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Abstract. The current distribution is investigated for a two-phase materia! with chequer- 
board geometry and a low conductivity ratio @/U, (=s2). The current density at small 
distances r from the corners where the phases meet varies as r - ' - s .  in the limit cifsmalls. The 
current lines form circle arcs in the poorly conducting phase and straight lines in the well 
conducting phase. For "115, the Joule heat is concentrated to the phase boundaries. As a 
consequence, the effective conductivity of alternately packed cubes is ~ ( u ; u : ) ~ ' : .  

1. Introduction 

In a study of composite materials or percolation phenomena, one is often forced, by the 
complexity of the problem, to investigate simple geometries of the two constituent 
phases. In one such simple system, one considers the conductivity transverse to the axis 
of prisms with square cross section. alternately arranged as in a regular chequer-board 
(e.g. Milton eta1 1981, Fogelholm and Grimvalll983). It is well known (e.g. Bruggeman 
1935, Dykhne 1970) that the effective conductivity is a, = (q @)l/' irrespective of the 
ratio of the conductivities ul and 9. The current distribution, however, depends strongly 
on the ratio @/ul (=s*). Consider a geometry such as in figure 1. As s becomes small, it 
is intuitively clear, and also supported by numerical calculations (Fogelholm and Grim- 
vall 1983) that the current density becomes very high at the edges of the cylinders. It is 
the purpose of this paper to investigate this singular behaviour of the current density 
when s tends to 0. 

We shall deal separately with the current distributions in the poorly and well con- 
ducting phases. This is done in §§ 2 and 3 respectively. In § 4, the analytic results are 
used to draw conclusions about related systems. 

2. The current distribution in the poorly conducting phase (u2) 

Letj(r ,  q) be the current density in phase 2, with polar coordinates as in figure 2. The 
total current through a specimen of width W ,  height H (along the external field) and 
prism length D ,  with the phases arranged as in figure 1, is 

I = 2( W / L )  1''' j L ( r ,  0 )D  dr. 
0 
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Figure 2. In the poorly conducting phase, B, the 
current lines for small conductivity ratio a/q and 
near the corner of the phase form circle arcs. In 
the well conducting phase, U ] ,  the current lines in 
the same limit form straight lines. 
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Figure 1. A piece of a material which effectively 
forms a two-dimensional two-phase system. The 
external field is applied along the z axis. 

Dykhne (1970) has shown that the Joule heat is equal in the two phases, for any s 
(see also Fogelholm and Grimvalll983). Equating the macroscopic and the microscopic 
expressions for the Joule heat leads to 

In spite of a considerable effort, we have not been able to derive an explicit analytic 
result for j ,  valid in the entire specimen and for any s.  However, equations (1) and (2) 
suffice to determine the singular behaviour of j ( r ,  y?) for small r and s.  We make the 
ansatz forj, in polar coordinates, 

j ( r ,  rp) = r - ( l -a)[A(r ,  q ) S ,  + B(r, cp)SV], ( 3 )  

where A(r,  q) and B(r,  cp) are bounded in the integration domain of equation (2), and 
a i s  to be determined. 

In the limit of small s, when the Joule heat is generated mainly close to the edges 
(small r ) ,  it is agood approximation to replace the integration limit L/(2 cos cp) in relation 
(2) by L/2. Then, equations (1)-(3) yield 

The right-hand side of relation (4) is of the order 1, and hence (Y = @, where p - 1. We 
now require that d iv j  = 0 and rot E = 4’ r o t j  = 0, withjfrom equation (3). Taking out 
the most singular contribution when r + 0, we get 

WI + aB/aq = 0, CYB - aA/arp = 0, ( 5 )  
or a2A/ag? + $A = 0 and a2B/aq? + $B = 0. Therefore, when s is small, A(r,  y?) and 
B(r,  cp) vary slowly with y?. At a phase boundary between two media with very different 
conductivities, the current in the poorly conducting phase is almost perpendicular to the 
boundary. Hence, A B in equation ( 3 ) ;  in fact, IA/BI = s2 (see below). 
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If we neglect A in relation (4) and approximate B(r ,  cp) by its limit joBo(s) when 
r+  0, we may use relation ( l ) ,  with I = joWD ( j o  is the average current density) to get 

for small r and s. Then the current lines are circle segments. 

3. The well conducting phase (q) 

To get the current distribution in the well conducting phase it is convenient to use the 
following result, implicit in Dykhne (1970); see also Fogelholm and Grimvall (1983). 
The power density at a particular point remains unaltered if phases 1 and 2 are inter- 
changed and the external applied field is rotated 90". Since the power density in the 
poorly conducting phase is approximately independent of the angle q, for small r ,  this 
should be the case also in the well conducting phase. Then, the singular part of j is  given 
by straight lines as in figure 2. The angle ?)(U) varies with the distance U from the corner 
as 

an - y ( u )  = (u/dL)'. (7) 
The continuity equation is satisfied if the current density, close to the phase boundary 
and for small U ,  is 

Ijl = (+in Iv) Id4 0) I (8) 
with j ( u ,  0) from equation (6). The condition for the tangential components of the 
electric field is satisfied by relations (3), (7) and (8) if IA/B 1 = sz. 

4. Discussion and conclusions 

4.1. The concentration of the Joule heat to corners 

Consider the expression (3) f o r j  in phase 2. Let p be the ratio between the Joule heats 
generated within the areas with r S R and r s L/2 respectively. One immediately finds 
that 

R/(hL) = (p)"2". (9) 
As an example, l e tp  = 0.5 and s = 0.1. Then R/(hL) = 1/32, i.e. half of the total Joule 
heat in the specimen is generated within approximately 0.1% of its volume. 

4.2. Almost touching corners 

Let the side of the square for one of the phases in figure 1 shrink so that a gap, filled with 
the other phase, is created at the edges where the phases meet. The effective conductivity 
U, changes radically, for smalls, even with a very narrow gap. Numerical calculations by 
Milton et a1 (1981), for the analogous problem of the effective dielectric constant, show 
that with q = 100 and = 1 (i.e. s = 0.l), a gap of width (2g2/100)  (L/2)  yields U, = 
5.15, to be compared with U, = 10 when the corners touch. This result is consistent with 
the qualitative conclusion in 8 4.1 that a substantial fraction of the Joule heat, for 
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touching corners ands = 0.1, is generated within adistance -O.O3(L/2) from the corner. 
1L, the 

current distribution must be essentially unaltered. Points of equal Joule heat per area 
then form approximate circles. This is in agreement with numerical results by Fogelholm 
and Grimvall(l983). 

At distances r = R' much larger than the width of the gap but still with R' 

4.3.  The  conductivity of regularly arranged cubes 

Consider cubes with conductivities ul and 9, regularly arranged to form the three- 
dimensional generalisation of the chequer-board. The external field E is parallel to a 
cube edge. From the results above it follows that the Joule heat is predominantly 
generated in the immediate vicinity of the cube edges (perpendicular to E ) ,  when s is 
small. Corner effects are negligible, since a non-uniform current density along the cube 
edges (for a given total current) would increase the entropy production and therefore 
not correspond to the true current density. Let Zbe the total current through the sample, 
and U, be the effective (macroscopic) conductivity. Divide I equally between the edges 
and take the Joule heat at each edge as given in 0 2. The total Joule heat is ~Z2/ue.  It 
follows that 

U, = (U1 u p f ( s )  (11) 

where f (s) is a smoothly varying function of @/q with f(0) = f( m )  = 2 and f (1) = 1. 
Since U, has cubic symmetry, it is isotropic. 
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