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It is shown that, for a classical point charge, the “bound” electromagnetic four-momentum contains,
besides the generally accepted “Coulomb mass” Xfour-velocity term, the extra term —%e%e#. This is ac-
complished by exploiting some interesting properties of the usual separation of the retarded field of a moving
charge into a velocity and an acceleration part (both retarded). In this way a new derivation of the Lorentz-
Dirac equation of motion emerges. In particular, in the light of such a derivation, the physical meaning
of the “Schott term” is fully elucidated. The asymptotic condition of uniform motion in the remote past
is seen to be essential for the establishment of the differential equation of motion. In contrast with previous
discussions, no advanced field need be introduced in any step of the work. Electromagnetic radiation is
treated with no single use of asymptotic procedures. Further physical insight is obtained into Rohrlich’s

criterion for radiation.

I. INTRODUCTION

NE of the most important problems in classical
electrodynamics has been to include the effect of
the radiation emitted by a charged particle upon its
motion. In a fundamental paper, Dirac! developed a
relativistic equation for the motion of a charged point
particle which is to be considered as an exact description
of the motion of the charge within the limits of the
classical theory. The theory was further developed by
Rohrlich, whose contributions (up to 1964) are largely
contained in his recent book? which we take as an over-
all reference. All the results of classical electrodynamics
that we use in the text without comments will be found
in this reference.
However, the Lorentz-Dirac equation®

(1.1)

when considered from the point of view of classical field
theory, offers serious difficulties of interpretation (in
contradistinction to the situation in the action-at-a-
distance theory of Wheeler and Feynman?).

In fact, the Abraham four-vector

mat=3e(d* —a*o*) +Fexe®,

Tr=2e2(d* —a2v*)

(1.2)

is to be interpreted neither as the radiation reaction nor
as an external force. The trouble comes from the so-
called Schott term

which is the term by which Eq. (1.2) differs from what
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may be properly called radiation reaction, i.e., the
negative of the emission rate

(1.3)

2620+,

and which is the term that makes the momentum-
energy balance obscure.

This difficulty, as will be seen below, is closely related
to the common belief that Eq. (1.1) is inextricably
linked with the introduction of advanced fields in the
theory. Advanced fields, brought in the derivation of
Eq. (1.1) by Dirac! and in one of the treatments by
Rohrlich,? are #ot needed in the derivation of Eq. (1.1),
as can be seen in Rohrlich’s paper on the definition of
the electromagnetic radiation® and as we shall see even
more clearly here. Already before Rohrlich, Havas®
noted that Dirac actually used only the retarded field
in the crucial step of his derivation: the calculation of
the flux of the energy-momentum tensor. Thus the use
of advanced fields appears to be necessary only for the
sake of the physical interpretation of Eq. (1.1). Let us
recall briefly the usual reasoning: The retarded field is
decomposed as

Fretﬂv=F+"V+F—Mv7 (1'4)

where F #*=F,*"4F,q4,**. Then the rate of change of
the total four-momentum of the retarded field P* is
computed by means of the energy-momentum tensor,
and is found to be given by

dP* ¢
= —qt—T* ,
dr 2e

(1.5)

where the limit e— 0 is to be taken.

Next it is observed that the term e2a#/2e is precisely
what would have been obtained if the same calculation
had been performed using F,#” instead of Fye#”. On the
other hand, the electromagnetic four-momentum for a
particle having a pure Coulomb field in its rest system

5 F. Rohrlich, Nuovo Cimento 21, 811 (1961).
¢ P. Havas, Phys. Rev. 74, 456 (1948).
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1 SPLITTING OF THE MAXWELL TENSOR-:.

TasBLE I. The two parts of the energy-momentum tensor compared and contrasted.

Behavior of

the integral To obtain
of the tensor the corre-
over a sponding To know the  To know the
Value spacelike four- value of the value of the
of the three-surface mentum tensor for integral of
diver- if the present at each point the tensor
gence, surface is proper time of the over the
off tilted or 7, one must appropriate appropriate
Present the translated integrate surface, surface,
nota- world parallel tc the tensor one must one must The values of the correspond-
Name tion line itself over: know: know: ing four-momenta are:
Bound T+ 0 Value changes  Three-space The whole of  Only the four-  P1#(7) = (€2/2¢)v*(r) — 2e%a*(r)
as viewed the world velocity (electromagnetic four-
from the line prior and four- momentum carried by the
rest system to 7 (re- acceleration particle around it)
at proper tardation!) at the
time 7 present
proper
time 7
Emitted Tn* 0 Value does An arbitrary The whole of  The whole of '
not change spacelike the world the world Prt(r)= dr'%e2a? (7")ve ()
(or even line prior line prior —
timelike, to 7 (re- to 7 (sum of all the four-momenta
but open) tardation !) radiated out by the particle
three-sur- during the whole of its past
face inter- history)
secting the
world line
at z(7)

is e?v*/2e. Now, such a Coulomb field is the prototype
of a bound field. Therefore, it is inferred that P, *is the
bound electromagnetic four-momentum for an arbitrary
motion. The actual four-momentum P* differs from this
bound four-momentum. The time rates of change of
these momenta also differ. Consequently, the difference
—(dP+/dr—dPy*/dr)=T* is to be identified with the
radiation reaction. This identification might be accept-
able if the radiation reaction as so obtained were equal
to the negative of the emission rate (1.3). But the two
quantities are not equal (differing in the Schott term),
and hence the problem of physical interpretation arises.

The clue for the solution of this problem is to realize
that the identification of €2*/2¢ as the bound four-
momentum involves a violent extrapolation from a very
particular motion to a general one. In fact, the condition
for a charged particle to possess a pure Coulomb field in
its rest frame is that i has @ siraight world line in the
whole of its past story. Now the knowledge of the
charged-particle field in a given spacelike surface
requires the knowledge of the whole part of the world
line of the charge prior to the event where it intercepts
such a surface. Therefore, it is not at all clear, a priori,
that a calculation done for the case of a straight world
line remains valid for a much more complicated one.
On the contrary, as shown in this paper, in the general
case the bound four-momentum contains besides the
commonly accepted “Coulomb mass” X four-velocity
term, the extra term —Z2e2q*, whose time derivative is
precisely the negative of the yet-to-be-explained Schott
term.

