CHAPTER XV

THE PROPERTIES OF MOVING ELECTRIC CHARGES

275. As the properties of moving electric charges are of great
importance in the explanation of many physical phenomena, we
shall consider briefly some of the simpler properties of a moving
charge and other closely allied questions,

Magnetic Force due to a M oving Charged Sphere.

The first problem we shall discuss is that of a uniformly charged
sphere moving with uniform velocity along a straight line. Let e be
the charge on the sphere, @ its radius, and v its velocity; let us
suppose that it is moving along the axis of z, then when things have
settled down into a steady state the sphere will carry its Faraday
tubes along with it If we neglect the forces due to electromagnetic
induction, the Faraday tubes will be uniformly distributed round
the sphere and the number passing normally through unit area at
a point P will be e/470P2, O being the centre of the charged sphere.
These tubes are radial and are moving with a velocity v parallel to
the axis of z, hence the component of the velocity at right angles to
their direction is v sin 6, where 0 is the angle OP makes with the
axis of z; by Art. 265 these moving tubes will produce a magnetic
force at P equal to

4 (ef4m . OP?) vsin 0 = ev sin 6/0P2,

The direction of this force is at right angles to the tubes, ie. at
right angles to OP; at right angles also to their direction of motion,
Le. at right angles to the axis of %; thus the lines of magnetic force
will be circles whose planes are at right angles to the axis of 2z and
whose centres lie along this axis. Thus we see that the magnetic
field outside the charged sphere is the same as that given by Ampére’s
rule fox an element of current ids, parallel to the axis of 2, placed at
the centre of the sphere, provided ev — 4ds. ‘

25—2
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276. As the sphere moves, the magnetic force at P changes,
so that in addition to the electrostatic forces there will be forces due
to electromagnetic induction, these will be proportional tf’ the
intensity of the magnetic induction multiplied by the velocity of
the lines of magnetic induction, i.e. the force due to electromagnetic
induction at a point P will be proportional to u (ev sin 0/OP‘2) X v,
where p is the magnetic permeability of the medium; while the
electrostatic force will be e/K . OP2, where K is the specific inductive
capacity of the medium. The ratio of the force due to electro-
magnetic induction to the electrostatic force is wK1? sin 0 orsin 6v*/V?,
where V is the velocity of light through the medium surrounding
the sphere; hence in neglecting the electromagnetic. ind.uction we
are neglecting quantities of the order v?/V2 The dn‘ectlop of the
force due to electromagnetic induction at P is along NP, if PN is
the normal drawn from P to the axis of z; this force tends to make
the Faraday tubes congregate in the plane through the centre of
the sphere at right angles to its direction of motion; when the
sphere is moving with the velocity of light it can be shown that all
the Faraday tubes are driven into this plane.

Increase of Mass due to the Charge on the S ‘phere.

277. Returning to the case when the sphere is moving so
slowly that we may neglect v?/V2; we see that since H, the magnetic
force at P, is ev sin §/OP2, and at P there is kinetic energy equal to

pH?/87 per unit volume (see Art. 163), the kinetic energy per unit

volume at P is pe? sin? 0/8x . OP*,

Integrating this for the volume outside the sphere, we find that the
2,2

T . .
kinetic energy outside the sphere is %« , where a is the radius of

the sphere. Thus if m be the mass of the uncharged sphere the
kinetic energy when it has a charge e is equal to
2
% <m + g%) 22,

Thus the effect of the charge is to increase the mass of the sphere
by 2ue?/3a. It is instructive to compare this case with another, in
which there is a similar increase in the effective mass of a body;
the case we refer to is that of a body moving through a liquid.
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Thus when a sphere moves through a liquid it behaves as if its mass
were i + 1Im’, where m is the mass of the sphere, and m the mass
of liquid displaced by it. Again when a cylinder moves at right
angles to its axis through a liquid its apparent mass is m + m/,
where m' is the mass of the liquid displaced by the cylinder. In
the case of an clongated body like a cylinder, the increase in mass
is much greater when it moves sideways than when it moves point
foremost, indeed in the case of an infinite cylinder the increase in
the latter case vanishes in comparison with that in the former; the
increase in mass being ' sin? 0, where 0 is the angle the direction
of motion of the cylinder makes with its axis. In the case of bodies
moving through liquids the increase in mass is due to the motion
of the body setting in motion the liquid around it, the site of the
increased mass is not the body itself but the space around it where
the liquid is moving. In the electrical problem we may regard the
increased mass as due to mass bound by the Faraday tubes and
carried along with them as they move about. We shall for brevity
speak of the source of this mass as the ether, not postulating how-
ever for this ether any property other than that of supplying mass
for the Faraday tubes. From the expression for the energy per unit
volume we see that the increase in mass is the same as if a mass
47 N? per unit volume were bound by the tubes, and had a velocity
given to it equal to the velocity of the tubes at right angles to them-
selves, the motion of the tubes along their length not setting this
mass in motion. Thus on this view the increased mass due to the
charge is the mass of ether set in motion by the tubes. If we regard
atoms as made up of charges of positive and negative electricity,
it is possible to regard all mass as electrical in its origin, and as
arising from the ether set in motion by the Faraday tubes connecting
the electrical charges of which the atoms are supposed to be made
up. For a development of this view the reader is referred to the
author’s Conduction of Electricity throughGases ; Electricityand Matier ;
and “Mass, Energy and Radiation,” Phil. Mag., June 1920.

Momentum in the Electric Field.

