T<T, takes the system through the coexistence curve and M
changes discontinuously to M >0. The dashed curve below
the T axis is the coexistence curve for the point C having
M>0.

V. SUMMARY AND DISCUSSION

We have demonstrated that a mechanical model can simu-
late both first- and second-order phase transitions for certain
values of the parameters. This was shown by direct analysis
of the equations of motion and by examination of the minima
of the effective potential energy. It was then demonstrated
that the latter method is similar to the Landau theory of
continuous phase transitions. The energy-position graphs in
Figs. 3—6 are of the same general shape as those in Ref. 15
for a ferromagnet and Ref. 16 for a general free energy.

The analogy between the phase diagrams of the mechani-
cal model and the ferromagnet is-also very close if the hys-
teresis properties of the ferromagnet are included. Equiva-
lently, if the mass m could tunnel from the higher energy
local minimum to the lower in the metastable state, the me-
chanical system would simulate an ideal ferromagnet. The
quantum mechanical version of this model (@=0) is consid-
ered in Ref. 17.

Finally, it would be interesting to build a working model
of this system. Although finding a method for making quan-
titative measurements may require some imagination, the
qualitative aspects of the phase transitions would be easy to
observe.
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Magnetic dipole oscillations and radiation damping
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We consider the problem of radiation damping for a magnetic dipole oscillating in a magnetic field.
An equation for the radiation reaction torque is derived, and the damping of the oscillations is
described. Also discussed are runaway solutions for a rotating magnetic dipole moving under the
influence of the reaction torque, with no external torque. © 1997 American Association of Physics Teachers.

L. INTRODUCTION

When a compass needle is put in the earth’s magnetic
field, it oscillates about its equilibrium position for a few
seconds before coming to rest. The energy of oscillation has
been dissipated by friction. Even if there were no friction,
however, the oscillations would still be damped, although
very slowly, because a compass needle is an oscillating mag-
netic dipole and radiates electromagnetic energy.
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Figure 1 shows a magnetic dipole, with magnetic moment
m, which is free to rotate in the x,y plane about a pivot fixed
at the origin. The magnetic moment m(¢) is

m(t)=my(cos d(1)i+sin ¢(1)]). 1)

The equation of motion is that the torque equals the rate of
change of angular momentum, N=dL/dt. The torque is
N= mXB=—mB sin ¢ k for the magnetic field B=Bij the
angular momentum is L=/¢k, where I is the moment of
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Fig. 1. The magnetic dipole m is free to rotate in the x,y plane. The mag-
netic field B=Bi is constant. The displacement angle ¢ is the angle between
m and B.

inertia of the magnetic dipole about the pivot axis. The equa-
tion of motion is therefore

J5= - @ sin ¢. 2)

This equation has the same form as the equation of motion
for a pendulum, so ¢ oscillates about 0.

II. RADIATION AND RADIATION REACTION

Any magnetic dipole that varies with time radiates elec-
tromagnetic waves. One interesting case, which has practical
applications for antennas and is often considered in text-
books, is a circular loop of wire in the x,y plane which
carries an harmonic current i(#) =i, cos wt in the azimuthal
direction. For that case, the magnetic moment is always par-
allel to the z axis, but its magnitude varies with time. In
contrast, for our problem the magnitude of the dipole mo-
ment is constant in time, but its x- and y components vary.

A. Fields of an oscillating magnetic dipole

The electric and magnetic fields are E=—JA/dt and
B=V XA, where A(r,t) is the retarded vector potential.l’2
The equations for the fields in the radiation zone are™

Mo

E(r,0)= 71—~ rXxmm(t,) 3)
and
Mo . An
B(LI):_m[m(tr)_rr'm(tr)]' (4)

In Egs. (3) and (4) t,=¢—r/c is the retarded time.

Poynting’s vector S, the energy radiated per unit area per
unit time, is given by S=ExB/u,. For Egs. (3) and (4), we
obtain

S(1r,0)= 1oy [0 (6) — (i) F2)E. )

B. Radiated power and the radiation reaction

In order to find the total instantaneous radiated power,
P(¢), for this problem, we integrate S(r,z) -T over the surface
of a sphere, centered at the origin with the surface in the
radiation zone. Integration of the first term in Eq. (5) is
straightforward because it is proportional to m’(t,), a quan-
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tity independent of direction. Integration of the second term,
however, involves (m(t,)-t)> which depends on polar and
azimuthal angles. The final result is

P(t)= § S(r,t)-rdA = 6'%5 m’(¢,)= = m*(t,).