In Sec. IT we prove that the usual separation of the
full retarded field into a velocity and an acceleration
part (both retarded) induces a covariant splitting of the
energy-momentum tensor of such a field into two parts
which are separately conserved off the world line of the
charge. Only one of these parts satisfies the necessary
conditions to be considered as emitted by the charge;
the other must be considered as bound to it.

In Sec. IIT we evaluate exactly the bound four-
momentum for an “almost arbitrary” world line (satis-
fying only the requirement of being straight in the re-
mote past), and it is found to be a state function of the
charge (i.e., it has a local dependence on the world line)
which contains, as stated before, an extra term vanish-
ing for a nonaccelerated motion. The result reduces,
thus, to what it must reduce for a pure Coulomb field.
The emitted four-momentum is also evaluated, and it
turns out that it is not a state function but rather, that
it depends on the entire past world line in accordance
with its radiated character. The rate of change of the
latter part of the electromagnetic four-momentum is
found to be in agreement with the relativistic Larmor
formula (1.3). The two parts of the energy-momentum
tensor are compared and contrasted in Table I.

In Sec.IV,in thelight of Secs. IT and III, the Lorentz-
Dirac equation is derived in such a way that the role of
each term becomes clearly apparent. In particular, the
meaning of the Schott term is fully elucidated, and
hyperbolic motion is presented as an illustration of how
the energy-momentum balance happens. The asymp-
totic condition of uniform motion in the remote past is
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seen to be necessary in the very derivation of the
differential equation (1.1), while its analog in the distant
future appears to be related to the requirement that the
energy of the particle has a lower bound.

No advanced field needs to be introduced to interpret
a retarded theory. Furthermore, a clear understanding
of the theory emerges precisely when separating the
full retarded field into two retarded parts.

II. SPLITTING OF ENERGY-MOMENTUM
TENSOR

We take as the field of a moving charge the retarded
Liénard-Wiechert solution?

2e 7l 2e 7] 71
e A S D
P P P P
of the Maxwell equations
9, v =—A4grj”,
a)\an_*"ayFy)\—*_avF)\u:O,

with the current

(2.2a)
(2.2b)

ey
7 (x) =e/ dr 8(x—z(r))v (7).

The field (2.1) may be decomposed in a natural way
into two parts:

Fr=Fpr+-Fy,

where
2e 7’1
Fw=—[ol+]— (2.3a)
P e
is the velocity field, and
2e . 7]
F#¥ = —(ar[v [":]— +[a[“]—> (23b)
P P P

is the acceleration field. This separation is relativis-
tically invariant because both F1*” and Fir*” are tensors.

It is important in what follows to know the equations
satisfied by Fr#* and F*” separately. The following
results which are valid off the world line of the charge
are obtained from Eq. (2.3) by the usual methods for
differentiating retarded quantities:

a#FIM(x) = auFIIM(x) = (2e/p3)a,r” )
*Fr 1+ 0#F1 17"+ 9"F1 1 =0.

(2.4a)
(2.4b)

7We use the following notation: Retarded quantities are
written in between square brackets. The vector r# is defined by
ré=x#—[2#] and satisfies 7,#=0. The scalar p= —[2,Jr* is the
Sﬁatial distance between the field point and the retarded point in
the Lorentz frame in which the charge is at rest at the retarded
time [7]. We write al#p” for §(a#b*—a’b*) and a, for [a, r*/p. The
electg)magnetic field tensor is defined in such a way that F%
=+E,.
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Equation (2.4b) shows that potentials 4# exist for both
parts of the field.

Our next task is to evaluate the symmetric energy-
momentum tensor

Tw = (1/4r) (FreF o’ ~+3in#"F g F*P) (2.5)
for the field (2.1). Inserting (2.3) into (2.5), we obtain

Tw=Tr*+T1,u*+T1,1*, (2.6)
where
62 yhy? rz/)
Ti1*= —( —2[v®]— —%71'“‘) , (2.7a)
4mp*\ p? P
e? a4 )
Ty = ——“<ar —(a.[v (“:]—l-[a(“])——) , (2.7b)
2mp3\  p? o
e? \ \ axad .
o= — _
T P (a.2—[a*]) r , (2.7¢)
with

0 ¥b) =3 (arb +a"b¥) .

Tr1** and T i** are the tensors obtained when (2.4)
is evaluated with the fields Fi*” and Fi1*?, respectively,
and Ty 11*” is the result of the interference between both
fields.

A first insight into the physical meaning of these
tensors is obtained by evaluating its divergences. To
accomplish this we recall that the divergence of the
tensor (2.5) is given by

8,Tw = (1/4r)F873,Foy, (2.8)

with the only condition being that the field F** used to
compute the tensor satisfy the half (2.2b) of the Max-
well equations. As the fields Fi#” and Fr1#*, and also the
total field F#7, fulfill this requirement (see (2.4b)), we
can use (2.8) and (2.4a) to obtain

3,11 =—(e/2wp%)ar”, (2.9a)
0,T11,11**=0, (2.9b)
3, (Tr1*+T1,u*+T1u,n*) =0, (2.9¢)

which hold off the world line of the charge. Equation
(2.9b) is a consequence of a remarkable property of
the field Fy#, namely, that it is orthogonal to its
divergence.

Equations (2.9) suggest that we define the two
symmetrical tensors

Tw=T11*"+T1,11*,

Then we have

Tu*=Tu".

