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Electromagnetic Mass Revisited

Julian Schwinger'
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Examples of uniformly moving charge distributions that possess conserved elec-
tromagnetic stress tensors are exhibited. These constitute stable systems with
covariantly characterized electromagnetic mass. This note, on a topic to which
Paul Dirac made a significant contribution in 1938, is dedicated to him for his
80th birthday.

It is the classical theory of electromagnetic mass that is reexamined here.
And why, after all these years, and in view of its apparent irrelevance to the
real world? Quite simply, because it still isn’t right.

First, recall that there are two conventional meanings for
electromagnetic mass. The electrostatic energy of a charge distribution at
rest, divided by ¢?2, gives one mass, m'". The electromagnetic momentum of
the moving charge distribution defines another mass, m®. They are not the
same:

(2)=im(1) (1)

meE3

It has been stated'" that this apparent violation of relativistic invariance is
to be blamed on the failure of the usual definition of electromagnetic
momentum, a definition that refers only to electromagnetic fields and not to
the state of motion of their sources.

Then, we recall that the charge distribution is considered to be unstable,
in consequence of the Coulomb repulsion of its parts. Alternatively, one
points to the nonvanishing integral of the stresses in the rest frame of the
system. At this stage the nonelectromagnetic Poincaré stresses are usually
introduced to produce stability.
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Underlying all of this is a bit of tunnel vision that I state as: In
constructing mechanical properties consider only the stress tensor involving
the fields,

1
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4n
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[1 “A 1 i g‘f" Y I MFM] )
even though it is not divergenceless,

1
6,0 = —F*— |, ®)

and therefore cannot of itself produce covariant results. In contrast, I now
show that there is a class of fields and currents, associated with uniform
motion, such that the right-hand side of (3) is the gradient of a scalar. That
implies the existence of a conserved—divergenceless—electromagnetic stress
tensor. Its use automatically guarantees stability, and the covariance of
energy and momentum. The tensor is not unique, however. There is now the
option to construct covariant theories in which the electromagnetic mass
gives the field energy in the rest frame; and covariant theories in which the
electromagnetic mass is inferred from the electromagnetic field momentum.
The two invariant masses thereby associated with the same field-current
distribution are related by (1). And, preconceptions aside, these mechanical
systems are stable.

Any spherically symmetrical charge distribution of total charge e, at
rest, is represented by the potentials

¢=ef(r’), A=0 (4)
where, at sufficiently large distances,
Sy~ ()~ ()

The covariant déscription of this situation relative to any uniformly moving
rest frame is [metric: —1,1, 1, 1]

AW =20 =t (% ox ) (6)

where

vi=ovty, =—c?  0€=0 (7
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We also note that

and
au 62 f“
The latter is used in evaluating
54 (x) =22 04" (&)

with the consequences that
9,A4*(x)=0

and
Fin(x) = 44 () — 044 () = 2 (10" = Ev) 1€
The current vector j*(x) then produced by
4
o, = 2L o

is

J*(x) _Tv “[=282"(E) = (D)
It is the covariant form of the rest frame charge density

p= (2P () = H ()
and the total charge is computed as
J:o drridnp=e f:o dri(r) 2 (=2r’f" = 3f")

=e["dl207) () =e
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according to the asymptotic form (5) and the assumption that fis sufficiently
well behaved at the origin.
We illustrate these results with the simple example

(&)= (& +a’)? (17)
so that
uy € VMET—0E
=@ (18)
and
2
T (19)

an & +a)"

In the limit a® — 40, this current vector becomes that of a uniformly moving
point charge.
The general form of the electromagnetic field stress tensor (2) is

eZ

=S [ee s eve s g e | @y o)

/4

Its divergence, as computed from (3), is given by

2

6,1 == =28 + Y 1)
And now, if we define a function #(&?) to satisfy
e2
11(62):__2;[262f/f//+3f12] (22)
the right-hand side of (21) becomes
U&= 0,(8" 1(EY) (23)
and we have identified a conserved tensor:
T"Y =" — gh't, 0,T"" =0 (24)

In the example (17), the evaluation of ¢,t*" is supplied by

2
__Fuv_l_jv_____éu_3_ 2 a

c az ¢ @ +a) (25)
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leading to the identification

(&)=

aZ

e o

which incorporates the boundary condition of vanishing ¢(£*) as &2 — .
Another model should be mentioned here,
éZ > a2: f(éz) — (52)—1/2, 62 < aZ:f(éZ) — (aZ)—l/Z (27)
with the consequence
e vME —prEr

F"”(x)=;—Wf7(€2—az) (28)

where the step function 7(x) is such that

x>0:1
= 29
n(x) x<0:0 (29)
In addition, we have
e _ n 1 2 2 — gl
P =et =8 —a), 6@ =1'(x) (30)

which is the covariant form of the rest frame surface charge distribution

e
p =gt o —a (31)
The counterpart of (25) is
_uv L P 2 2
F—Jje=—¢ 2m4rl(é ) n(é a’)
e d s
— Lo —_ 2
& i ge 1@ — &) (32)
which uses the relations
((x))? =n(x)=1—-n(-x) (33)
and we are led to
2
(éz)— e n(a>—¢&*) (34)

so that #(£?) vanishes for all £* > a”.
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The spatial components of T,, in the rest frame of this sheil charge
distribution are

2 2

e 1
Tk/=m (_xkxl+ 2 Ol )'7(" a)— 5k18 shn(a—r) 35)

displaying the respective contributions of the field tensor, ¢,,, and of the new
term, —0,,¢. One easily verifies directly that ¢,T,, = 0 holds everywhere. The
radial component of the stress is

et 1 e? 1
To==gg =@ =g gen@=n (36)
where the contribution of the first term,
r>a: T, e 1 @7
=" 8

evaluated at r=a, is the familiar outward traction on the charge shell
produced by the electric field. But now the second term,

e2

1
T,=——= 38
r<a: T,=——— (38)

produces a precisely compensating inward traction at r = a@; there is no net
radial force on the shell.