(6)

For comparison, the time-averaged power radiated by the
current-loop dipole described in the first paragraph of Sec. II,
for which my,=(m cos wt)k, may be obtained from Eq.
(6): (Ploop)=m0w4/127reoc5 (Ref. 6).

Because the electromagnetic radiation carries off energy,
the kinetic energy of the dipole decreases as the dipole radi-
ates. Therefore, in the dynamical equation N=dL/dt, we
must understand N to include a radiation reaction torque, in
addition to the torque exerted by the external magnetic field.
Work done by the radiation reaction torque reduces the en-
ergy of the dipole, as an equal amount of energy appears in
the electromagnetic radiation. We will derive an equation for
N.,.4» the effective radiation reaction torque on m, by making
some approximations that are valid because the rate of en-
ergy radiation is very small.

We write the equation of motion of the dipole as

6 eyC

dL
Next + Nrad: E ’ (7)

where N.,,=mXB is the external torque. Because N,; and L
are in the z direction, so also is N,u=Nqk. We obtain N 4,
in the customary way,? by requiring that the work done by
N,.q on m during a time interval (¢,,¢,) is equal but opposite
to the energy radiated during that time interval. That is, since
the rate of work is N ¢, we require

ftszdé(t’)th ! ftziﬁz(t’)dt'. (8

6776065 ‘
[There is a subtle point here: The time ¢’ in Eq. (8) is not ¢,
previously used in Eq. (6) to denote the time when the radia-
tion passes a sphere of radius 7, but rather £, , the time when
the radiation is emitted. In the equations that follow, we drop
theZ: prime on ¢'.] Equation (8) may be written, by recasting
m-, as

7 . -1 J"zld(ﬁl-fﬁ)
f,l Nrapdt 6TeyC’ ,1 dt
How should we choose the time interval (¢,,)? If we let
it be infinitesimal, then Eq. (9) would mean that the instan-
taneous rate of work done by N_,q4 is equal but opposite to the
power radiated. Instead, we choose (y,¢;) to be one cycle,
or a few cycles, of the dipole oscillation. This choice is use-
ful because the motion may be approximated as periodic
over a few cycles, i.e., the slight decay may be neglected,
because the power radiated is very small. In this approxima-
tion the first term in square brackets in Eq. (9), which is an
exact derivative, integrates to O because m(t) is periodic.
Then, equating the integrands of the other terms in Eq. (9)
gives

:h-ﬁi}dt. 9)

. 1 -
Naah= Gregcs ™ (10)

Finally, using Eq. (1) to express m-m in terms of ¢(¢), and
cancelling factors of ¢, we find
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moo.

Nrad=m(¢_¢ ) (11)

Equation (11) is the radiation reaction torque for a special
case of the motion of a magnetic dipole, in which the dipole
moment is always in the x,y plane, as in Fig. 1 and Eq. (1).
A general formula for the radiation reaction torque, in which
the dipole moment m moves with arbitrary orientation in
three dimensions is, N,,y=mXm/6me,c’.

It is interesting to compare the radiation reaction torque
N4 in Eq. (11) and the radiation reaction force on a moving
charge g, derived by Abraham and Lorentz, which is
F,,a=q*V/6meyc’. Both N, and F,, depend on the third

derivative of the dynamical coordinate, ¢ and X, respec-
tively. But N4 also depends on ¢, through the nonlinear
term ¢°>. Because of the nonlinear term, the reaction torque
is nonzero for constant angular velocity. We may understand
this physically: A uniformly, rotating dipole radiates, so
there must be a reaction torque if ¢ is constant. In contrast,
a uniformly moving charge does not radiate, so the reaction
force on it is zero for constant velocity.

Another interesting difference between these two related
problems of radiation reaction is that in our dipole case we
are considering radiation reaction in the rest frame of the
radiator. In comparison, the radiation reaction for an accel-
erated charge is inevitably associated with a moving frame.

III. MOTION WITH RADIATION DAMPING

We now modify Eq. (2) for the motion of the magnetic
dipole of Fig. 1, by including the radiation reaction torque.
The result, which is just Eq. (7) in terms of ¢(?), is the
nonlinear, third-order differential equation

2

[=—moB sin ¢+ —2 < (G- &%) 12)
0 6mepc '

Equation (12) may be called the Abraham—Lorentz equation
of motion for this problem.

