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Synopsis.—In classical electromagnetism the electrical force acting on
a charged probe or small body is operationally defined as that force which
must be added to the assumedly completely observable mechanical forces
to restore otherwise failing classical particle mechanics. For a large body,
rigid or non-rigid, lying in empty space, we may also define a total electro-
magnetic ponderomotive force as that force which added to the presumably
observable total mechanical force restores otherwise failing mechanics.
For such a body the total electromagnetic force thus operationally defined,
may be determined by applying Maxwell’s stress tensor in the empty space
surrounding the body. '

Very generally it is believed that specifically electromagnetic pondero-
motive forces, volume and surface, exist within material bodies. Pre-
sumably these electromagnetic forces are to be defined by balancing
properly with the mechanical stress tensor within the body.

One may attempt to define this mechanical stress tensor through the
mechanical force required to keep the strain unchanged on making a cut
along an element of surface within the body. However, in an electro-
magnetic field the force so obtained is not derivable from a tensor.

We may define as a possible electromagnetic stress tensor any tensor
whose components are functions of the field vectors, E, D, H and B, and
the charge and current densities p and i, and which in empty space, i.e.,
where E = D, H = B, p = 0, and i = 0 reduces to Maxwell’s electro-
magnetic stress tensor. Then we define the associated mechanical stress
tensor through the vector difference between the calculated electrical sur-
face force for the sides of the cut, and the mechanical force observed there,
this difference being derivable from a tensor.

These two largely arbitrary tensors meet all the requirements of me-
chanics and electromagnetism and no experiment can distinguish between
the validities of the various sets of such possible tensors. There is then
no physically significant uniquely definable volume and surface electro-
magnetic ponderomotive force within a material body.

For the interior of a material body in an electric field, a net force tensor
may be defined which gives the observable net volume forces, and net
forces on surfaces of discontinuity. This net force tensor may be cal-

culated from the volume energy density when such volume energy density
exists.
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1. Definition of Total Electromagnetic Ponderomotive Force for Particles
and Isolated Bodies.—Classical electromagnetism, the electromagnetism
of macroscopic bodies, begins with the theory of electrical ponderomotive
forces acting upon particles. It is found by experiment that under certain
conditions the classical mechanics of these small macroscopic bodies fails.
This classical mechanics asserts that for such a small body we must have

ma = F, (1)

where m is the mass, a the acceleration, relative to a suitable frame of
reference and F,, the resultant ‘“‘mechanical” force acting on the particle,
F,, is asserted to be completely determinable from observations on the
state of contiguous macroscopic bodies, as for example the twist of the
suspension string, and the strain in the supporting bar of a Coulomb experi-
ment, and from the gravitational action of remoter bodies. When elec-
trical phenomena appear, equation (1) fails, and we define F,, the electro-
magnetic ponderomotive force on the particle, as that vector which restores

(1) giving
ma = Fm -+ Fe- (2)

Experience then shows that F, thus defined can, in a wide variety of
cases, be expressed at any point in space empty except for the particle and
the means for impressing the mechanical force, F,,, by the equation

4

F, = g(E + l[v X H]) (3)

where the scalar ¢ depends on the previous preparation of the particle,
and E and H are vectors in space independent of g and v, the velocity of
the particle. ¢, E and H are thus defined by equation (3) except for a
multiplicative constant which may then be fixed by some arbitrarily chosen
operational definition of the unit of ¢.

Thus these definitions of F,, ¢, E and H through the failure of mechanics,
rest on the assumption that the mechanical forces which act on the particle
are completely known, and that the means for exerting these mechanical
forces may have no influence on the electromagnetic field, that is that
F,, ¢, E and H will be independent of the particular means for effecting F,,.

The wide variety of cases referred to above can be described generally
as occurring when the dimensions of the small body or particle are small
enough compared to the distances from other bodies, excluding the means
for impressing the force F,, and when the small body is prepared so as to
make ¢ small enough.

For a large macroscopic body, rigid or non-rigid, mechanics also makes a
general assertion, namely that



VoL. 36, 1950 PHYSICS: J. SLEPIAN 487

d

where M is the total momentum of the body, and F,, is the total
impressed mechanical force, which is determinable from the observations
of the strains in contacting bodies, and the gravitational action of
remoter bodies.

