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Abstract—The fundamental question of the lower bound on
the radiation Q of an electrically small antenna is of practical
importance because of its relationship to the antenna bandwidth.
Previous works predict a lower bound on the radiation Q that is
usually too low and, hence, a bandwidth that can be optimistically
large. This paper addresses why this is so and offers a new
prediction for a realizable lower bound on the radiation Q. This
new prediction is based on the far-field pattern, in both the
visible and invisible spatial regions, in contrast to previous works
based upon a near-field modal approach. Results for a linear
dipole, bow-tie, and end-loaded dipole are presented to illustrate
the validity of the lower bound presented herein.

Radiation Q can be related to bandwidth provided the Q is ade-
quately large. Implicit is the presence of a matching network as a
part of the antenna system. Both the losses in the antenna and the
losses in the matching network have an effect on the system band-
width, the system efficiency and the system Q, of which the radia-
tion Q is a part. These various relationships are also discussed.

Index Terms—Antenna theory, antennas, apertures, dipole
antennas, electrically small antennas, electromagnetic radiation,
linear antennas, Q factor, wire antennas.

I. INTRODUCTION

T HE radiation Q of electrically small antennas is a quantity
of fundamental interest. On the other hand, a quantity

of practical interest is the bandwidth of electrically small
antennas. When the radiation Q, denoted herein by, is
adequately large (i.e., ), the fractional bandwidth is
approximately equal to the inverse of . It is important to
know the maximum possible bandwidth and hence the lower
bound on in a number of practical situations. For example,
in order to achieve a specified bandwidth for an antenna for
a wireless device, a knowledge of the lower bound on the
radiation Q would set a limit on how small the antenna could be.
More emphatically, if bandwidth and size were specifications
given to a designer, a knowledge of the lower bound on the
radiation Q could determine if the two specifications were
compatible and could be satisfied simultaneously.
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A fundamental definition for the radiation Q, or , of an
antenna is

(1)

where is the time average, nonpropagating stored electric
energy, is the time-average, nonpropagating stored mag-
netic energy, is the radian frequency, and is the radiated
power.

An approximate representation of , when the antenna
input impedance can be adequately represented by a lumped
circuit (i.e., an electrically small antenna), is

provided Q (2)

where is the antenna input reactance and is the antenna
input resistance. For , the relationship in (2)
becomes questionable and for it is not likely to be valid.

An antenna is generally considered electrically small if it can
fit inside a radiansphere. The term radiansphere was originated
by Wheeler [1], [2] in his early works and denotes an imagi-
nary sphere of radius equal to (a diameter of about 1/3
wavelength, ). In 1948 Chu [3] published a classic and widely
quoted paper in which he derived an expression for the min-
imum radiation Q by expressing the fields around a small hy-
pothetical antenna in series of spherical modes, which give the
total energy surrounding the hypothetical antenna. In an effort to
separate the nonpropagating energy from the total energy so as
to know both the propagating and nonpropagating energy sepa-
rately, Chu used an ingenious ladder network approximate rep-
resentation of the modes to indirectly calculate the radiation Q.
Chu’s approximate result was subsequently quoted by others in
related works over the following years [4]–[9].

In 1996 McLean [10] improved on the work of Chu by de-
riving an exact result for the radiation Q using the fields for
the TM mode directly. McLean’s result is nearly the same
as Chu’s for very small antennas and predicts a slightly higher
lower bound on for antennas approaching a length of about
1/3 wavelength. McLean’s result is

(3)

wherea is the radius of the smallest sphere that encloses a hy-
pothetical radiator and is the wavenumber.

The lower bounds provided by Chu and McLean have been
found to be elusive to achieve in practice (i.e., the is always
higher and the bandwidth less than expected). The primary pur-
pose of this paper is to address why this is so.
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One argument [7] often given for practical designs having
a higher than the lower bounds given in [3] and [10], is
that the entire spherical volume is not utilized by the antenna.
In an attempt to overcome this factor, Foltz and McLean [11]
expanded the fields around an antenna using prolate spheroidal
functions (instead of spherical functions) and found thatwas
dependent on the ratio of the major and minor axis of the pro-
late bounding surface. This served to raised the expected
for antennas, such as a small dipole. A small dipole, of course,
does not consume much of a spherical volume and is better rep-
resented by a prolate spheroidal volume. However, it is not ap-
parent in their work what ratio of the major to minor axis of the
prolate bounding surface should be used for a specific antenna
configuration.

In this paper, a much different approach is taken to estab-
lish the lower bound on the radiation Q for electrically small
antennas. Instead of expanding the near-fields around an an-
tenna, the far-field pattern is used. The approach here relies
on the concept of superdirectivity. It is well-known that elec-
trically small antennas are superdirective, since they have more
directivity than their small size warrants. Radiation Q can be
related to superdirectivity. Results using this different approach
give a higher lower bound on the radiation Q and suggest that
the lower bound on for an electrically small antenna can be
determined from how superdirective the antenna pattern is.