Ter =T+ Tk, (2.10)
with
0, 71*=0,

auTu‘“'=0. (211)

Equations (2.11) are, again, valid off the world line of
the charge. Notice that the contribution of the inter-
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ference between fields I and IT has been amalgamated
with the energy-momentum of the pure I field, whereas
the tensor T'i1*” is related only to the IT field.

Thus we arrive at the conclusion that the separation
of the charged-particle field into a velocity and an
acceleration part induces a (covariant) splitting of the
energy-momentum tensor into two parts which are
separately conserved off the world line of the particle.

To understand the situation more thoroughly, we
shall work in a given Lorentz frame K. In such a frame
the value of the field in the three-dimensional region
AV, between the two spheres

|x—z(r0) |2=(s—2(71))?, a°=s

[x—2z(79)|2=(s—2(72))?, a¥=s

(2.12a)
(2.12b)

is uniquely determined by the part of the world line
lying between 73 and 7. This is a consequence of the
fact that the electromagnetic interactions propagate
with the speed of light. It is then natural to associate
with this segment of the world line a four-momentum
AP# defined by

APr=— / Toud3s, (2.13a)
AV,

Here we meet with two difficulties:

(a) The field between the spheres (2.12) is uniquely
determined by the (71,75) piece of the world line for all
x20>29(72). Therefore, to make the definition unam-
biguous, we must require the integral (2.13) to be
independent of s.

(b) Let us observe the situation from another inertial
frame K’ connected with K by a homogeneous Lorentz
transformation A#,. Had we performed all the previous
work in this new frame, we would have arrived at the
definition

N f T/owgsy | (2.13b)
AV gt

where AV’, is defined in a way analogous to AV,. We
must, of course, require the integral (2.13b) to be
independent of s, since K and K’ are on the same
footing. Furthermore, since AP* must be a four-vector,

we impose
/ T/Opd?;xl =A"y/ TOvd3x s
AV’ AV

where we have dropped the subscripts s and s/, since the
corresponding integrals have already been required to
be independent of them. That is to say, we can take for
AV and AV’ in (2.14) any of the volumes AV, and
AV, respectively.

To go further, it is suitable to consider the situation
from a geometrical point of view as shown in Fig. 1. The
spheres (2.12) are the intersections of the future light

(2.14)
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Fic. 1. Hypersurfaces considered in the analysis of the tensor
Tri#. (1) Future light cone with vertex at 21. (2) Future light cone
with vertex at z.. (3) Ac, the included segment of a spacelike
hypersurface o that slices across these two light cones. (4) Ad”,
similar segment for a different surface o. The flux of T11#* through
the light cones vanishes. Moreover, T is divergence-free in the
region bounded by the two light cones and the two annuli. There-
fore, via Gauss’s theorem, the integrals of T*” over As and A¢”
have the same value (normals pointing towards the future). This
result holds for any pair Aeg, Ac’. In other words, the integral of
Tr* over Ac remains unchanged if o is translated parallel to
itself or tilted or both. The same result does not hold for T1*,
because its flux through the light cones is not zero.

cones at z(r1) and z(rs) with the three-dimensional
spacelike surface o defined by #,x*-}s=0, n* being the
four-vector with components (1,0) in K. The invariant
measure element on ¢ is related to the three-dimensional
volume element in K by d% =d*.

Then, calling A¢ the part of ¢ between the cones, the
definition (2.13) takes the form

APr= / Toin,ds (2.15)
Ao

and the conditions imposed in (a) and (b) are sum-
marized by requiring the integral (2.15) to be inde-
pendent? of both s and %, i.e., its value must remain
unchanged when the surface is translated parallel to
itself or tilted or both.?

The following question now arises: Does the actual
energy-momentum tensor (2.10) satisfy this require-
ment? The answer is negative. Schild®® has shown that

8 If we denote by z(7ins) the event at which the world line crosses
o, then the parameter s is invariantly expressed as s= —#,2"(7int)
and its range of variation is, of course, s> 7int.

9 To make clear how the condition of independence under tilting
arises, call #,® and #,®&" .the four-vectors with components
(1,0) in K and K’, respectively. Let Ac®) and A¢X") be the parts
of the surfaces #,®)x#4s=0 and n,E)x#+4s'=0 lying between
the light cones for z(1) and z(7s) (the choice of s and s’ being, of
course, irrelevant). Now insert the transformation law T'r1'*#n, K
=A#T119n,%) into the covariant version of Eq. (2.14):

/ T:a,;nnr(Kl)d:;o, =A,‘y./ Tavna(K)dSO-’
Ac(K') Ao (K)
to obtain
/ Trany ! (K3 = T'arpy K dig,
Ac(K') Ao (K)

which is the condition stated in the text.
10 A, Schild, J. Math. Anal. Appl. 1, 127 (1960).
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only the following weaker result holds: The limit

Tven,d3e
Ao

lim (2.16)
8§—>00

is independent of 7#; i.e., the integral remains invariant

under surface tilting only when one takes ¢ far away

along future light cones. We are going to show, how-

ever, that the modified integral

APH"=/ T n,d3c (217)
Ao

does have the property of being independent of ## for
every s. To prove this assertion, we first recall that
T11*” has a vanishing divergence off the world line (see
(2.11)). Furthermore, there is no flux of this tensor
through the light cone of the retarded point [z], because
the normal to the light cone is contained in it and, by
virtue of (2.7c), T11**r, is zero, since 7* is a null vector.
Now by applying Gauss’s integral theorem in Minkow-
ski space to the region bounded by two typical surfaces
A, A¢’ and the two light cones (see Fig. 1), we obtain

f TIIW”vdso':/ TIIV”nyd30';
Ao Ag’

which was the equation we set out to prove.!!

The result (2.18) is not valid when we change T11*”
by T1t**, because the flux of 7'1** through the light cones
is not zero. Nevertheless, in the limit s— « (which
requires p— o), this flux (and also the flux through
Ac) tends to zero on account of the o~ dependence of
the integrand, and hence one recovers Schild’s result.