Again in the electromagnetic field (4) fails. Again, we may define a
total electromagnetic ponderomotive force, F,, as that which restores (4)
so that

d
&”t M = Fm + Fey (5)

and again, for this definition to have meaning with content, we must
assume that means are available for impressing F,, which do not affect the
electromagnetic field, i.e., which give the same F, independent of the means
used for effecting the F,,.

II. Limitation of This Paper to Steady Electric Fields.—While the
author believes that the conclusions given in this paper are completely
general, for the sake of brevity he will limit their exposition to the case of
steady electric fields, and therefore to the case of bodies at rest, without
electric currents.

III. Maxwell's Stress Tensor and Isolated Bodies.—Given a body, at
rest, lying in empty space and in an electric field. The body is subjected
to mechanical forces of the type referred to in Section I, which do not
influence the field, and which give a total mechanical force F,, which may
not be zero. F, for this case, is then defined as —F,,.

Surround the body by a closed surface S. E defined in Section I, is
known at all points of .S. Then, according to Maxwell (1), we have

[;/ 8%_ (2EE-dS — E?dS) = F,. (6)

We shall not take the space here to establish Maxwell’s equation (6).
A way of doing so would be to postulate certain additional properties of
charged small bodies or macroscopic particles as given by experiment,
and to show then that (6) holds if the only matter within the surface S is
a finite number, though possibly very large, of such charged particles at
rest. We then postulate that the Maxwell field theory is a successful
“local action’ theory, and that therefore (6) must hold irrespective of the
actual nature of the material system within .S.

We may not pass from the case of the system of charged particles to
that of a continuous body by asserting that such a body may be regarded
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as being in any meaningful sense a very dense system of charged macro-
scopic particles. If we proceed to cut a macroscopic larger body into
smaller and smaller macroscopic parts, we do not get particles in the sense
used in previous paragraphs, because the dimensions of these individual
smaller parts do not become small compared to the distance to the neighbor-
ing smaller parts. It is only when we reach the microscopic world of
electrons and nuclei that this aspect of particles is reached. But at this
point macroscopic mechanics loses its meaning, and with it also classical
electromagnetism. Certainly, according to our present ideas of the
quantum mechanics which governs the microscopic particles, electrons and
nuclei, there is no ‘‘mechanical force” acting on a microscopic particle, and
therefore there is no electrical ponderomotive force as defined in Section I.

The integrand in (6) is a /inear vector function of the vector element of
surface dS. We may speak of it then as a force f, acting on |dS| which is
derivable from a tensor, Maxwell’s symmetric stress tensor for empty
space.

IV. The Mechanical Stress Tensor?—How shall we now define the
electrical ponderomotive force within continuous matter? It would seem
that again the definition should be through the failure of ordinary me-
chanics. Presumably, in an electric field, the completely recognizable
mechanical forces acting on any arbitrarily chosen continuous volume
within the body will not balance according to the mechanics of continuous
bodies, and we must invoke a volume electrical force F, which we thereby
define to restore this balance.

But what are these completely recognizable mechanical forces? In
the mechanics of continuous bodies in the absence of electromagnetic
fields, it is asserted that in addition to gravitational or inertial volume
forces, there is acting on each element of the bounding surface, dS, of the
volume, a force, —f,|dS| impressed by the contiguous matter,! and that
this system of forces is derivable from a mechanical stress tensor, which is
a function of the strains in the material. From the way this stress tensor
is used in deriving the equations of mechanics, we may conclude that a
meaningful operational definition of these mechanical forces is as follows.

Make a physical cut in the material along an element of surface. In-
troduce means for keeping the strains in the material on both sides of the
cut the same as they were before the cut was made. Then the force
introduced by these means is the force —f,|dS|.