II. SUPERDIRECTIVEAPPROACH

Superdirectivity is produced by an interference process
whereby a portion of the antenna pattern is scanned into
the invisible region. This causes energy to be stored in the
near-field resulting in a large radiation Q. A superdirective
ratio has been defined as the ratio of an integration of the
far-field pattern function over all space (i.e., visibleinvisible)
to an integration over visible space as follows [12]–[15]:

(4)

where is a normalized far-field pattern function in-space
and when main beam radiation is broadside
to the source (i.e., linear source of length L with constant phase)
and the source is along theaxis. The superdirective ratio is not
new [15] and is recognized as a measure of the realizability of an
antenna. Rhodes in [16] comments that (4) above “is something
like ” and “is somewhat similar to .”

In [12]–[14] in (4) is equal to if

(5)

However, we have found in our investigation that it is not ade-
quate to use just the far-field pattern function in (5) as is
written in [12]–[14]. The expression in (5) should be consistent
with the fundamental definition in (1) and, therefore, should in-
clude the element pattern where

(6)

and is the normalized field pattern. Rhodes [16] had no
need to consider the element pattern, g(u), in his synthesis work
since g(u) “is not a controllable part of the radiation pattern.”

Therefore, the expression used to calculatehere is

(7)

We will use (7) to determine the lower bound on for an
electrically small dipole with a sinusoidal current distribution.

For a dipole of arbitrary length along thez axis with a si-
nusoidal current distribution, it is well-known that the far-zone
electric field is [14]

(8)

For , the maximum value of (8) occurs at , so

(9)

Thus, the normalized field pattern, , can be written as

(10)

The normalization is for convenience. Since
, it follows that is given by

(11)

and in turn is given by

(12)

Thus, (12) is used in (7) to compute of an electrically small
dipole with a sinusoidal current distribution. Note that (12) van-
ishes at infinity. The integrations in (7) could be carried out in
-space. Our preference is to work inspace.

III. RESULTS

Fig. 1 shows a curve based on (7) and (12), denoted “far-field
Q,” for a dipole that generates the far-field pattern given by (8).
That (middle) curve is above the lower curve from (3) due to
McLean but below the third (top) curve based on (2) for the
ratio of . The (top) curve based on (2) was calculated
using the Method of Moments for a dipole of radius .
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Fig. 1. Radiation Q versus�a or �L=� where� is the wavenumber, a is the
radius (L is the diameter) of the smallest sphere that can enclose the radiator.
Bottom curve is thelower boundfor an ideal or Hertzian dipole, which has a
uniform current distribution, using (3). Middle curve is thelower boundfor a
dipole with a sinusoidal current distribution using (7). Top curve is a typical
radiation Q for a thin wire dipole using the ratio of input reactance to radiation
resistance.

For several reasons we believe that the middle curve in Fig. 1,
derived from the far-field pattern, more accurately represents the
lower bound on for an electrically small linear dipole with
a sinusoidal current distribution.

First, the curve from McLean’s result is derived using the
lowest order TM mode and that modeonly. The TM mode,
as pointed out by McLean, generates fields that are equivalent
to the fields of an ideal (or Hertzian) dipole with a pattern.
Such fields are associated with a uniform current that obviously
does not go to zero at the dipole ends. The fields from such
a radiator are not the same as those from a small dipole with
a sinusoidal (almost triangular) current distribution. Even the
far-field patternsare not exactly the same. That is, the ideal
dipole has a pattern independent of its length whereas the
pattern in (10) only approaches as the dipole becomes very
small. Thus, McLean’s curve can be considered to be the lower
bound for an ideal or Hertzian dipole.

Second, the pattern for a small dipole with a sinusoidal cur-
rent distribution is slightly narrower than the pattern of an ideal
dipole, and is, therefore, more superdirective (higher radiation
Q). Thus, the lower bound for a sinusoidal distribution should
be higher than the lower bound for a uniform distribution.

Third, practical designs for antennas with a sinusoidal current
distribution fall above our “far-field Q” curve. In view of (7), this
suggests that there are two components to the current, one of

Fig. 2. Radiation Q versus�a. Top two curves are for thin linear dipoles using
X/R. Bottom curve is the lower bound for an ideal or Hertzian dipole, which
has a uniform current distribution. Solid line curve is the lower bound for a
sinusoidal current dipole. Bow-tie (Fig. 3) and end-loaded dipole (Fig. 4) data
points are determined using X/R.

which accounts for the far-field pattern and a certain minimum
amount of stored energy in the near-field, and another compo-
nent of the current which only contributes to near-field stored
energy.