In order to obtain a physical interpretation of the
independence of the integral (2.17) from s (the inde-
pendence under surface tilting is related to Lorentz
covariance, as has already been discussed), let us
consider the situation from the inertial frame in which
the charge is at rest at the instant 2°(ry). Then the
energy-momentum of type II associated with the
interval (71, 71+d7) of the world line is contained at the
time «° between the two concentric spheres

[x—z(71) [2= (2"—2"(71))?,
lX—Z(‘rl)f2=(x°—z°(7'1)-d'r)2, (2.19)

and it will be contained at the time x°+Ax° between the
spheres

(2.18)

|x—2z(71) | 2= (2*+Ax0—2°(71))?,
,X—Z(Tl) [2= (20 Ax0—20(71) —d7)?,

because the integral does not depend on x9. Therefore,
the energy-momentum of type IT located at the time x°
between two concentric spheres centered at z(ri), of
radii R;=x—2%(7r1) and Ry=x—2z(71)—dr, will be

1 Actually, we have proved more than we required. In fact, the
proof includes surfaces with spacelike normals, since no mention
has been made of the spacelike character of ¢ and o'.
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contained at the time x°4Ax® between two concentric
spheres of radii R;4Ax® and R,+Ax9, centered again
at Z(T 1).

We see then that the independence of the integral
(2.17) from s means that the energy-momentum
associated with the field Fr,** is propagated in the form
of waves, emitted by the charge and traveling with the
speed of light. The wave fronts are spheres centered
at the corresponding emission points.!?

We have discussed the problem of electromagnetic
radiation with no appeal whatsoever to asymptotic
limits. This approach enables us to solve a problem with
which one is immediately faced in trying to understand
a remarkable result of Rohrlich, namely, his “criterion
for radiation at an arbitrary distance.”’® To see clearly
the problem to which we refer, we summarize sche-
matically here the steps involved in Rohrlich’s pro-
cedure. These are:

(a) Define the four-momentum radiated between 7
and 7-+dr by the asymptotic integration (2.16) (which
involves the total energy-momentum tensor). (The
motive for such a definition is simple. Only if the limit
is taken does the integral have the correct Lorentz
behavior, on account of the above-discussed result of
Schild.) Then compute, in particular, the invariant
®=energy radiated per unit of coordinate time 2°.

(b) Evaluate (2.15) (which again involves the total
energy-momentum tensor), taking as the region of
integration the particular surface Ag=2,, which can be
chosen as near to the world line as liked (for details
about 2, see Ref. 13). Next, contract the result with the
four-velocity v,(r). Now wverify that the scalar so ob-
tained is exactly the energy rate ®.

2 Tt is interesting to notice that in spite of the fact that Fy#
describes wave propagation, its d’Alembertian is not zero off the
world line. In fact, recalling that [(PPF#* = 0494 11® —0”daF11"%,
which is valid because Fr* is the curl of a certain vector potential
An* (see (2.4b)), one obtains, after some algebra, the rather
curious result [PFu*= (2/p? (2pa.F1*+Fu*) which indeed
shows that [J?F* is different from zero for an accelerated par-
ticle. The solution of this paradox stems from the fact that not all
wave phenomena are accounted for by the “wave equation.”
Consider, for example, the function y(x°%)=f(8,¢0)g(x—r)/7,
and suppose that its square represents an energy density. This
function describes radial waves emitted from =0 because
VU (1,0, 0, 29 =YWL (r44r,0, 0, 2944ar), 1.€., the energy travels
radially with the velocity of light. Nevertheless, it is a solution of
0% =0 if and only if f(6,¢) is harmonic. This is precisely the
situation in our case, for in the rest system of the emission instant
the fields have the form Epn=e?X (rXa)/7, Bu=#?XE. If we
choose the z axis parallel to the acceleration, we obtain, for
example, E,= —e|a| (cos?0) /r, whose angular dependence is given
by f(8) =cos?6, which is not harmonic.

13}, Rohrlich (Ref. 5). Besides the criterion for radiation that
we are analyzing, one can find in this reference explicit expressions
for the total flux of momentum per unit time and per unit of solid
angle @2P#/drdQ. This magnitude is defined as d2P*/d+dQ= T*d*"/
d7dQ, where d%”= (r"/p—[v"])p?dQd is the surface element on .
The three-surface Ty is a straight cylindrical band surrounding the
world line and located between the light cones by z(r) and
z(7+d7). The basis of the cylinder is a sphere in the rest system
at z(7). As noticed by Rohrlich himself, each four-momentum
beam rate d2P*/d+d< consists of a spacelike part that dies out with
distance (translates in our treatment to contribution of 71*) and
a null-radiation part (translates to the contribution of our 7'1r*).
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Therefore, in Rohrlich’s treatment, to identify what
is to be called radiation rate, one has to resort to
asymptotic procedures; but to calculate the radiation
rate, one can dispense with such faraway limits and use
only the values of the field in a space-time region as
close to the emission event as desired. This is indeed
extremely striking: Why does one have to travel far
away to identify an object which, a posteriori, is seen to
be determined completely by the value of the field in a
small neighborhood of the emission event? Is there any
way to dispense with all the asymptotic limits and to
achieve both goals (physical identification (and hence
definition) and evaluation) in a small neighborhood of
the charge? Such a treatment is unavoidable if one
wants to picture radiation as an emission of something
(photons!) by the charge, because such a ‘“‘something”
begins to exist immediately after emission, and it must
be possible to identify it without waiting for it to arrive
at the asymptotic zone. Exactly this purpose is achieved
with our emitted tensor 71:**. It has been identified
without any physical ambiguity whatsoever as contain-
ing what physically must be called radiated four-
momentum. No resort is required to any asymptotic
limit. Thus, all the work of this section has been done
at an arbitrary distance from the charge.