It is not assumed that the cut and the introduced means do not disturb
the microstructure and micromechanics of the material. For example,
in the case of a fluid the cut and means would cause molecules to be re-
flected which would otherwise pass through the geometric element of
surface dS. It is assumed, however, that in spite of the change in the
micromechanics, there is no change in the observable macromechanics.
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Now in the case that there is an electric field, let us tentatively continue
to define the mechanical forces acting on a volume within matter in the
same way. Now, however, just as for the particles and isolated bodies of
Section I, we must limit the means used for keeping the strains on the two
sides of the cut unchanged by the cut, to such as will also leave the electric
fields on the two sides of the cut un-
changed. Thus, for a dielectric fluid \\\\
we may use as means, piston walls
or heads made of very thin sheets of N
perfectly insulating material. But ‘ \
now, as we proceed to show, we run N
into the dilemma that the mechanical
forces —f,|dS| thus found are not
derivable from a. tensor.

Consider a volume V, in a material,
surrounded by a closed surface S*,
We now make a thin cut all along S*,
leaving a thin shell of empty space
within which there will be an electric
field E*, figure 1. If the means used
for impressing the forces —f,|dS]
do not introduce charges, then E* is
related to the fields E and D within the material at $* by the relations

E*.dS* = D.dS* (7)
[E X dS*]. (8)

Now the volume V, bounded by the shell of empty space along S* is an
isolated body acted on by the purely mechanical external forces —f,,|dS*|
in the sense of Section III, and we may apply the equation (6) giving

1
/fg (2E*E*.dS* — E*2dS*) = — /f —f,,|dS*| —F,,
5% 4 s%

(9)

where presumably the right-hand member of (9) is the total electrical force
acting on V, and F,, is the total volume distributed impressed mechanical

force, or ,
—F,— f/ ~f,,|dS*| = fff F,dV (10)
S 14

where F, is the presumably uniquely determinable ponderomotive electrical
force per unit volume within V.

FIGURE 1

[E* X dS*

1
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Now, if dS, unrelated to dS*, is an arbitrarily oriented element of surface
within the fixed and unchanging shell of empty space, ér@E*E*-dS -
E*2d8) is a linear vector function of dS. However, for the vector function
of dS*, f,[dS*| = 8*17;(2E*E*-dS* — E*2dS*), as the orientation of dS*

is changed, the bounding walls of the cut must also change, and we may
not conclude that f,|dS*| is a linear vector function of dS*. In fact,
applying equations (7) and (8) we see that f,|dS*| is a cubic function of
n the unit vector normal to dS*, and dS¥*, if D is not equal to E.

Hence, f,|dS*| is not derivable from a tensor and ,/S';‘/'fglds*l is not

equal to S* f° S'F,dV, where F, is a vector independent of the shape of
v

the volume V. Hence, by (9) —f,,|dS*| is also not derivable from a tensor,
and our attempt to define the mechanical stress tensor through the forces
which keep the strain unchanged on making a cut, has failed.

We may illustrate the foregoing

\\\ development by a simple example.
Consider a homogeneous dielectric
0 i} material, with dielectric constant, &,
\ \ very large, in a uniform field D = kF,
N N\ figure 2. Consider a volume which

FIGURE 2 is a unit cube with four faces parallel

to D. Surround this cube with a cut

making an empty shell space. In the two faces of the cut perpendicular
to D, E* = D. For these two faces the contribution to the component
parallel to D of the Maxwell stress integral of (6) will be, respectively,

1 1 . 1
——D?% and +--D?% In the remaining four faces E¥ = E = -D and is
8w 8w k

nearly zero. The component parallel to D of the Maxwell stress integral
(9) is then zero, and therefore so also must be that component of the
integral of —f,,|dS*| of (9) and (10).

But now consider the volume consisting of the half cube shown in
figure 2 with one square face perpendicular to D, and the other square
face and the two triangular faces parallel to D. In the cut along the
square face perpendicular to D, E* = D, and the contribution to the

1
component parallel to D of the Maxwell stress integral of (6) is — o D2.
™

For the three faces parallel to D, E* is nearly zero and the contribution to
the Maxwell stress integral is zero. For the remaining diagonal face,
E* will be nearly perpendicular to the face and of magnitude |D|/4/2.
The contribution to the component parallel to D of the Maxwell stress.
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1
integral is + 8-D2/ 2. The total Maxwell stress integral will then have a
T
1
component parallel to D of magnitude ——§—D2/2, and is not zero. Thus
T

we see that the Maxwell stress integral, and that therefore also the integral
of —f,,|dS*| depends on the shape and orientation of the volume con-
sidered, and that therefore the forces f,,|dS*| are not derivable from a
tensor.