A complete solution of Eq. (12) requires finding ¢(¢) for
arbitrary initial angular position ¢{0), velocity ¢(0), and ac-
celeration ¢(0), because it is a third-order equation. That
includes motions for which the initial kinetic energy of the
oscillator is large enough that it spins around through many
revolutions until it loses enough energy, by radiation, to
settle down to weakly damped oscillatory motion. The com-
plete solution of Eq. (12) is unknown. In this section we
discuss approximations to its oscillatory solutions, using the
fact that the radiation damping term is small.

A. Radiation reaction is a small, damping effect

In order to examine the effect of the radiation reaction
torque on the motion, we first show that the effect is weak,
by making numerical estimates for three model magnetic di-
pole systems. To start, we rewrite Eq. (12) as

8\, o (3-8
EIE =

]
in which wy=(mB/I )1/ 2 is the frequency of small-amplitude
oscillations from Eq. (2). The three terms in parentheses are
dimensionless, and of order unity for oscillatory motion.
Therefore, the masgnitude of the dimensionless coefficient
A=m3wy/(6meyc’T) is a measure of the effect of radiation
reaction.

(13)
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1. Numerical examples

(1) Consider first a magnetized iron needle in the shape of
a cylindrical bar, 1 mm in diameter and 1 cm long, oscillat-
ing at room temperature in a magnetic field. If the bar is at
the saturation magnetization of Fe, about 1.7X10% A/m, then
my=13%x10"2 Am? and I~5%1071° kgm? In a field
B=0.1 T we have w, (Fe needle) ~2X 10° rad/s, and
A=1X10"%, (In the Earth’s magnetic field of 5x107° T,
this magnetic needle would oscillate at about 6 Hz.)

(2) Next consider a superconducting current loop of radius
1 cm, made up of, say, 100 turns of 10 mil, Nb;Sn wire,
oscillating at 4 K in a magnetic field. If the current in the
wire is about 500 A, corresponding to the critical current
density of 10 A/cm?, and the loop is free to oscillate about
an axis through the center and in its plane, then I~1.3x107’
kgm? In a field B=0.1 T we have w, (superconducting
loop)~3X10® rad/s, and A=2X10"2. We have assumed
here that the current is constant, although current changes
would be induced in the superconducting loop as it oscillates
in the external magnetic field. These changes are negligibly
small if, as is the case for this loop, the external field is much
smaller than the field produced in the loop by the original
current.

(3) As the final system consider a neutronlike oscillator.
An actual neutron does not oscillate, but rather precesses, in
a magnetic field. We consider instead a ‘classical neutron,”’
modeled as a solid sphere having the mass, radius, and mag-
netic moment of a neutron, my=—0.966X 10°% A m2, oscil-
lating about an axis through its center. For this sphere
I=~5x10"%% kg m? so that in a field B=0.1 T we have w,
(**classical neutron’’) ~1X10" rad/s and A=6x10"".

For all three of these systems the coefficient A is much
smaller than unity, so we conclude that radiation reaction
generally has a small effect on the motion.

2. Damped oscillations

Next we analyze the solution of Eq. (13) including radia-
tion reaction. For large-amplitude oscillations the nonlinear-
ity of the equation is important, and analysis is difficult:
Even the undamped oscillation involves Jacobian elliptic
functions. We postpone treatment of large-amplitude oscilla-
tions until Sec. IV. However, for small oscillations the
problem may be linearized. In that case the undamped
oscillations satisfy ¢=—wic. Because the damping is weak,
we may approximate ¢ by —w2¢ in the radiation reaction
torque, which becomes N,y=-—(m2/6mesc’)(w3+ d*)é,
where we have (somewhat inconsistently) kept the nonlinear
term in N,4. This result shows that for small oscillations
N,,q produces damping: Both the ¢ and — ¢° terms act in the
direction opposite to the angular velocity. The amplitude of
oscillation decreases exponentially in the linear approxima-
tion, with the time constant Tdecay=121reoc51/m§w0.

B. Computer solution of the Abraham—Lorentz equation

One of the difficulties in finding computer solutions to Eq.
(13) is that the radiation reaction torque is so small. If we
introduce the nondimensional time variable é=wyt, we may
write Eq. (13) as

¢"=—sin p+A(¢" "), (14)

in which primes denote differentiation with respect to £ and
A is the dimensionless damping coefficient defined after Eq.
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Fig. 2. A computer-generated solution of Eqgs. (12) and (14), the Abraham—
Lorentz equation of motion for an oscillating magnetic dipole, with damping
coefficient A equal to 0.02. The abscissa is wyt where w, is the angular
frequency for small oscillations, and the ordinate is the displacement angle
&(t). The initial conditions for this figure are ¢(0)=1/2 and ¢H0)=0.