While we’re at it, let’s calculate the volume integral of the diagonal sum
of these spatial stress elements,

e2 2

1 e
T, =— — —a)— 3 — _
w=gMr—a) =35 —n@—r) (39)

It is

a e2 © e2
J (dr)T,, = fo drr*an [—3 W] + L drrian [ 8o ]

et et

" 2a 72070 (49)

We have referred to an ambiguity in the conserved stress tensor. That
expresses the freedom to add an additional divergenceless term, as exhibited
by

. [%v"%v”t(w]:%v“(vé) 1) =0 (41
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This possibility will be utilized in considering two different covariant
versions of the concept of electromagnetic mass. The first one uses the stress
tensor

1
() e <g‘“’ +?v“v") ‘ 42)

it is such that the energy density in the rest frame is entirely electrostatic
field energy:

1
v=0, T"=1"=——F (43)

The second choice adopts the stress tensor already presented in (24),
(2) THY = (#v — g4y (44)

this one is such that the momentum density (multiplied by c) is entirely
produced by the electromagnetic field:

1
T0k=tok=—4?(EXB)k (45)

Perhaps it is worth repeating here that ¢**, which would seem to satisfy both
requirements by itself, is not conserved—except in the total absence of
charge. Then the mechanical system being described is a light puise,
traveling at speed c; there is no rest frame.

We now evaluate

E= j @)T®,  p= J (dr) % T°, (46)

for the two types of models. To begin,
w_ e 042 Lo\ 2, 1, /(E2\2
o= ey (7)) -1) evge|ve
(47)
1
c

0o _¢€ 0 0, 2 232
e AR )

where, for motion at velocity v = fc along the z-axis,

vy=pv° =pe(1-p*)~"" (48)
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and
. Tfﬁ—z ( —v1) (49)
We also write
612+522:x2+y2=l)2 (50)
and get
z —vt)?
g=pt+ E20) 651

The resulting expressions,

—(&? 4 ((%110)2 - l)ézzlf“;zpz

| (52)
_6063 + c—z vOUJéZ - T_BTPZ
lead to
[ e,=—L ¢ j () p*(/" (&))" (53)
and
2
l 2332
[ =p[ @)+ < [ @5 ee) (54)
Then we redefine the z-variable in these integrals,
T Eoptar )

after which angular integration (p” - 2r?) leaves one with a radial integral:

j(dr)t()s:(lh_lgﬁz)‘l/zm(z)cz
j(dr) tOOZ(—'BZTm 6‘2+(l IBZ)I/Z% (2)C2 (56)

2 _ (1 _ﬂZ)l/Z 4im(2)c2

T
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where we have introduced

m(Z)CZ — _;_ez [OO dr2(r2)3/2(f/(r2))2 (57)

The noncovariance of the theory that is based entirely on the elec-
tromagnetic field tensor is exhibited here. We also see the origin of the
particular numerical factor [Eq.(1)] that connects m'Vc?, the rest frame
value of the field energy,

m(l)c2:%m(2)cz (58)

with the mass m® that measures electromagnetic field momentum.
Now we turn to the evaluation of

[y gy =g | areh)” o)
o (59)
— (1= p}? T”J'O dri(r) v (r?)

where, according to (22), the latter integral is
e @ ooy [ 8 o "2 e (T a2 iy
S [y [Py ey | = - [ ar ey ey 6o)
That produces
[ @) gy = (1= m 2 (61)
Finally, looking first at stress tensor (2), we arrive at the total energy

and momentum

(2) ,2

E= j @) + 1) = ¢

1
— iz M
(1-5% 62)

1 1
=|(d)—t’=—-——>m?
p j( r) PR { _ﬁ2)1/2 m=v

the covariant forms based on rest mass m‘?, while stress tensor (1) produces

1 1 1 1
E= m®e? _ 1 B2 @2 = mV ¢?
(l _ﬁ2)1/2 1 _ﬂz ( ﬂ ) 4 (1 _ﬂ2)1/2 (63)
1 Jii 1 1 ’
PZ(—]WWQ’U i (1 —,5’2)”27m‘2’c=————(1 e m®My
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the covariant forms based on rest mass m'":
oo
mte?=e [ dr() (1 (7)) (64)
Q

Using the example of the shell model, Eq. (27), one finds immediately that
m'Y ¢ = ¢?/2a, which is indeed the electrostatic energy of the system at rest.
Incidentally, although we have carried out this discussion in the context of
systems with charge e # 0, it is clear that current distributions of zero net
charge also possess electromagnetic mass. And the conceivable contribution
of magnetic charge should not be overiooked.

We close this note with a glance at the action-principle approach to
electromagnetic mass. The action of the electromagnetic field in interaction
with electric current is

1 1 1
— N . ny
W=— | (@) [C JA =~ F F,w] (65)

or, in virtue of the respectively linear and quadratic field dependences of
these two terms of a stationary expression,

1 1
W=—— ol 66
= [ @) (g ) F"Fun (66)
On referring to the field construction (12), we get

l uo _ ez 2 1 E2\\2
e P = B ) (67

Then we write the invariant element of volume as the rest frame product of

the proper time element, ds, with the element of spatial volume appropriate
to spherical symmetry (£ = r?):

—i— (dx) =ds dr*(r)V* 2n (68)

That gives

W=~ [aser [ ar() (o0
° (69)
e [a
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according to (64). It is natural that the electrostatic energy definition should
appear here; the rest frame interpretation of the field structure (67) is just the
electrostatic energy density.
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