Fourth, the top curve in Fig. 1 using the ratio of antenna input
reactance to antenna input resistance for a thin linear dipole,
while associated with an identical far-field pattern as in (10),
shows a higher value of . This suggests that there are other
geometries of the same maximum dimension that are capable
of producing the pattern in (10) while yielding a lower . To
illustrate that this is so, consider Fig. 2, which shows that dipoles
of thicker radii have a lower , a fact which is well-known.
The dipole radiation Q curves were obtained using (2) and the
Method of Moments.

Also in Fig. 2 are data points for a “bow-tie” dipole of a size
that fits into the spherical volume of radius “a” (see Fig. 3),
has a current that goes to zero at its ends, and has the same
far-field pattern as in (10). The radiation Q of the bow-tie has the
lowest of those with the pattern of (10), but is still above the
“far-field” Q curve in Fig. 2 obtained using (7). On the other
hand, the end-loaded dipole of Fig. 4 has a somewhat uniform
current on its radiating portion (i.e., approximates a Hertzian
dipole), and its radiation Q using (2) lies between the McLean
curve and our “far-field” curve, as expected. The current distri-
bution on the electrically small end-loaded dipole is that of a
triangle on a pedestal or uniform value. As shown in Fig. 5, as
the dipole becomes electrically longer, theslopeof the triangle
portion of the triangle on a pedestal becomes less (i.e., the dis-
tribution becomes more uniform). Thus, the data points in Fig. 2
for the end-loaded dipole move closer to the McLean curve for
an ideal or Hertzian dipole as the dipole becomes longer.
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Fig. 3. Bow-tie antenna inside a sphere of diameter L.

Fig. 4. End-loaded dipole inside a sphere of diameter L.

The sinusoidal current distribution on a dipole becomes
nearly triangular when the dipole becomes small. The normal-
ized field pattern for a triangular distribution is [14]

(13)

Using (11) and (13) in (7) gives a curve identical to that in Figs. 1
and 2 for the sinusoidal distribution (i.e., far-field Q), except
very slightly at the extreme right where the dipole is
marginally electrically small and the current distribution is be-
ginning to depart somewhat from a triangular distribution. Note
that (13) goes to zero at and is, therefore, integrable at .

The various results of this section leads to the following two
hypotheses.

Hypothesis #1:A realizable lower bound on for a lin-
early polarized electrically small antenna can be determined
from its far-field pattern according to (7).

To use this hypothesis, the field pattern squared should be
integrable at infinity. Further, the results will be somewhat
sensitive to the accuracy with which the field pattern is known,
a fact that is consistent with the superdirective nature of electri-
cally small antennas.

Hypothesis #2:The radiation Q of a practical antenna may
be viewed as having two parts: the first part is associated with
that component of the current distribution which generates the
far-field pattern (in both the visible and invisible regions); the
second part is associated with all other components of the cur-
rent distribution which contribute to stored energy but not to the

(a)

(b)

Fig. 5. Triangle on a pedestal current distributions on two dipoles. The dipole
in (a) of half the length of the dipole in (b), but its triangular portion has twice
theslopeof dipole (b). Both dipoles have the same tenninal current value.

far-field pattern. The first part determines the lower bound on
the radiation Q.

For example, the far-field pattern is obtained from an integra-
tion of the current distribution. Since integration is a smoothing
process, various relatively minor discontinuities in the current
may not affect the far-field pattern but can contribute to near-
field stored energy (e.g., feed-point design).

IV. CIRCULARLY POLARIZED ANTENNAS

It is written in [4] that the lowest possible radiation Q is
obtained for an antenna that excites both of the lowest order
modes, TM and TE , and that this radiation Q can be half
that for either mode alone. This is correct and clearly the
resulting field can be circularly polarized when the modes
have the proper relative complex strengths.

The TE mode represents a fictitious ideal magnetic dipole
which in turn represents a small loop of electric current. So, if
circular polarization is generated with an ideal electric dipole
and a small electric loop, the Q of that two element system will
be one-half that of either radiator alone. (Note that the fields
of the two radiators are uncoupled.) On the other hand, if cir-
cular polarization is generated by two crossed electric dipoles
with a phase difference, the radiation Q of such a system
will differ from the dipole-loop combination and differ from the
radiation Q of either element alone. Grimes and Grimes [18],
using a time-dependent Poynting theorem approach, have re-
cently showed that for the crossed Hertizian electric dipole case,
the radiation Q approaches 1/3 that of a single dipole as the
dipoles become electrically small. This factor of 1/3 cannot be
obtained using the frequency domain approaches employed in
[3]–[6], [10], [11] because the near-fields of the two dipoles are
coupled and there is a phase difference between them.