V. The Surface Electrical Ponderomotive Force—The various formulae
which have been proposed for the electrical ponderomotive force in matter,
in the literature of classical electromagnetism, give surface forces at the
bounding surfaces of material bodies, as well as volume forces within the
bodies. This is because the proposed formulae for the volume force
involve space derivatives of functions of the field vectors D and E, and
material parameters such as density and dielectric constant. At the
boundaries of bodies the field vectors D and E are generally discontinuous,
and also the material parameters as density, etc. In the mathematical
application of the volume ponderomotive force formulae, the bounding
surface is replaced by a thin layer in which D, E, and the material param-
eters vary continuously from their values within the body to their
different values just outside the boundary. Application of the volume
force formulae to this thin layer then leads to a surface force formula.

The appearance of these surface electrical forces suggests that there
may be a way out of the dilemma presented by the fact that the mechanical
forces which must be introduced in a cut to keep the strain unchanged,
are not derivable from a tensor. We may say that on making the cut, we
introduce new electrical ponderomotive forces, namely the surface forces
which are related to and calculable from the volume electrical forces. W
may say then that the mechanical forces —f,,|dS*| which are introduced
into the cut must compensate for the surface electrical forces as well as
take the place of the contiguous material in keeping the strain what it was
before the cut was made. We might expect that after allowing for the
surface electrical force, f,|dS*|, the remaining mechanical force, (— f,, -+
f,)|dS*|, will be derivable from a tensor.

We are led then to a tentative circular kind of definition of the mechanical
stress tensor and volume electrical ponderomotive force. The mechanical
forces —f,|dS*| in a cut are observed. Then the volume electrical
force, F, is such as leads to surface forces f,|dS*| which make (—f, -+
f,) |dS*| derivable from a tensor, and such that for any continuous volume,
and bounding surface S*,

f{f F.av + £J feIdS*I = - ./;;/‘ ’_'fmldS*l_Fm (11)
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However, this does not lead to a unique electrical ponderomotive force
and mechanical stress tensor.

VI. Non-unigueness of the Electrical Ponderomotive Force and Mechanical
Stress Tensor—We may readily see that infinitely many volume electrical
forces, F,, with related surface force f,|dS| may be found which will satisfy
(11) and which will make (—f,, + f,)|dS*| derivable from a tensor. For
this we may take any tensor whose components are functions of the field
vectors, E, D, and the scalar charge density, p, and material parameters,
such as density or dielectric constant, and which in empty space, where
E = D, and p = 0, and the material parameters reduce to the appropriate
values, becomes identical with Maxwell’s electrical stress tensor. Then
the divergence of this tensor gives a valid electrical volume force.

Maxwell’s stress tensor itself, for empty space, by equation (6) has
components,

1
14 = (B —E} —E)

1 .
1Y = —(2E,E,) (12)
8T
etc.

Now by (9) for any volume surrounded by an empty shell which follows
the bounding surface S*,

ff THdS; = — J;;/' —£,,;|dS*| —=F,, (13)

where TM refers to the empty space outside S*, and the usual summation
convention for repeated subscripts is implied.

We now consider any other tensor 77; which reduces to TM in empty
space. Then of course

J;f T3 dS; = fo 1} ds) = — J;f f,.:|dS*|—F, (14)

where T} refers to the values of 7}; outside S*. We now apply Gauss’s
theorem to the first integral of (14) but take into account the fact that
T; is discontinuous at S*. We therefore have

LS TG dS; = LS (TP = TE)dS; + S S T dS;

Il

s AT
S S @G = TDHdS;+ S S S SV
S v axj
- ./;.[ —'fmi!dS*|_F7n (]5)’

I

where T refers to values of T'; inside S*.
7 ]
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Since T; is a tensor, b%;—” is the x; component of a vector, which we
J
shall now call the volume electric force, F,. (T%) — T(,?) dS; is the x;
component of a vector, if dS* is fixed, and we call it the x; component of
f,|dS*|, the surface electrical force related to F,. Then according to
(15) we do have the necessary condition (11).