Let us now see how Rohrlich’s result arises in our
approach. We have already noted that in the limit
s— oo the flux of the bound tensor 77** tends to zero.
Hence one has

lim Tr*d3e,
8§—>00
Ao

Tr#d%s, =lim /

Ac

for any Ag. On the other hand, one easily verifies that

Va / Tr#dée,=0.
2o

Hence one has again

ﬂﬂf T#d3q, =DM/ T3, .
20 20

Therefore we see that the two steps (a) and (b) in
Rohrlich’s reasoning are actually two different ways to
achieve the aim of isolating the contribution of the
emitted tensor by means of appropriate particular
choices of the region of integration (followed, in the
case of step (b), by an appropriate contraction).
Rohrlich’s procedures give, therefore, well-defined
operational ways of inferring the value of the four-
momentum associated with 7y** by measuring the
total electromagnetic field.

To sum up, we have seen in the above paragraph that
only the momentum and energy of the field contained
in T1r*” can be considered as emitted by the charge. Only
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this part of the field satisfies what we could call a
“condition of propagation,” i.e., the independence from
s of the integral (2.17). Moreover, on account of the
independence from #*# of such an integral, the four-
momentum corresponding to 7'1*” is computed by a
relation which has the same form in all reference frames
(see Egs. (2.13)). The fact that the rest system of the
charge does not play a privileged role is also evidence
that this part of the field, once emitted, detaches from
the charge.

None of the previous arguments applies to 7'1#*. This
suggests that the energy-momentum of type I is bound
to the source. It is then natural to expect that the rest
system of the charge, which it singles out among all
inertial frames, plays a privileged role in the definition
of the energy-momentum corresponding to this part of
the energy-momentum tensor.

III. BOUND AND EMITTED FOUR-MOMENTA

We have seen in Sec. II that the four-momentum
associated with 7*” is emitted by the charge, while the
one associated with 71** remains bound to it.

Our task now is to define and to evaluate these
momenta. We start with the radiated four-momentum
which offers fewer difficulties.

We define the radiated four-momentum present at
the time by

PH”(T)E] TIIV"%ydso', (3.1)

where ¢ is an arbitrary spacelike surface that intercepts
the world line of the charge at the event z(7), which is
allowed because the integral (3.1) has the remarkable
property of being independent of ¢. This is equivalent
to saying that the equality

PII“(T) = ——/ T11%d3x
All three-space

at time %9 =20(7)

(3.2)

holds in every Lorentz frame. This is to be interpreted
as an evidence of the radiative character of Py as was
discussed at the end of Sec. II.

To show the surface independence of the integral
(3.1), we proceed as follows (see Fig. 2): Let 7o<7 be a
given proper instant, and divide the segment of the
world line corresponding to the proper-time interval
(r9,7) in N subsegments corresponding to the sub-
intervals (To,T1), (T],Tg), s vy, (‘TN__g, TN_1>, (TN,1, T),
with 7,=7o+nA7 and Ar= (1—7,)/N. Next let us draw
the future light cones for each of the points z,=z(7,).
Now, if ¢ and ¢’ are two surfaces intercepting the world
line at z(7), the #th subsegment will determine two
surfaces Ao (n) and Ao (,y’, defined as the parts of ¢ and
o’ lying between the light cones for z,-1 and 2,. Then
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F1G. 2. The integral of the “emitted tensor” over the spacelike
hypersurface ¢ is identical to the integral over the tilted hyper-
surface o’.

we have

Ti*n,d3e= lim T, d%
90— | ¥
o U Aoy

n=1

N
= lim Ti*n,d3e, (3.3a)
7020 n=1 J Ao(n)
/ TII""%yd3O‘= lim TH”‘ndeO'
, T70>—00
a U Aoy’
nel
N
= lim Z T*n,d% . (33b)
0% =1 J Ac(n)’

By virtue of (2.18), both sums are equal term by term,
which proves the independence of ¢ of the integral (3.1).

To compute the integral over the whole of o, we
determine its value over Acg(,) and add the separate
contributions according to (3.3). Since each term in the
summation in (3.3) is independent of o, we can, without
loss of generality, choose a particular ¢ for the compu-
tation of the integral over each Ao (). For convenience
we select, when working in Ac (s, the normal to ¢ as
2*(7,_1), 1.6., we choose o as being the three-space at
time x0=2%(7) as viewed from the Lorentz frame where
the charge is observed to be at rest at the retarded time
associated to Ag (»y. In this frame, where the calculations
will be made, the various magnitudes involved have a
simple geometrical meaning: Ao,y is the three-volume
between two spheres of radii p=|x—2z,_1| and p+dr
centered at z,_;, and, in addition, we have r#=p(1,7),
[G«“]= (O, a(Tn_1)), a,=a(f,._1) -7, with 7= (X'“"Zn_1)/
|x—Zna].

The integral to be computed takes then the form

/ Tllmnp,dsd =d‘r/ d%x (—THOO, —THM) . (34)
Ao sphere of

radius p
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If we introduce now the value

62

Ty =

((a-f)2—a2)(1,7’) ’

o2

where the kinematics variables of the charge are sup-
posed to be evaluated at the proper time 7,_1, we obtain

/ TH”“n,.d3o"=dr 62/
Ao Q=dr

which, taking into account the elementary results,
.dQ . .dQ s
/ x*— =0, f xigi— =%46%
unit sphere 47 unit sphere 47

LY
xixint— =0,
unit sphere 47

f TIIandgg'=d7?23'e2a2(7"*1)(1)0)
Ac

dﬂ((a~f)2—a2)(1,f) )

reduces to

in the Lorentz frame where 9*(7,_1) = (1,0). Therefore,
in an arbitrary Lorentz frame,

/ Tr*n,d% =dr3e2a*(Tn—1)v*(Tn-1) . (3.5)
Ac

Now, as stated before, we need only add the contri-
butions of the various Ae(,). The summation in (3.3)
becomes an integral, and we obtain

PH”(T)=/ Ze2a?(r' Yo (')d7’ . (3.6)

If we recall the expression (2.17) for the four-momen-
tum emitted by the charge between 71 and 72, we see
from (3.5) that the four-momentum of type II present
at time 7 is the sum of all four-momenta emitted through
the whole past history of the charge. The absence of
interference effects between radiation emitted at
different times stems from the fact that the speed of
the particle is smaller than the speed of light; thus
radiation emitted at one instant never reaches that
emitted at an earlier time.

