that the increased cost of totally enclosed motors is justifiable
up to approximately 250 horsepower on the basis of main-
tenance savings alone. An outage of a motor up to this
horsepower rating seldom involves the loss of a main unit,
and therefore no considerable additional credit can be
assigned on the basis of increased reliability.

For motors above 250 horsepower the difference in price
between open-frame dripproof and totally enclosed motors
increases at a greater rate than the evaluated difference in
maintenance costs. However, an outage of a motor rated
250 horsepower and above generally involves a main
unit, and the higher cost of the totally enclosed motor is
justifiable on the basis of increased reliability in addition
to the savings in maintenance costs. The loss of capacity
factor and the incremental heat rate cost may outweigh all
other factors for the larger auxiliary drive motors as for
circulating water pumps, forced- and induced-draft fans,
and boiler feed pumps.

Whether or not the purchase of totally enclosed motors
can be justified depends on the type of design of

the plant and on the degree of reliability which is
expected. The adoption of the unit type of plant design,
the extent to which duplication of auxiliaries is provided,
and the amount of reserve capacity available to the system
obviously will influence the decision.

On the Consolidated Edison system it generally has been
found that for essential auxiliaries in power plants totally
enclosed motors can be economically justified. On this
basis a total of 580 totally enclosed motors with an aggregate
rating of 52,000 horsepower has been bought since 1943,

It appears reasonable to expect that a thorough investiga-
tion of all of the factors entering into the design of auxiliary
power drives and their comparative evaluation will disclose
that totally enclosed motors may be economically justifiable
to a greater extent than in the past.
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Motionally Induced Electric
Fields—Part IV

Motional Electromotive Force in Iron,
Commutatorless D-C Motor, and
Space Ship

Jack, the physicist, is continuing his lectures to Alter Ego
and his friends on the basic principles underlying dynamo-
electric machines.

Jack: “We now have the universal equation for the mo-
tional electric field, E,,, induced in any honest-to-goodness
body moving with a velocity v in a magnetic field B,
namely

Enot= (v x B] (1)
<

This universal equation is consistent with the principle of
energy, for if i is the current density in the body, we will
have -

Py=Enqt-i=[vxBl-i=v-[Bxi] (2)
P,=cE,-1 is the electric power supplied per unit volume
by the moving body external circuit.

“We find the mechanical power by means of the uni-
versal equation

Fo=[ixB]=—[Bxi] (3)

which gives the mechanical force, per unit volume F,.,
which the magnetic field B exerts upon any body carrying
a current density i. The mechanical power, per unit
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volume, which the moving body delivers to other bodies
is then

Pou=v.Fp=—v.[Bxi) 4)
“Combining equations 2 and 4 we have
Pet+-Pr=0 (5)

That is, if the moving body is delivering electric power,
as in a generator, then equal mechanical power must be
supplied to it, and if the body is receiving electric power by
i flowing against E_ ., as in a motor, then it will deliver
an equal mechanical power. Universal equations 1 and 3
are entirely in order as far as the principle of energy is
concerned.

“But now, Alter Ego has something to say.”

Alter Ego: “I am very glad to learn of the universal
validity of equations 1 and 3 because based on them I
have made two very important inventions; namely, a
commutatorless d-c motor or generator, and a d-c¢ driven
space ship. I won’t go into the details of these inventions,
but will limit myself to describing their basic principles.

“Go back to the slide-wire experiment, Figure 1, and
consider what will happen if the slide bar is a cylinder of
very high permeability iron. The lines of force of the other-
wise uniform magnetic field B will converge as is shown in
Figure 2, and B, within the circular section iron bar, will
have almost twice the strength which it would have in a
similarly placed copper bar. Therefore, according to your
universal equation 1 which you say is absolutely right,
the motional field E_, in the iron bar will be twice what
you would get for a copper bar.