Furthermore, since V is an arbitrary volume, it follows that (—f, +
f,)|dS*| is derivable from a tensor which we call the mechanical stress
tensor, M ;.

The non-uniqueness of the electrical and mechanical stress tensors,
T,; and M, is evident from the method of their derivation. We may see
directly, however, that they are not unique in their validity as follows.
Let R;; be any tensor function of the electrical field variables, the strain
variables, and the electrical and mechanical parameters which we may
choose to characterize the matter being examined. Then we may take
as also valid electrical and mechanical stress tensors, T,{j = T, + Ry
and M,; = M;; — R, Since any experiment which can be performed
can only determine the net force on a total body, or the net force applied
to an external surface, and since these net forces are completely determin-
able from the sum of the two tensors, 17; -+ M,;, and since Ti} + M ,; =
T;; + M, no experiment can distinguish between the validities of Ti;,
ﬂ{i;', and Tz] MZ]

Throughout the literature of the subject, the electrical volume pondero-
motive force is assumed to have unique meaning, although a meaningful
operational definition is not given. One universal formula offered? is

1 1
F,.=Ep+o)=E <*~ div D — div P) = — EdivE, (16)
4 47

where P is the polarization vector
Since

fffz}lerdivEdV=§1;r/f (2EE-dS — E?dS) (17)
v - $

we see that we have here one of the possible but not uniquely valid formulae
as described in Section VI.
Another universal formula? is

,f//FedV=f// P-VEdV =
v v
g;rfsf 2ED-dS — E2dS (18)

-again giving a tensor which agrees with Maxwell’s in empty space.
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For the special case of a material which has a dielectric constant, &,
which is a function only of the density, 7, the formula

dk
F, = 1 <—E2 grad k + grad E%v) (19)
8w dr

is frequently given.* Again we have that (19) reduces to

dk
f/f F.dV = ff 2ED-dS — (E—D — Er ~—> ds
8w S dr

v

(20)
and again on the right of (20) we have a tensor which reduces to Maxwell’s
stress tensor in empty space where D = E, and 7 = 0.

Expressions such as (19)
are often derived* by assum-
ing the existence of an en-
ergy density function, u, and
equating the increase in the
energy of a system, to the work
done by applied force in a
change of strain. It is clear,
however, from the foregoing,
that only net forces can be so
determined, and that the des-
ignation of electrical parts and
mechanical parts of such net forces is without meaning.

VII. The Net Stress Tensor and Energy Density.—It is clear that all
the information which can be verified concerning the ponderomotive
forces on a medium is contained in a knowledge of the field vectors E and
D, and of the net force —f,|dS| at a cut, for all orientations of the cut,
and at all points in the medium.

From equation (10) modified to include the application of net externally
applied volume forces F, we have

1
ff - o (2E*E*.ds*—E*2dS*)+f,,,|dS*|=/// FdV.
™ "y

S#
(21)

It follows then that the integrand on the left of (21) defines a tensor which
we call the net stress tensor.

If the matter in question has an electromechanical energy density
function, u, then f,, and the net stress tensor may be determined therefrom,
but they also have meaning independently of the existence of such a
function.

FIGURE 3
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As an example, take the case where there is an energy density #, which
is a function of the electric field, E, or D, and the material density, r, only.

Referring to figure 3, consider a cut, and in the cut, place a thin slab of
material, subject to the same set of surface forces —f,,|dS| as the sides of
the cut. Then in this slab, the field vectors, E and D, are the same as in
the neighboring material.

Now give the slab a shear, slipping the one surface of the slab parallel
to the other. Since the volume of the slab, and therefore also its density,
and since also the field vectors are unchanged, then the energy of the slab
is unchanged. The surface forces f,, therefore, do no work, during this
shear, and therefore the force component parallel to the surface, f,;, is
zero.

