K;, so that all terms of the second
group may be neglected except those which contain these two factors.
From (26) and (27) we obtain the expansion

1/K; = 1/(1 — aCe¢) =1+ 2 2 Ji(ke) cos kei(r + 8) (39)

analogous to (31). Hence we see that the two square factors (S2¢,
C?¢)/K; may be replaced by 1/2, and the remaining quadratic. factor
S¢C¢/ K by 0, wherever these factors occur in (16).
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Again, an examination of the second group of (16) shows that each
term involves one of the factors (1, Sy, Cy)/Kq3, (1, Sy, Cy, S2¢, SyCy,
C)/Ks* and (S, SyCy, C, S3y, SWCY, SYC%, C3)/KP. The
factors, which involve odd powers of Sy, being odd functions of ¥,
can be expanded in series of sines of multiples of wsr without a constant
term and may therefore be replaced by o. The remaining factors are
even functions of ¢ and can be expanded in series of cosines of multiples of
wsr. Their constant term must be determined, but their other coeffi-
cients are not required for our purpose. In order to find the constant
term of any factor we must multiply it by wed7/27 and integrate over the
period 27/ ws, or, what amounts to the same thing and is more convenient,
we may multiply it by K.dy/r and integrate from o to w. Owing to
the presence of powers of K, in the denominators it is best to change
the variable from ¥ to another quantity x which is defined by the
transformation

Kz =1 — EzCl// = (I - 622.)/(1 + ezcx), dg[//Kz = dX/ \/(I — 622),
CY/Kz = (@ + Cx)/(1 — &), SY/Ke= Sx/ ¥v(1 — &).

It

On evaluating the integrals thus obtained we easily find the following
values for the constant terms of the factors indicated:

(I: C¢)/K23 = (I’ 62)/(1 - 622)3/2y
(17 C\P, 524/! C%&)/K# = (2 + 6221 3e, I — 6221 I + 2522)/2(1 - 522)5/27
(S, Cty, SYCY, CHY)/KP

= (1 —e?, I + 46? & — &, 36 + 26%)/2(1 — )72

(40)

We may sum up the results of this section briefly as follows:

(1) Any term of (16), which is of odd degree in S¢, C¢, separately,
whatever factors involving ¢ it may have, vanishes on averaging and
may be omitted. Thus we may omit the whole of the third group.

(2) The square terms S?¢, C?¢ may be replaced by 1/2.

(3) All factors of odd degree in Sy vanish on averaging, and corre-
sponding terms of the second group of (16) may be omitted.

(4) All other factors involving ¢, whatever their degree in C¥, remain
and may be replaced by their constant terms given by (40).

9. In order to shorten the formulee as much as possible we shall find
it convenient to express the seven quantities X, Y, Z, &, {, cos «, sin «
in terms of three of them by means of equations (3) and the usual relations
between three direction cosines, choosing for this purpose Z, { and cos a.
Nevertheless we shall use the symbols X, Y, £ wherever it conduces to
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brevity to do so. We write

u=cosa,y=sina= (1 —p2,2 V(X4 V) = (1 — 2%,
o= NE+ V)= v@ =) (41
Hence we obtain by means of (3)
vX =Zp—¢ vE=Z—ip, vV = 0= 22— +2Zw). (42)
Also we find using (41) in (22), (23) and (24)
€ = 61\/ (I -. Zz) = 6127 €2 = .82\/ (I - §2) =B20'y
XS, 4 YCi = — 25¢, VS, — XC, = 2C¢,
£S, 4+ VCy = — oSy, VSy — £Cy = oCy, 28, =YCh — XS,
SC=—XC¢p — VS¢, 0S.=YCY—£ESY, 0Cs = — ECY — V.S

: (43)

For the purpose of the substitutions to be made in (16) the following
expressions will be needed, which can be deduced from (3), (25), (26)
and (27) by means of (41), (42) and (43).

CiCo 4+ S1Sscos a = [{(w — ZE)CY — YivSy}Co
+ {YZvCy + (2% + i X»)S¥}Sel/Z0,
CiCscos a + S1Ss = [{(Z2 + ¢X»)Cy — YZvSy}Co
+ Y Cy + (b — Z8)SY} S/ Za,
C1S: cos a0 — S1Cs = [{(Z2 — YZv)Cy + ¢ X»Sy}Co + (44)
+ {ZXvCY — (uZ? — Yiv)Sy}S¢l/Zo,
SiCecos a — C1Se = [— {YivCy + (u — Z0) Sy} Co
+ {(Z2 + $X»)Cy — YZrSY}S¢]/Za,
YCicosa+ £S, = [YZvCo — (u — Z8)Se/=.