“Now for my invention. Make a coil like I show in
Figure 3, with two parallel sides, but make one of these
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Figure 1 (above). The slide-

wire experiment

Figure 2 (right). Converging
field in iron cylinder

parallel sides of iron and the other of copper. Now
translate the coil in the magnetic field. There will be
motional fields induced in the coil sides. If the coil had
been all copper, then the motional field E,, in the one
coil side would oppose and just cancel the motional field
E, ot in the other coil side, so far as the production of a
total electromotive force around the coil is concerned.
However, with one coil side iron, the motional field E,, in
it will be twice the motional field in the other side, copper
coil, and these motional fields will not cancel round the
coil, but the coil will give a net, not zero, electromotive
force as it is moved in the uniform magnetic field. It is
easy to see how we could mount a lot of these coils in series
on a rotating member with slip rings, in a uniform magnetic
field, and get a beautiful constant d-c voltage. There’s
your commutatorless d-c generator.

“Now, consider what happens if I send current through
my (patent-pending) iron-copper coil while it is in a uniform
magnetic field. If the coil had been all copper, then,
according to your universal and absolutely right equation
3, the forces exerted by the magnetic field on the coil sides
would be equal and opposite and would exactly cancel.
However, in my iron-copper coil, the field B in the iron side
is twice what it is in the copper side, and therefore, accord-
ing to your universal equation 3, the force on the iron side
will be twice the oppositely directed force on the copper
side, and I will get a net force tending to move the whole
coil. If I arrange a lot of these coils around on a rotor as
in my generator, I’ll get a commutatorless d-c motor.
However, if I lay the coils out in a plane, I'll get a space
ship, since the reaction on the field-producing member
will be the same as if the coils were all copper, namely, zero.
Aren’t those wonderful inventions, Dr. Jack?”

Jack: I don’t like to throw cold water on your en-
thusiasm, Alter Ego, but I doubt that your inventions will
work. You will remember that in my last lecture (EE,
Jan 51, pp 67-68), I showed that the sum of all the electric
fields, the electrostatic, that induced by transformer action,
and the motional, when integrated round any closed
material circuit, was equal to 1/¢ times the rate of change of
the integral of B over any surface enclosed by the circuit,
or in other words, to 1/¢ times the rate of change of the
total flux linked by the circuit. Now, as your coil moves
in the uniform magnetic field, the amount of flux linked by
it does not change. Therefore, the total current-producing
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IRON COIL GOPPER COIL
SIDE "] |ua—" SIDE
Figure 3. Iron-copper coil

electromotive force which is around your coil stays zero.

“Of course, you should have obtained the same result
using the motional equation 1, but you did not. Some
people think that the v in equation 1 stands for the motion
of the moving body, not relative to space or some suitable
material frame of reference but relative to the magnetic
field itself, and that where the field lines bunch up as in
your iron bar the bar carries them along somewhat, so that
the lines of force slide or cut through the bar with only
half that velocity with which they are cut by the copper
bar so that the motional field is the same in the iron as the
copper. Maybe that is the way out....”

I interrupt Jack at this point, because I am already be-
hind in my reply to the preceding essay and I must catch up.

Will Jack be able to explain away the contradiction,
along the line he has indicated? Watch for the next
exciting episode in the next installment.

J. SLEPIAN (F '27)

(Westinghouse Research Laboratories, East Pittsburgh, Pa)

‘Three Impedances

Three impedances are so proportioned that when
connected in star and energized from a 60-cycle system

Figure 1. Star and delta
connections of  three
impedances

they form a network that is equivalent to a network formed

by the same three impedances connected in delta. Is this
possible?

A. A. KRONEBERG (F*8)

(Southern California Edison Company, Los Angeles, Calif)

Answers to Previous Essays

Correction to Motionally Induced Electromotive Force. The
following is the author’s correction to the Part I essay and
the answer to Part I (EE, Dec °50, pp 1086-9).

The units used in these essays on ‘“Motionally Induced
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Answers to Previous Essays

Motionally Induced Electric Fields—Part IV. ‘The following
is the author’s answer to his previously published essay
(EE, Feb °51, pp 159-60).