£, = 0. (22)

Now let the slab be expanded, by motion of its sides in the normal
direction so that its volume per unit area is increased by AV. The increase
in energy within the slab per unit area will be,

V<a—”> AT AV 4 uAv
\or/ s, v, AV "

(o). )7
T/ Eg, Dy,

where the subscripts E;, D,, indicate that E; and D, are to be kept constant
during the differentiation of # with respect to 7.
The increase of energy per unit area in the empty space of the cut will be

AuV) = VAu + uAV =
(23)

I

1 9
~L @+ D av.
S

D, in the slab will be changed by the change in 7, and there will be
energy per unit area of the cut supplied through the electric field given by

1 1 oD
— ES-<VA.DS + D, — Es]>AV = — (_T[“"] + D, — E8>AV
4 4ar oT g, Dn
(24)
where of course, D; is related to E;, D,, and 7 by
0
E, = 47 — (u[D,, D,, 7]). (25)

0D,
Equating the increase of slab energy (23) minus the loss of energy in the
1
empty space, — (E? 4+ D2) AV to the sum of the energy supplied electrically

8
(24) and the work done mechanically, or —f,,, AV, we have



496 PHYSICS: J. SLEPIAN Proc. N, A, S.

1 oD, 1 1
(—f,,m - — TE[—:I + —ED, — — Ei)AV =
47(’ a’l' EHg, Dn 41!‘ 47{'

[(_{aﬂ] + u) - §1 (B + Di)] AV. (26)

This, then, gives us

ou 1 oD,
fmn =+ 7| - U — ATEs ~_ +
T/ Es, Dy 47!' 07 Eg, Dy,

1
o (0; — E{ + 2ED,). (27)

To get the net mechanical volume force, F, which must be introduced to
hold a given volume, V, within the medium in equilibrium, we then have
(21) which we rewrite as

ff/FdV=~f/iED-ds*+i (D? — E! —
v ¢ A 8w

Let us further specialize » to be of the form

1 1 1 1
u = —k(nNE>+ W(r) = —(kEi + —DZ) + W= _—E-D+ W.
8 8 k 8

(29)
Then
ou 1 1 dk aw 1 dk
o - E2,~~D2> e e O e
T<DT>E3. Dn 87r< ) Tar e dr 87r( : ) "dr +
dw
—  (30)
dr
and
oD, ) dk
= 7~ (FE,) = E,7 —. 31
T( or )Dn, s ! or (RE:) ! dr (31)
Substituting (31) and (30) into (27)
1 dk aw 1 ,
fon = — BEro Y% w4~ ED, — ED, — E + D).
8T dr dr 8T

(32)
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Substituting into (28)

-—ff/ FdV=f/i(2ED-dS*—E'DdS*)+
v © ¥ 8T

1 dk aw
—E!7r — — 77— 4 W}dS*. (33
(81r ! dr T dr + ) (33)
The integrand on the right of (33) is now a linear vector function of dS*,
and defines a tensor, the negative of the net stress tensor. If we apply
Gauss'’s theorem, we get

1 1 ak aw
—F = pE — — E?grad & + grad — E? r — 4 grad W"‘T“*)
8r 8w dr dr

(34)
1.
where p = yp div D.
™

Equation (34) gives the negative of the net volume force which is
impressed on the material to hold it in equilibrium. In various places,
the first term, the sum of the first two terms and the sum of the first three
terms are designated, respectively, as the electric volume force.

! In subsequent integrations over a closed surface enclosing matter, the direction of
dS will be that of the outer normal. This is the reason for the negative sign used here.

2 Richardson, The Electron Theory of Maitter, Cambridge University Press, p. 206,
1914.

3 Page and Adams, Principles of Electricity, D. Van Nostrand, New York, 15th Print-
ing, pp. 456-49.

4 Stratton’s Electromagnetic Theory, McGraw-Hill, 1941, p. 139. A number of early
references are given on pp. 145 and 150.

INFRA-RED BANDS IN THE SPECTRUM OF NH;
By DArRwiN L. Woop, ELy E. BELL AND HARALD H. NIELSEN
MENDENHALL LABORATORY OF PHysics, THE On1o STAaTE UNIVERSITY, COLUMBUS
Communicated by R. S. Mulliken, July 25, 1950 .

Measurements made in this laboratory attempting to establish whether
or not ammonia was a component of the earth’s atmosphere required the
remeasurement in the laboratory of the fundamental bands in the ammonia
spectrum. It was found, notably in the bands v, and »4, that the spectra
were appreciably better resolved than in earlier attempts and it has there-
fore seemed of interest to look at these again with some care. Measure-