(13). For physical values of A, which are, as we have seen,
less than 107 '2 it is difficult to construct and display com-
puter solutions to this equation. However, for larger values
of A one can do this readily. Figure 2 is such a plot of the
solution &(t) vs wyt with A=0.02. The initial amplitude in
Fig. 2 is ¢(0)=7/2, not a small amplitude. This result shows
by direct numerical calculation that N4 produces damping.

C. Self-acceleration of a magnetic dipole with no
external torque

In our derivation of the radiation reaction torque N,,4, we
assumed that the dipole oscillation is approximately periodic.
This approximation is valid for a dipole in a magnetic field,
because the undamped motion is periodic and the radiation
damping is small. However, there must also be radiation re-
action for nonperiodic motion, and presumably Eq. (11) also
describes the reaction torque in that case.” Therefore, to
study further the meaning of N4, we now suppose that Eq.
(11) is generally valid, and consider the case of zero external
field. Neglecting radiation reaction the equation of motion
would just be ¢=0, with solution ¢(t)=$(0)+ ¢(0)t, i.e.,
constant angular velocity. But, if radiation reaction is in-
cluded, the equation of motion has unphysical solutions that
describe runaway self-acceleration.

For zero external field, Eq. (12) for the motion of the
dipole becomes

1= (G- 1s)

6meyc '
We will later analyze Eq. (15) completely, but as a first step
we consider the linearized equation, obtained by dropping
the _¢3 term. The linearized equation is a good approximation
if ¢ is small, but we are more interested in the linearized
equation as a first step toward understanding Eq. (15) rather
than as an approximation to Eq. (15).
The linearized equation may be written as

1
a(n=— a), 16)

where a(t)=¢(¢) is the angular acceleration, and
r=m3/(6meyc]) is a parameter of the magnetic dipole with
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units of time. The general solution of Eq. (16) is
a(t)=a(0)e"". (17)

This is a runaway solution if a(0)#0, because then the ac-
celeration increases without bound with ¢ on a time scale of
the order of 7, a time too small for physical measurements.
For our three model dipoles: 7(Fe needle)=9X 1072 S, T
(superconducting loop)=5X10"** s, and 7 (*“‘classical
neutron”’)=5x10"2 5. The angle ¢(t) corresponding to Eq.
(17) is

d(t)=cy+cyt+ P a(0)e'", (18)

where ¢ and c; are constants. Because there is no external
field, and hence no external torque, the radiation reaction
itself produces the acceleration, which we call self-
acceleration. The unphysical runaway solutions of the lin-
earized equation are mathematically equivalent to the run-
away solutions in the classical theory of radiation reaction on
an accelerating charge.!”

The linearized version of Eq. (15), as well as Eq. (15)
itself, is a third-order differential equation. To determine the
motion from initial conditions we must specify three initial
values, ¢(0), #(0), and ¢(0). In order to exclude the runaway
solutions (of the linearized equation) we must require that
the initial acceleration a(0) is zero. For that choice,
@(f)=cqtcqt is just a linear function of time, i.e., the di-
pole has constant angular velocity, However, this is not a
solution of the complete nonlinear equation. Physically we
know that a rotating dipole will be damped because of its
radiation; the nonlinear term ¢, in the expression for N4,
ensures that constant angular velocity is not a solution of the
equation of motion.

We now return to the complete nonlinear equation of mo-
tion, Eq. (15), and ask whether it has runaway solutions. We
already know that the linear approximation to Eq. (15) does
have runaway solutions, but the linear approximation breaks
down because ¢(¢) increases without bound for a runaway
solution, making the nonlinear term ¢ large. Thus one in-
teresting question is whether the nonlinear term somehow
prevents the solution from running away. The answer is that
the nonlinear term does not kill the runaway solution, but
rather increases the runaway self-acceleration.