It is interesting to consider the normal mode helix, a popular
antenna for hand held wireless transceivers. Each turn of the
normal mode helix can be modeled by an ideal electric dipole
and a small electric loop, and radiates elliptical polarization
[14]. Thus, the normal mode helix excites both the TMand
TE modes, but not of the proper relative amplitudes to gen-
erate circular polarization. It follows that the normal mode helix
should have a lower than a linear dipole of the same max-
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Fig. 6. Lower bounds on the radiation Q of a sinusoidal current dipole for
various values of radiation efficiency versus�a or �L=�.

imum dimension. In fact, it is known that the normal mode helix
has a wider bandwidth than a linear dipole of the same length,
and thus has a lower .

V. SYSTEM Q

Implicit in the relationships in (1) and (2) is the assumption
that the antenna will be resonated with a lossless matching cir-
cuit so as to exhibit a purely real input impedance at a resonant
frequency. In this situation is often referred to as the un-
loaded Q. However, if the matching circuit is not lossless, then
the matching circuit has a finite Q, denoted , and the Q of
the system, , often called the loaded Q, are related by [19]

Q Q Q
(14)

Clearly, if the matching circuit is lossless, is infinite, and the
loaded and unloaded Q’s are the same. If the matching circuit is
a conjugate matching circuit, then and
according to the definition in (1), since the time-averaged stored
energy of the system remains unchanged while the dissipation
of the system is doubled.

VI. SYSTEM EFFICIENCY

Electrically small antennas are known to be inefficient radi-
ators due to the relative magnitudes of the radiation and ohmic
loss resistances. The antenna radiation efficiency,, is given by
the relationship [14]

(15)

Fig. 7. Radiation efficiency versus�a or �L=� for a linear dipole with
sinusoidal current distribution at four frequencies. Dipole wire radius is 1/32 in.
Material is aluminum.

where is the radiation resistance and is the ohmic loss
resistance.

The radiation Q of a lossy antenna is that of the lossless an-
tenna reduced by the fractional value of the radiation efficiency
according to (15). Fig. 6 shows the unloaded for several
values of the radiation efficiency. Just as in a lumped circuit, the
addition of loss decreases Q.

Fig. 7 shows the radiation efficiency of a small dipole at four
frequencies when the radius is fixed at 1/32 in. The curves in
Fig. 7 suggest that many practical electrically small dipole an-
tennas at VHF and above will likely have radiation efficiencies
greater than 50%.

If a matching circuit is present with an efficiency of , de-
fined by the ratio of power out to power in, the efficiency of the
system is [8], [17]

(16)

The above relationship is valid when the matching network con-
tains no elements which store energy in the same form (i.e., elec-
tric or magnetic) as the antenna [17].

When the matching circuit is lossless, (16) reduces to .
In [17] it is shown that many electrically small antennas can be
efficiently matched with a simple reactive L section. Matching
is also discussed by Wheeler in [20] and [21].

VII. SUMMARY AND CONCLUSION

A different approach for predicting the realizable radiation
Q of an electrically small antenna is presented. The method
utilizes the superdirective property of the far-field radiation
pattern and predicts a higher lower bound on the radiation Q
for a dipole type element than previous works. This higher
lower bound appears to be closer to achievable values of
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associated with dipole elements, wherein the current goes to
zero at its end points, such as the linear dipole and bow-tie.
This higher lower bound also appears to be in agreement
with recently published results for the radiation Q of fractal
dipole-type elements [22].

In the previous literature a relationship is published between
the superdirectivity ratio, , and the radiation Q, both of
which use only the pattern factor . While one can define

in any reasonable way, the expression for radiation Q must
be consistent with the fundamental definition in (1). Therefore,
a correct expression for is given by (7) and not by (5). In
fact, the omission of the element factor, g(u), as in (5), produces
meaningless results for the radiation Q of a electrically small
radiator. The expression in (5) may be approximately true for
large broadside sources, but it is not true in general.

Results for previous works [3]–[6], [10] are based upon the
near-fields surrounding the antenna without regard for the art
used to produce those fields. When only the lowest order TM or
TE mode is used, those fields are the same as those of an ideal or
Hertzian dipole. Thus, these previous results could be expected
to predict a lower bound for an antenna reasonably well-mod-
eled by an ideal dipole, such as the end-loaded dipole in Fig. 4,
but not for a linear electric dipole-type element (wherein the
current goes to zero at the ends).

When only the lowest order TM or TE mode is used as in [3],
[10], a fundamental limit for the lower bound on the radiation
Q is obtained. This fundamental limit is a fundamental limit in
much the same sense that the maximum gain from an aperture
occurs when the aperture is uniformly filled everywhere with
fields of the same phase. In both cases the source distribution
is of uniform amplitude and constant phase. In both cases, the
source distribution is difficult to achieve in practice.

Finally, this paper, particularly the two hypotheses and Fig. 2,
serve to explain when and why an electrically small antenna of
the electric type can approach either the McLean (Chu) lower
bound or the new (far-field derived) lower bound in this paper.
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