As the author has observed so many times in the past
in these various essays, relative to any particular suitable
frame of reference, there is but one electric field E, and also
but one D, one H, and one B, and these are the quantities
which enter into Maxwell’s field equations. These vectors
may be defined in empty space through local observation of
the forces on charged probes, placed in the empty space,
by equation 3,! and may be defined within bodies stationary
or moving through observation of the forces on charged
probes within crevices in the bodies by equations 2 to
42 The charge and current densities, p and i, are then
defined from the quantities D and H by equations 3
and 10.%

Maxwell’s field equations are not enough to fix or de-
termine in a mathematical sense the various field quantities
which we have defined operationally through observations
on charged material probes in empty space. To get a
mathematically complete system we adjoin the constitutive
equations of the various materials in question, which are
determined by experiment or otherwise.

If we know the constitutive equations for the matter of
a body at rest, then the principle of relativity enables us to
determine the constitutive equations for the body in a state
of uniform motion. We merely make the transformation
of the field quantities called for by relativity.4 In this way,
we obtained the constitutive equations for the glass of a
glass slide bar.

D=eE+'(e—1):—[v xB] 1)

p=t-"11{yxD] @)
€ (3

1

i=-vp (3
[
To deal with the iron slide bar, we similarly determine
the constitutive equations for moving iron from the known
equations for iron at rest, that is

i'=gE’ 4)

'=0 (5)
D'=0 (6)
B'=f(H") )

Making the substitutions of equations 1, we get these
equations:

i vp=¢r(E+-1-[va]> (8)
[4 [

Neglecting higher powers of /¢ than the first, we get
that one of the constitutive equations of which we shall
make use in this essay, namely

i=a<E+%[v X B])

Maxwell’s field equations plus the constitutive equations
just mentioned are sufficient for solving the two slide-bar
problems which Alter Ego has presented to us. For this
purpose it is convenient to use an integral of that Maxwell
equation concerned with curl E, which is slightly more
general than that given by Stokes theorem. Stokes
theorem itself tells us that for any closed curve, lying wholly
or partly in the matter of stationary or moving bodies or
in empty space

Jro=f [

In equation 13 the integral on the left side is taken round
the closed curve. The integral on the right side is taken
over any 2-sided surface bounded by the closed curve,
and lying where it may, wholly or partly within stationary
or moving matter.

Equation 13 refers to any particular closed curve with
any bounded surface which we may arbitrarily select or
construct at any particular instant of time. Let us now
consider the temporal succession of such closed curves
and bounded surfaces which we obtain by assigning an
arbitrary continuous velocity u to the various points of the
closed curve and bounded surface. w need have no rela-
tion to the velocity v of the matter through which the curve
or surface may pass. u is a mathematical parameter
arbitrarily assigned over the curve and surface of integration
in matter or in empty space, wherever the curve or surface
may lie.

At any particular instant of time, equation 13 applies for
that particular instantaneous configuration of curve and
surface of integration. Now add to both sides of equation

1
13 the quantity | -[axB]-ds. We get
q P g

f(E+ [uxB] ds—f [uxB]. ds—-fflb_B .ds
/ uxds]—fflglz -ds

(12)

(13)

(14)

1
That is, the integral of E—I—;[uxB], where E and B are

the one and only Maxwellian E and B, around any closed
curve, the points of which move with arbitrarily assigned

p+c1 v-i=0 (9) velocity u, is equal to —1/¢ times the rate of change of the

magnetic flux linked by the arbitrarily moving curve.

D+1 [vxH]=0 (10) We shall make frequent use of equation 14, so let us keep
¢ it in mind.

1 1 Let us now consider the two slide-bar problems. We

B—-;[vxE]=f(H-—;[vxD]) (1) shall confine our attention to the neighborhood of the
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plane of symmetry perpendicular to the slide bar at its
middle, and we shall assume the bar long enough so that
the effect of its ends will not disturb the 2-dimensional
character of the field near the plane. That is, we shall
- assume that near the plane of symmetry, the magnetic
vectors H and B are parallel to the plane, and that the
electric vectors, E and D, and also i, are perpendicular to
the plane, and that these vectors do not change in magnitude
or direction as we move away in a perpendicular direction
from the plane of symmetry.