10. Taking first the terms of the second group of (16) which involve
K% and omitting at once all the terms which vanish owing to the presence
of one or more of the quantities S¢, C¢ or S¢, we find for the others
[— 2ZXvCyS?*pjo — Bolp — Z8)S2¢ + (u — Z§) CYC?*¢/0]BiB%a1/ Kolas.
Using rule (2), § 8, the first row of (40), and (43) we obtain for the time
average of these terms

— ZXvBiBbar/as(1 — &2)302. (45)

Taking next the terms involving K, * and omitting vanishing terms as
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before we find for the others

[3ZXvCYPS*¢[o + 3Be(u — Z1)(S*¢ — S C29)
— 3B2{ Y2 Z{rCyC? + (2% + (X) (u — Z$)CYS*} /2%
+ 3B[{ Yiv(Z2 — YZu)C + (v — ZO)XvSWC?
— {2+ Xv)ZXvC + YZv(uZ? — Yiv) S} S2e)/ 2202
= Bl{(Z2 + {X»)(u — Z)CW + V2Z0r S} C
+ {V2Z52C + (b — Z5) (22 + (X v) S} S29]/ 2%
+ Bolu — Z8)(SS*p + C(C?¢)18182%a1/ Kotas.
Using rule (2), § 8, the'second row of (40), and (43) we obtain for the time
average of these terms
[9ZXy + 3(n — Z5) (1 + 26?) — B2 {V2Ziv? 4 (22 4 {Xv)(u — Z1) } /22
+ 3[{Yev(Z2 — YZy) — (224 ¢ Xv)ZXv} (1 + 26?)
+ {(u — ZO)i Xy — YZy(uZt — Vi) (1 — &?)]/2202
— {2+ X0 (e — Z5) + Y222} (2 + &F)/2%?
(= 20 + )B4l — @)
By means of (41), (42) and (43) this reduces to

(3r(3Z + 1 — &) — 7Z5(2 + &) + 362 {(2¢ + ZW) Y — (¢ + 2Zu)t}w
— 3X(Y + 9»/(1 — )]BBo’ar/4a:(1 — &2)32.  (46)

Lastly, the terms of the second group which involve K,~%, when vanish-
ing terms are omitted as before, may be written in the form

32— YZ)CY + (tXv — 22%6)SY — VZr}Co
+ {ZXvCy — (u2* — Y50)SY + e(n — Z)}Se].
[{(u — ZO)CY — YivSYiCo
+ {YZVC'gb + (22 + fXV - 220'2)51#}S¢]S¢‘B1ﬁ24a1/K2502220'.

Omitting vanishing terms, such as those involving S¢C¢ and those
which are of odd degree in Sy, using rule (2), § 8, the third row of (40),
and (43) we obtain for the time average
3w — ZO Xy — 2%?%) — Yiw(Z2 — YZv) + V2Z0?

— YZv(uZ2* — Yiv) + (22 4+ (Xv — Z206)ZXv

(2 4 Xy~ B — Z01BB0/4 (1 — )P
By means of (41), (42) and (43) this reduces to

3[3Zio® + Ziv? + pZ%? — p — (¢ + Zu) Yv]BiBar/4as(1 — )32, (47)
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Collecting the results given in (45), (46) and (47) together and reducing
them by means of (42) and (43) we obtain finally for the time average of
the magnetic force terms of (16)

(F-0)rfeses = {225 + u(6 — Z2)}BiBa:/4a2(1 — &?)?/2
— 31425 + u(t —22%) — B2(§Yv — Zuéy)
+ X(Y + 921 — )} -BiB2’as/4a:(1 — &?)°2. (48)

This equation, together with equation (34) for the time average of the
electric force terms, gives the complete expression for the time average
of the repulsion exerted by the second electron on the first in the direction
of the line of centers of their orbits, so far as the inverse square terms are
«concerned, and that to every order of the two speeds B; and Bs. It
remains to find its average value for all orientations of the axes of the
itwo orbits.