Equation (15) may be written as the two coupled equations

1

o=a and d=;a+w3, (19)
in which w is the angular velocity. From Eqs. (19) one can
easily see how the nonlinear term (xw) increases the run-
away self-acceleration: If & and w are positive then the right-
hand sides in Egs. (19) are both positive, so « and w are
increasing with ¢; in this case the o’ term makes a positive
contribution to the change of «, and so increases the self-
acceleration. This analysis shows that there exist runaway
solutions of Eq. (15), but a more thorough analysis is instruc-
tive.

1. Phase-plane trajectories

To describe the solutions of Egs. (19) we plot the phase-
plane trajectories. We choose the phase-plane coordinates to
be x= 1w and y = a, which are dimensionless, and seek the
trajectories which are solutions to Egs. (19). The slope of
any trajectory is
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Fig. 3. Phase-plane trajectories for a dipole subject to the radiation reaction
torque by Eq. (15). These trajectories were generated from Eq. (20). The
ordinate is y=17?¢, and the abscissa is x=r¢. Solid curves are typical
runaway trajectories with arrowheads showing the direction of motion. The
two trajectories shown as dashed curves, which converge to the fixed point
at the origin, are the only trajectories that remain finite.

——=—0=14+—. (20
y

The phase-plane portrait is shown in Fig. 3, which was gen-
erated by computer from Eq. (20). Every point in the plane
of Fig. 3 represents a dipole with the corresponding angular
velocity w=x/7 and angular acceleration @=y/7. One and
only one trajectory curve goes through each point in the
plane, except for the fixed point at the origin. Typical trajec-
tories are shown in Fig. 3, with arrowheads indicating the
direction of motion. The qualitative features of Fig. 3 can be
understood by considering the slope in various regions. Note,
for example, that the slope at any point on the y axis (w=0)
is 1, and the slope at any point on the x axis (a=0) is infin-
ity. The slope anywhere on the curve y=—x3, which is
shown as a dotted curve and is not itself a trajectory, is zero.

In the phase-plane portrait there is just one fixed point,
namely, (w,a)=(0,0), and it corresponds to the dipole at rest.
This solution is an unstable equilibrium, in that almost all
perturbations away from (0,0) are runaway solutions. There
are, however, two finite trajectories, and only two, shown as
dashed curves, that converge to the fixed point. They corre-
spond to damping of the rotation, as the dipole comes to rest
at (0,0), so they are physically acceptable solutions. There-
fore for any initial angular velocity w(0) there does exist a
unique angular acceleration a(0) for which the subsequent
trajectory remains finite. For this to happen, the point
((0),a(0)) lies on one of the two dashed curves, so that the
trajectory does not run away but rather approaches the fixed
point as t—. [Asymptotically, as r—, the finite trajecto-
ries have w(t)~=*(27t) V2] The finite trajectories separate
trajectories that run away to a=+ and a=—%, Any other
initial values of w and a, except those which lie on the finite
trajectories, result in a runaway solution.
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Fig. 4. A computer-generated solution to Eq. (19), showing a typical run-
away solution in terms of the dimensionless angular acceleration a(¢) and
the dimensionless time ¢/7. The initial values for this solution are Za(0)=1
and @(0)=0. ‘

2. An analog mechanical problem

The phase-plane portrait in Fig. 3 is mathematically iden-
tical to the following, fictional, mechanics problem. Consider
a particle of unit mass, moving along the x axis, with coor-
dinate x and velocity x=y, under the influence of a conser-
vative force F . with potential energy V(x)= —x*/4, which is
unbounded below, plus an additional force F,= +y. One can
picture F, as a ‘‘negative viscous force’” because it is pro-
portional to the velocity but acts in the direction of motion.
For this analog problem, the slope of the phase-plane curve
at (x,y) is dy/dx=y/x=(+y+x>)/y, which is identical to
Eq. (20). Both forces F . and F,, drive trajectories to infinity
in the phase plane.

Figure 4 shows a computer solution of Egs. (19) plotting
7a(t) vs t/7 for the initial values 7a(0)=1 and w(0)=0,
which yields a runaway solution. The solution runs away
even faster than exponentially, reaching =« in a finite
time!8

In the case of an accelerating charge it is well known that
excluding the runaway solutions implies the phenomenon of
acausal preacceleration.’? The same is true for a radiating
dipole with zero external field. In order to exclude a runaway
solution for 1>0 we must specify just the right initial accel-
eration a(0), depending on w(0), to lie on the finite trajectory
which returns to the fixed point. For example, consider a
dipole disturbed by an external impulsive torque N, =K 8(¢)

at time ¢=0.° Because the equation of motion includes ¢, the
impulse produces a discontinuity in o