Differentiating (3.6) with respect to =, we find that
when a charge is accelerated, four-momentum is being
radiated at the instant 7 in accordance with the rela-
tivistic Larmor formula

dPyr#*/dr=2%e2a?(7)v (7). 3.7

It is important to emphasize that the knowledge of the
four-momentum of type II present at the time 7 re-
quires the knowledge of the whole past history of the
charge. This is a consequence of the fact that Pir#
corresponds to the emitted part of the field.
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Now we turn our attention to the remaining part of
the electromagnetic momentum Pi*. By its charac-
teristic of not being emitted by the source but remain-
ing, instead, linked to it, we cannot define Pr* in the
same way as Pri#, because now the integral appearing
in (3.1) will not be independent of o. For the reasons
given at the end of Sec. II, we define Pr* through an
expression analogous to (3.1), but now specifying a
particular surface as the region of integration; three-
space at time 20=2°(7) as viewed from the rest system
of the charge at proper time 7. For the particular case
of a charge having a straight world line in the whole of
its past history, this choice has been suggested by
Kwal* and Rohrlich.!®* When we perform the calcu-
lations for an ‘“almost arbitrary’ world line (satisfying
the only requirement of being straight in the remote
past), we arrive at a particularly simple result which
reduces to the one obtained by the above-mentioned
authors in the case in which their calculations hold.
Nevertheless, the difference between the general and
the particular cases is one of the central points in our
work.

We thus define the bound four-momentum present at
the proper time by

PI“(T) = Tf’"?),,('r)dso',
o(7)

(3.8)

where o(7) is the spacelike surface defined by

vu(7) (# —2#(7)) =0.

The invariant measure element on o(7) is related to the
three-dimensional volume element in the rest system
by d%¢=d3.

To find Pi*(7), we will evaluate first its change per
unit of proper time and we will then integrate the result-
ing expression. In order to compute the rate of change
of the bound four-momentum, we surround the world
line of the charge with two cylindrical surfaces, a thin
tube of invariant radius ¢ and a large one of invariant
radius R, which we call Z(e) and Z(R), respectively.
The situation is pictured in Fig. 3.

The surface Z(e) is defined by the equation obtained
by eliminating 7' from the equations (see Dirac' or
Rohrlich?)

m(w—2 (D=2 () =¢,
B @ =) =0.

(We use 7’ here for the ‘“‘variable” proper-time param-
eter in order to avoid confusions with the ““fixed”” proper
time 7 appearing in Pr#(7).) The measure element on
Z(e) is given by

Bo=e(1+ea,)ddr (3.9h)

where a,, is the projection #,a*(7") of a*(’) onto the

(3.92)

4B, Kwal, J. Phys. Radium 10, 103 (1949).
15 F. Rohrlich, Am. J. Phys. 28, 639 (1960).
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TTime

vH(r+d r‘)

F16. 3. Evaluation of the rate of change of the bound four-
momentum Pr#: (1) v#(r), four-velocity of particle at time 7. (2)
v4(7-+d7), four-velocity a little later. (3) o(7), spacelike hyper-
surface orthogonal to world line at time 7 (the “three-space”
proper to the particle at that time). (4) o (r-+dr), same for slightly
later instant. (5) Z(e), tube of radius e surrounding indicated
segment of world line. (6) Z(R), similar tube of radius R. (7)
3 (e), intersection (two-sphere) of inner tube with o (7). (8) Z(R),
intersection of outer tube with o (7). Application of Gauss’s
theorem to the annular region, enclosed between the two tubes
and the two spacelike surfaces and passage to the limit ¢— 0,
R — =, gives the result: (change of bound four-momentum in the
field) = — (flux in through Z (e))+ (flux out through =(R)). Here
(bound four-momentum in the field at time 7) = (integral of T*”
over all of (7).

normal #*=(x*—z*(7"))/e, with 7' given implicitly
above. The symbol dQ denotes the element of solid angle
subtended by the space part of #* in the rest system
corresponding to the proper time 7’ (in the rest system,
u* takes the form u*=(0,7), since it is orthogonal to
9#). The factor (1-4-ea,) corrects the area for the bending
of the world line. To obtain the description of Z(R), it
is enough to replace e by R in the above expressions.

Now we apply Gauss’s integral in Minkowski space
to the four-dimensional region bounded by the two
tubes and the two surfaces o(7) and o(7-d7). Since
T1*” is divergence-free in such region (see (2.11)), we
find

/ Tﬂ"v,,(*r—l—d*r)d"’a—/ Tr#,(7)d3
a(r4dr) a(r)
=lim— Ty*u,d%e-+ lim Ty*u,d% .
0 Iz B> s

In the limit dr — O, the integrations over Z(R) and
Z(e) reduce essentially to two-dimensional integrations
over the intersections of Z(R) and Z(e) with o(7), which
will be called £(R) and £ (e), respectively. This implies
that we must take 7'=7 in the surface elements (3.9)
and related formulas. Then we have

dP*
=—lim / Trtu,(14-ea,) e2dQ
dr 0 /S
+ lim Ty*u,(1+Ra,)R%*dQ. (3.10)
R-—>w E(R)
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We will show now that when the asymptotic condition

lim (motion) = (uniform motion) (3.11)

holds, then the integral over £(R) vanishes in the limit
R tending to infinity.