11. Average Value of the Force for All Orientations.—In order to find
this average value we must make some assumption as to the probability
of the directions of the axes of the orbits. This depends on the directive
force exerted on any one orbit by the electromagnetic fields of all suffi-
ciently near atoms, but without a knowledge of the distribution and
orientation of these atoms the directive force cannot be determined.
The problem is the same as that which occurs in the determination of
the direction of the axis of one magnet of a complex of elementary magnets
constituting a natural magnetic body, and a complete solution has not
yet been found. Under these circumstances we shall assume that all
directions of the axis of the orbit of each electron are equally probable.

The error made on the average with this assumption is in any case
unlikely to be serious for any natural body owing to the large number of
electrons concerned (crystals?). '

We shall take the line of centers as the polar axis from which the
direction cosines Z and ¢ are estimated, and shall denote the azimuths
of the axes of the two orbits by &, ¥ respectively. Using (41) and (42)
we obtain

Z¢ + Zo cos (@ — ¥), vY = Zosin (& — ¥),

I
S{Zocos (& — ¥) — {2}, vE=c{Zoc — {Z cos (P — \If)}} (49)

vX

I

In order to average any expression for all orientations of the axes of the
two orbits, in accordance with our assumption of equal probability of
all directions, we must multiply it by dZd{d®d¥/167® and integrate
with respect to ® and ¥ from 0 to 27 and with respect to Z and { from
— 1 to I respectively.
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We shall find it convenient to begin with the magnetic force terms
given by (48), for these all disappear on averaging. The terms involving
Yv obviously do so on account of the presence of the vanishing factor
sin (® — ¥); those involving X, ¢ and u reduce to terms which are of
odd degree in Z and ¢ separately, on account of the presence of the
quantity cos (& — ¥). This is multiplied by odd functions of Z and ¢,
wherever it occurs squared, and it vanishes on averaging where it occurs
in the first degree, as we see from (49). All the terms independent of
® and ¥ are of odd degree in Z and { separately, so that after integration
with respect to ® and ¥ (48) becomes a function of this same type. But
a function of this type obviously vanishes when integrated with respect -
to Z and ¢ between the limits &= 1. Thus the result follows.

Turning now to the electric force terms given by (34), the calculation
is much simplified by the fact that the second term on the right, which
obviously alone requires any calculation, does not involve ®, ¥ or Z,
but only { implicitly through the quantity e, determined by (43). In
order to evaluate the integral with respect to { we write

Bot = + (1 — B2?)-sinh %, whence v (1 — &?) = + (1 — B2)-cosh u.
Then we find for the average value of e2/(1 — e?)3/2

1 1 I 1+ B
2 — e2)3/2 — — ——log — P2
‘fl; €2 d§/<1 €2 ) I — 622 2‘32 log 1 — 62

Hence we obtain finally for the average repulsion along the line of
centers exerted by the second electron on the first

ee 1 I I+B
(Fn)fr = ——;;2{1 —I—ﬁz2(1 ~ a2 35 1%%; _6§> } (50)

It is to be borne in mind that this expression rests on the assumption
that the two periods of revolution are incommensurable. Hence we
cannot generally assume that the two speeds are the same, so that we
must not put 8; equal to B;. Consequently the repulsion exerted by the
first electron on the second, which differs from (50) by having 8 in
place of B, is different from that exerted by the second on the first, and
the Law of Action and Reaction does not hold, except to a first approxi-
mation. From a theoretical point of view this may no doubt be urged
as an objection to (50) and to the Lorentz-Larmor equations on which
it is founded, and used as an argument for modifying them in some
such sense as that suggested by Crehore. From an experimental point
of view however the deviation is probably not of much moment, for it
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is easily seen by expanding the function of B, in (50) that the first power
which occurs is the fourth, so that, if 8; be as large as .01, the relative
deviation is less than one hundred-millionth. For this reason I shall
not pursue the matter further here. ,

12. Summary.—The conclusions of this investigation may be thus
summarized :

(1) The residual attraction found by Crehore to exist between two
electrons describing circular orbits with uniform speeds, but incom-
mensurable periods, arises from a faulty process of averaging.

(2) When a correct process of averaging is employed, it is replaced by
a small residual repulsion, which violates the Law of Action and Reaction,
but is not likely ever to be detected by experiment.

(3) The argument based by Crehore on the discrepancy in order of
magnitude between his residual attraction and the attraction of gravita-
tion against the correctness of the fundamental equations of the Electron
Theory fails, but is replaced by a much weaker argument which may
be based on the theoretical violation of the Law of Action and Reaction
by the residual repulsion. '

UNIVERSITY COLLEGE OF WALES, ABERYSTWYTH, ENGLAND,
December 29, 1017.