(0+)—a(0—)=— (21)

T’
To avoid a runaway solution for ¢>>0, the phase-plane point
(w(0),a(0+)) must lie on the finite trajectory. Thus the di-
pole must have undergone a preacceleration during <0,
such that just before the impulse its phase-plane point is
(w(0),a(0—)). Thus the classical theory of radiation reaction
for a magnetic dipole has the same unphysical dilemma—
either a runaway solution or acausal preacceleration—as the
theory for a radiating charge.
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IV. DECAY OF OSCILLATIONS

We have seen that oscillations of a magnetic dipole will be
slowly damped as it radiates energy. In this section, we de-
rive and solve an equation which describes the time depen-
dence of the damping. Runaway solutions are not relevant to
this problem, because there is a restoring torque due to B.
This calculation is interesting because we keep the full non-
linearity of the problem. We carry out the calculation using
perturbation theory.

The idea we use is that the energy of the oscillating dipole
may be expressed in terms of ¢,,, the amplitude of the os-
cillation. If we neglect damping, then the energy of the os-
cillator is

%]¢Z(t)—m0B cos ¢(t)=—myB cos ¢,,, (22)

where ¢,, is constant. However, the real oscillator loses en-
ergy as it radiates power at the rate P(t) given in Eq. (6).
Therefore, the amplitude, which we will call ¢,,(t) to em-
phasize its time dependence, slowly decreases. We will ex-
press the total energy of the oscillator in terms of ¢,,(¢) and
equate the rate of loss of energy to P(¢). The calculation
requires comparatively unfamiliar operations on Jacobian el-
liptic functions.!®!! We proceed in steps, first finding a suit-
able expression for P(t), then for E(t), and, finally, setting
dE(t)/dt= —P(t), which is the equation we seek to solve.

Equation (6) gives the power P(¢) in terms of m?* Using
Eq. (1) we rewrite P(¢) in terms of ¢

mg

P(1)= [$2(1)+ d*(1)], (23)

6meoC’

in which ¢ is the time when the radiation is emitted.
We now introduce the notation

Pm(1)
7
The solution to Eq. (2), for oscillations of arbitrary ampli-

tude, with the initial conditions ¢;=0 and ¢$;>0, may be
written as

é(1) P

. . . Pm
sin ——=sin — sn( wol,sin ——

a(t)=sin (24)

2 2 2

The function sn{wyt,a) is a Jacobian elliptic function, which
is periodic with period T=4K(a)/w,, where K(a) is the
complete elliptic integral. Some properties of these functions
are given in the Appendix.

Because the rate of radiation is very small, we may ap-
proximate a(¢) as a constant over the period of one or a few
cycles, at least for the purpose of calculating P(t). Differen-
tiating Eq. (25) [approximating a(¢) as a constant], and using
the Appendix, we obtain $*(t)=4a’w? cn*(wt,a), and
$*(1)=4a’wg sn*(wyt,a)dn*(wyt,a). Thus the power is

2m§a2w4

P(t)= Wg [snz(wot,a)dnz(wot,a)

) =a sn(wpt,a). (25)

+4a? cn*(wgt,a)]. (26)

All of the Jacobian elliptic functions in Eq. (26) are periodic
with period T, so P(¢) is also periodic. We may replace P(z)
by its average over a quarter period, K(a)/wy, because a
significant decrease of energy only occurs after many cycles
and so the rate of decrease may be approximated by the
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average over a cycle. The average of the quantity in square
brackets in Eq. (26) is

[ ]aVZIT(lzl—)' fOK(a){Snz(u,a)dnz(u,a)

+4a? cn*(u,a)}du=T1(a?), 27

where the variable of integration is u = wgyt. By the further
change of integration variables from u to x where
x=sn(u,a), the function (a? may be re-expressed as

[x2(1—a%x?)