The proof of this statement runs as follows: If (3.11)
is valid, we can find a Lorentz frame where the charge
is asymptotically at rest if 7+—>—oo. In that frame we
have the world diagram shown in Fig. 4, with the help
of which the following relations are seen to be valid:

R2=n,(a+—3+(7)) (6 —2"(7))
= [x—z(r) [*— (@ —2(7))’
=|x—z(n)[*—p|x—z()?,

whence |x—z(7)] =R/(1—32)'2, but the limit R— o
implies p— o and, in such a limit, p=R/(1—p?)1/241.
Next, since R— «, I/R— 0; therefore,
Ilzim (R/p)=(1—B%12>0. (3.12)
Here 8= |v(7)| <1 because the particle travels more
slowly than light. Although we have considered for
simplicity only one spatial dimension, the essential
points in arriving at (3.12) do not depend on this, and
one arrives, after a moment’s thought, at the conclusion
that R/p tends to a nonvanishing constant in the general
case also.
Now from (2.7) it is seen that Ty** is of the form
A /pt+B# /o3, with A#* and B#” finite in the limit
p— . Hence, taking into account (3.12), we obtain

Ty*u,d% = lim
E=* )3 (m)

lim

R

au(1—-p"
S(R)

XBHu,dQ. (3.13)

Equation (2.7) shows that B#” depends on the retarded
acceleration [¢*] and vanishes when [a*] does. Since the
limit R— o implies [7|——, therefore B*’, and
consequently the integral over £(R), will vanish in such
a limit, provided condition (3.11) holds.

Thus, we see that Eq. (3.11) is essential for the success
of our proof. In fact, even if one could prove a relation
of the type (3.12) without using the asymptotic condi-
tion, it is hard to imagine how the integral (3.13) would
vanish when B#’3£0 (and a*#£0), since this would
require a relation between retarded quantities and the
remaining factors in the integrand which depend on
magnitudes associated with the present position of the
charge.

Now if (3.11) is fulfilled, as we assume hereafter, one
obtains

dPr*

- =—lim
dr >0

T u, (14 ea,) €d9.

g(e)

(3.14)
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Fic. 4. Lorentz frame in which the particle is at rest in the
remote past. (1) /=spatial distance in this frame between the
position of the particle in the remote past and its position at the
present proper time 7. (2) o(7) =spacelike surface orthogonal to
v#(7) (three-space proper to the particle at time 7). (3) The
(Euclidean) angles between v#(7) and the 20 axis and between o (7)
and the x axis are equal. The tangent of this angle is the three-
speed B(7). (4) p=spatial distance between a generic “field event”’
x# on o(7) and its associated retarded event [z] in the frame in
which the particle at [z] is at rest. (In the limit of * very far from
z#(7), the retarded point [z] is in the remote past and its rest
frame agrees with the frame employed in this diagram.)

In order to evaluate this integral, we require an ex-
pansion of the integrand in powers of e. Dirac! found
such an expansion for the total energy-momentum
tensor, namely,

—‘]: (TI”"—I-TH"“)u,(l—I—eau) e2d)
Z(e)

62
= —ar—%e%ir+2e2am,
€

(3.15)

where, for simplicity in the notation, we have dropped
the limit symbol and the terms vanishing with e, which
we shall do from now on. We need only know the
difference between (3.15) and (3.14) to evaluate (3.14),
ie.,

- ﬁ Trr*u, (14 ea.) dQ. (3.16)
Z(e)

To do this, it is enough to notice that the analysis made
in order to arrive at (3.14) remains unchanged when we
replace T1*” by T11*’. In fact, to obtain (3.10) we have
used only the divergence-free character of T1*” which
is also a property of Ty1**. Moreover the integral over
5 (R) also vanishes for 7yr#” in the limit of large R when
the asymptotic condition is taken into account. To see
this it is enough to observe that the limit R — o« re-
quires [7 ]—— o0, and then [¢*]— 0 and T11** vanishes.
According to this result and recalling Eq. (3.7), we
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havel!®

dPr*
—/ Tru,(14-€a,) 2dQ= =Ze2a%*. (3.17)
5 d

Z(e) T

Hence, subtracting (3.17) from (3.15), we obtain

dP+ 2 d [e?
= —e2at—Ze%ir = ——(—v"——%e%“) . (3.18)

dr 2e dT\2e

To integrate Eq. (3.18), we need an initial condition
which is provided by (3.11) because, on account of it,
the part of the world line previous to a given event
2(7) is a straight line in the limit 7 —— . Only in this
case of a whole previous straight world line is the field
purely Coulombian in the frame in which the particle
has been at rest. In that frame the following standard
result holds:

00 ' g2 82
Pr#(—w) =f r2dr/ d9<—, 0> =—(1,0),
¢ Q=dr 8mrt 2e

whence, recalling that we are in the frame in which
2#(—o0)=(1,0), we have for an arbitrary Lorentz frame

Pr(—o0)=(e?/2¢)v*(— o). (3.19)

With this result and the fact that a*(—«)=0, we can
integrate (3.18) to obtain

P#(r)=(€*/2¢)v (1) —%e%a (7). (3.20)

Expression (3.20) for the bound four-momentum has
the remarkable property of being a state function of the
charge, i.e., of having a local dependence on the world
line. The bound four-momentum for a given instant
depends only on the four-velocity and the four-accel-
eration of the charge at a given (the same) time, in
spite of the fact that the values on ¢(7) of both the
Fy#» and Fyr* fields depend on the whole part of the
world line prior to 7 (compare with expression (3.6) for
the radiated four-momentum and related comments).
This is a strong confirmation of the bound character
of Pi*.