Far enough away from the slide bar we assume that we
have a uniform magnetic field, H=B=B,, and a uniformly
zero electric field, D=E=E(=0. Within or near the slide
bar, for either case, the magnetic and electric fields are
altered and B and E may not be equal to By and E, re-
spectively. Consider the temporally changing rectangular
path of integration constructed as follows, Figure 1.

Adjacent to or within the central part of the slide bar,
draw a short path length, 4B, parallel to the bar, and let
AB move with the velocity v, keeping always in the same
geometric relation to the slide bar. Draw the two path
sides AD and BC parallel to each other and in the direction
v. The final closing path side, CD, is parallel to 4B,
and is to be kept at rest. AD and BC are thus lengthening,
and the area ABCD is increasing at the rate o/ where [ is
the length of 4B or CD.

Now apply the theorem of equation 14 to the closed
path ABCD. At CD, we have u=0, E=0. CD therefore
gives a zero contribution to the integral of equation 14.
For sides BC and 4D, E and [ux B] are perpendicular,
and so these sides also give zero contribution. For side
AB, which alone contributes to the integral, we have
u=v, so that

/ E+}[uxB]-ds=(E+;[VXB])'l

.
ABCD

(15)

where the meaning of the vector 1 is sufficiently self-obvious.

Now, since 4B moves with velocity v, keeping always in
the same position relative to the slide bar, the magnetic
field configuration at that end of ABCD remains un-
changing. The rate of change of the flux linked by
ABCD will be its rate of increase of area, ! multiplied
by By, or [vxBy]-l. Applying equations 14 and 15,
paying due attention to algebraic signs, we get this
equation

1 1
E+c~[vx B]=; [v x By} (16)

Now for the iron bar, we have from the constitutive
equation

i=o<E+%[V x B]) =a<:—[v x Bn]>

We see then that the current set flowing in the iron bar
by its motion in the otherwise uniform magnetic field,
B,, is entirely determined by its conductivity at rest and is
independent of its magnetic properties. If the bar causes
the magnetic field within it and in its neighborhood to be
different from By, then its motion v will cause an electric

a7
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field E to be set up within it and in its neighborhood given
by equation 16, and the current density remains given by
equation 17.

We see then that Alter Ego’s commutatorless d-c ma-
chines are inoperative, but we sympathize with him for
being misled by the notion that there exists a ‘“‘motional

7 Figure 1. Path of
k. q D integration, ABCD

%A
=77

‘ <

electric field.” There is but one electric field, E, and
Maxwell is its prophet!

We see also how the incorrect treatment of Lorentz’
electron theory given by Jack could be corrected.

For the glass rod, if we define its polarization, P, by
equation 18, and use the constitutive equation 1 and
equation 16, we get

1
P=—1-(D E) =—(e—1)(E+1[v X B]) =L(e—1)(1 [vx Bo]) (18)
4r 4 ¢ 47 4
The polarization then is the same as would be produced
1

in the bar at rest by an electric field equal to ;[vao]
although actually the moving glass bar will have in it a

magnetic field differing slightly from B, by equation 2.
J. SLEPIAN
(Westinghouse Research Laboratories, Kast Pittsburgh, Pa.)
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1 hree Impedances. The following is the author’s answer
to his previously published essay (EE, Feb 51, p 160).

From equations used to convert networks from star to
delta, and from delta to star after substitutions and re-
ductions, the following relationships are obtained:

= —f= =25 1
=2 2

These are satisfied by impedances that are equal in
magnitude, one being real and positive, and the other two
being conjugate imaginary impedances.
=K
Z=jK
Q=—jK

A. A. KRONEBERG (¥ 48)

(Southern California Edison Company, Los Angeles, Calif)
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