[1(a%) = 1 fl dx
K(a) Jo J1-xZJ1—a%?
+4a%(1-x>)7]. (28)

Note that T1(a?) is a dimensionless function independent of
physical parameters. The final form for the average power
radiated by an oscillating magnetic dipole is

2 4
Mmowq
av:37TEOCS aZH(aZ)' (29)

In obtaining Eq. (29) we treated a(¢) as a constant.
We are now ready to describe the decay of a(tz). The
energy of the oscillation at time ¢ is, by Eq. (22),

E(t)=—myB cos ¢, (t)=moB[2a*(t)—1]. (30)

Therefore, the relation dE(t)/dt= —va(t) may be written
as an integrodifferential equation for a“(¢),

daz(t)_ mowg
dt 3’7T60CSBa

If I1(a?) is constant, then Eq. (31) implies that a®, which is
a measure of the amplitude of the motion and aiso of the
energy, decays exponentially with time. For small oscilla-
tions, I1(a?) is nearly constant. For large oscillations, how-
ever, because of the nonlinearity of the problem, Il(a %) does
depend on aZ. Finally, we may rewrite the equation in terms
of a dimensionless time variable ® as

da? 207/ 42

70°- ¢ M(a*), (32)
where @ =(mywg/3me,c B)t. Figure 5 shows a computer-
generated solution of Eq. (32).

For small amplitudes (a<€1) we have K(a)—m/2 and
I(a®)—1/2. In that limit a(t)xexp(—©/4), i.e., the oscilla-
tions decay exponentially with time constant 7y, =4t/
=12me,c°B/mywg. We can see how slow this decay is by
evaluating it for our three modeled dipoles. The results for
B=01 T are Ty, (Fe _needle)=9x10% s,
Taecay(Superconducting loop) =4 X 10%s, and Taecay(' ‘Classical
neutron’”)=2X10"> s. The value of Tdecay fOT OUr ““classical
neutron’’ model is surprisingly short, but its physical signifi-
cance is limited because the behavior of neutrons in a mag-
netic field must be treated by quantum mechanics.

HnTI(a*(1)). (1)

V. CONCLUSIONS

1t is interesting to note the range of the two times that are
built into the classical electrodynamics of oscillating mag-
netic dipoles, namely, the self-acceleration time 7 of Sec.
I C, which is very short, and the decay time 74, of Sec.
TV, which is very long. The product of these times is some-
thing simple, Viz., T7geeay =2/, Where wy=(moB/I)"? is the
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Fig. 5. A computer-generated solution of Eq. (32), the integrodifferential
equation for decay of oscillations of a magnetic dipole in a magnetic field.
The ordinate is a?(t) =sin*(d,(¢)/2), where ¢,(¢) is the amplitude of os-
cillations at time ¢, and the abscissa is the dimensionless variable @, pro-
portional to time, defined below Eq. (32). We note that when a*(#) is small
it decays exponentially in time, giving the straight-line portion of the curve
at the right. The initial condition for this figure is a%(0)=0.9, which corre-
sponds to ¢,,(0)=143°.

0.001
0

angular frequency for small oscillations, which appeared in
Eq. (2) at the very beginning of this problem.

APPENDIX

The Jacobian elliptic function sn(u,a) is defined implic-
itly by

sn(u,a) dx
0 \/1__x2\/1_a2x2'
The function sn(u,a) varies between +1 and —1, and is

periodic in # with period 4K (a), where K(a) is the complete
elliptic integral

u=

(A1)

(A2)

1 dx
K(a)=J =
0 yY1-x%y1 —a%c?
It is conventional to define also the functions cn(u,a) and
dn(u,a) by

cn®(u,a)=1-sn’(u,a), and dn*(u,a)=1-—a’sn’*(u,a).

(A3)
We used the derivative identities
d sn dcn
= Cn dn, and Zp = sn dn. (A4)
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PARITY CONSERVATION

One of the symmetry principles, the symmetry between the left and the right, is as old as
human civilization. The question whether Nature exhibits such symmetry was debated at length by
philosophers of the past. Of course, in daily life, left and right are quite distinct from each other.
Our hearts, for example, are on our left sides. The language that people use both in the orient and
the occident, carries even a connotation that right is good and left is evil. However, the laws of
physics have always shown complete symmetry between the left and the right, the asymmetry in
daily life being attributed to the accidental asymmetry of the environment, or initial conditions in
organic life. To illustrate the point, we mention that if there existed a mirror-image man with his
heart on his right side, his internal organs reversed compared to ours, and in fact his body
molecules, for example sugar molecules, the mirror image of ours, and if he ate the mirror image
of the food that we eat, then according to the laws of physics, he should function as well as we do.

Chen Ning Yang, ‘“The law of parity conservation and other symmetry laws of physics,”’ (Nobel Lecture, December 11,
1957, reprinted in Nobel Lectures, Physics, Vol. 3, 1942—-1962, Elsevier Amsterdam, 1964).
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