It is of interest to emphasize that the tensor T*”
and, in particular, its components 71, which are to be
interpreted as the negatives of the energy and momen-
tum densities in the rest frame, are retarded functions.
Thus a change in the energy-momentum density on
a(7) can be caused only by a change of the kinematics
of the charge prior to 7. Nevertheless, if one adds all the
contributions from the various volume elements, the
net result depends only on a neighborhood of the
present event z(7). Thus it looks as if the charge carried
a rigid electromagnetic cloud, but a truly rigid electro-

16 The same result is obtained in a straightforward manner, by
direct computation of the integral, using the expressions given by
Dirac (Ref. 1). The computations are particularly simple because
only the first term in the series is required.
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magnetic configuration would contradict the finite
speed of propagation of the interactions. However,
the above discussion shows that the correct analysis
makes not one single use of the idea of a rigid con-
figuration for the field.

IV. EQUATION OF MOTION AND ITS
INTERPRETATION

We saw in Sec. III that a moving charge carries
around it an electromagnetic four-momentum given by

Pr#=(e?/2¢)v* —2e%ar.

Since the charged particle cannot be separated from
its bound electromagnetic four-momentum, the four-
momentum of the particle is the sum of the mechanical
or ‘“bare” momentum and the electromagnetic one;
that is to say,

P*=p marey*+LPr*. (4.1)

If we assume the bare four-momentum to have the
usual form for an uncharged particle, we obtain

62
P"=(’}’}'L(bare)+ —2—)7)”—%62(1". (42)

€

The divergent quantity €2/2¢ unavoidably arises when-
ever one introduces point chargesin a theory based upon
an energy-momentum tensor.!” The efforts to eliminate
the divergent term from such a theory reduce, at pres-
ent, merely to not exhibiting it explicitly.

To handle the divergence, we make the usual identi-

fication
32
m= (m(bare)+ —>
2e

because a charged particle in uniform motion must
behave like an uncharged one (no radiation!).

The identification (4.3) reflects the empirical truth,
foreign to the theory, that such a particle has a finite
rest mass m. No one has been able to make clear the
inner physics of this finiteness, in the absence of a
theory that gives any account at all of the origin of the
rest mass.!8

(4.3)

17 By “based upon an energy-momentum tensor”’ we mean a
classical electrodynamics in the spirit of a pure field theory,
namely, a theory in which energy and momentum are associated
with every electromagnetic field by the same rule (energy-
momentum tensor).

18 On few points do physicists more diverge than on how to treat
the divergent electromagnetic self-energy e2/2e. Some argue, in
effect, for “sweeping it under the table.” Thus quantum electro-
dynamics has been rearranged to good effect in recent decades to
accomplish just this “hiding” of the self-energy. The subtraction
prescriptions of quantum electrodynamics give unsurpassed
service to anyone concerned with detailed computations of
physical effects. Here, however, our emphasis lies in exactly the
opposite direction: (a) classical, not quantum; (b) not hiding the
electromagnetic self-energy, but tracing out clearly just where it
appears; (c) understanding the physical meaning of each term in
the equation of motion rather than deriving it.
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Thus, for the four-momentum of a point charge in
arbitrary motion we have

pr=mv*—3%ear. (4.4)
Notice that in the rest system the time component of
(4.4) gives p°=m, since a°=0 in such a system. There-
fore the rest energy of the particle is equal to its mass
for a general motion.

The equation of motion for a particle which is not
under the action of any external force follows readily
from the conservation of momentum for the closed-
system particle plus radiation; that is to say,

ma*—2e2dr = —Ze2a%r. (4.5)
When the particle is acted upon by an external four-
force F*, Eq. (4.5) must, of course, be replaced by

mat—2e2dr = —Ze2a2or+F*. (4.6)
This is the Lorentz-Dirac equation. It is important to
keep in mind that in our derivation we already have
required the validity of the asymptotic condition (3.11).

To illustrate the interpretation of this equation, let
us consider the well-known example of a charge per-
forming hyperbolic motion (uniform acceleration in the
rest frame). For such a motion one has d*=a?*, making
Eq. (4.6) identical to the equation of motion for an
uncharged particle of the same mass under the action
of the same external force. Consequently, the work done
by the external force is the same for the charged and
uncharged cases. However, in the charged case the
particle radiates energy at a constant rate.’® This
energy, according to our analysis, originates entirely
from the bound electromagnetic energy. Hyperbolic
motion is thus a special case in which all radiated energy
comes from the bound electromagnetic energy of the
particle. In the general case, as follows from Eq. (4.6),

1 See in this context T. Fulton and F. Rohrlich, Ann. Phys.
(N. Y.) 9, 499 (1960).
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there is a conversion of both mechanical and bound
electromagnetic four-momentum into radiation.

It is important to notice that the conversion of four-
momentum of type I into momentum of type II is
forbidden in the whole space-time off the world line of
the particle, since in this region the tensors correspond-
ing to both parts conserve separately. The change of
status of the four-momentum occurs only at the singu-
larity of the fields, where both tensors have their
sources.

Therefore a charge in hyperbolic motion can be
pictured as being only a source of radiated four-momen-
tum and a sink of bound four-momentum.

The example of hyperbolic motion illustrates also the
necessity of introducing the analog of the asymptotic
condition (3.11) for the distant future, as a way of
preventing the acceleration term in (4.4) from being an
inexhaustible source of energy. Thus, the asymptotic
conditions

lim (motion) = (uniform motion)
T->400

impose a lower bound on the total energy of the charged
particle. We want to make clear that we have not tried
to ‘““derive” the asymptotic conditions but only to
explore their physical implications.

ACKNOWLEDGMENTS

I wish to express my thanks to my advisor at the
Faculty of Science of the University of Chile, Professor
C. A. Lopez, without whose advice and help this paper
might never have been written. It is also a pleasure to
thank Professor Igor Saavedra for his patience and
encouragement towards my work. I am much indebted
to Professor F. Rohrlich for his helpful comments.
Finally, I want to express my gratitude to Professor
J. A. Wheeler for his interest and his careful critical
reading of the manuscript.