278. The view indicated above, that the Faraday tubes set the
ether moving at right angles to the direction of these tubes, suggests
that at each point in the field there is momentum whose direction
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18 at right angles to the tubes, and by symmetry in the plane through
the tube and the line along which the centre of the charged sphere
moves. As the mass of the ether moved per unit volume at P is
4mpuN? where N is the density of the Faraday tubes at P, the
momentum per unit volume would, on this view, be 47pN2 v sin 6.
This is equal to BN where B is the magnetic induction and N the
density of the Faraday tubes at P, the direction of the momentum
being at right angles to B and N. We shall now prove that this
expression for the momentum is general and is not limited to the
case when the field is produced by a moving charged sphere.

279. Since the magnetic force due to moving Faraday tubes is
(Art. 265) equal to 47 times the density of the tubes multiplied by
the components of the velocity of the tubes at right angles to their
direction, and is at right angles both to the direction of the tubes
and to their velocity; we see if @, B, y are the components of the
magnetic force parallel to axes of z, , z at a place where the densities
of the Faraday tubes parallel to z, v, z are /> g, k, and where u, v, w
are the components of the velocity of the tubes, «, B, y are given by
the equations

a=dm (v —gw), B=dn(fw—hu), y=4dx(gu— fo).

If all the tubes are not moving with the same velocity we shall
have

& = 4w (hyoy — gywy + hyvy — gaw, + hgvg — gws + ...)
with similar expressions for 8, y. Here uj, v;, w, are the components
of the velocity of the tubes f,, g;, hy; us, v,, w, those of the tubes
J2s 9a, ko and so on.
Now T the kinetic energy per unit volume at P is equal to

g @ B E9) = £ 16m (T (o — g
& (fw — hu)l® + (X (gu — fo)}?)
= 2mp A (hv — gw)P + (Z (fwo — b)) + (Z (gu — fo))3;
the momentum per unit volume parallel to z due to the tubes

. . aT .
J15 91, Py 18 equal to . ie. to

— dmp {2 (fw — hu) — 9% (gu — fo)}
= p(91y — hp).
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Similarly that due to the tubes f,, g,, ks, is eqnal to

p (g2y — hofi),
and so on, thus P the total momentum parallel to z per unit volume
is given by the equation
P = p(yXg — BZh)
# (vg — Bh),
wheref, g, h are the densitics parallel to «, y, z of the whole assemblage

of Faraday tubes. Similatly @, R, the components of the momentum
parallel to y and z, are given respectively by the equations

Q= p(ch —5f),

RB=p(Bf - ag).

Thus we see that the vector P, @, R is perpendicular to the
vectors a, B, v, f, ¢, k, and its magnitude is BN sin # where B is the
magnetic induction at the point, N the density of the Faraday
tubes and @ the angle between B and N; hence we see that each
portion of the field possesses an amount of momentum equal to the
vector product of the magnetic induction and the dielectric polariza-
tion.

I

280. Before considering the consequences of this result, it will
be of interest to consider the connection between the momentum
and the stresses which we have supposed to exist in the field. We
have seen (Arts. 45, 46) that the electric and magnetic forces in the
field could be explained by the existence of the following stresses:

. KR? . . )
(1) a tension S along the lines of electric force;
v

2
(2) & pressure % at right angles to these lines;

here K is the specific inductive capacity, and R the electric force;

2
(1) a tension ‘%{f: along the lines of magnetic force;
B 2
(2) a pressure LLS% at right angles to these lines;

here p is the magnetic permeability of the medium and H the
magnetic force.
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Let us consider the effect of these tensions on an element of
volume bounded by plane faces perpendicular to the axes of z, 7, 2.
The stresses a are equivalent to a hydrostatic pressure KR?/87 and
a tension K R?/47 along the lines of force. The effect of the hydro-
static pressure on the element of volume is equivalent to forces

d (KR d (KR
(u( )AxAzA "dy<8 ) AzdyAs,
d (KR
dz( 7T>ACL’AJAZ

parallel to the axes of z, , 2 respectively, Az, Ay, Az being the sides
of the element of volume.

Let us now consider the tension KR?/47. We know that a stress
N in a direction whose direction cosines are I, m, » is equivalent to
the following stresses:

Jle acting on the face AyAz parallel to z,

7
tAl/'n ’ 13 13 ” ?/,
Nln b bR 23 1 z?
1 Nim . ,,  AzAz ’ z,
1 Nm? ’3 33 3 39 Y,
v
Nmn 3 I} 3] s 2,
'
Nin ’ »  AzAy X,
T
Amn LH] IH ER) 9 ?/,
an 93 3 3 2 2.

Thus the effect of these stresses on the element of volume is
equivalent to a foree parallel to z equal to

d a4 d )
{Zl&: (NP + dy (Nlm) + e (Nln)} AzAyAz;

the forces parallel to y and 2 are given by symmetrical expressions.

In our case the tension is along the lines of force, hence [ = X

R’

m= % , n= %, where X, Y, Z are the components of the electric
2

force, hence substituting these values for, m, n and putting N = %1—3- ,
mw

we see that the tension produces a force parallel to z equal to
d KX* d KXY dKXZ
<d&b Ar Tdy dm & dm )A“A”A”
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The force parallel to z due to the hydrostatic pressure and this
tension is equal to

( d K(X*4 V2479 d KX?

dx 8 dx 4

{ Y/
7.
when the medium is uniform, this may be written
K {y (d_)_(_ ‘Q’) _ (d?_dﬁ)
4 dy dx de  dz
) e (”g + ‘-g + CZ )] AzAyAe.
Now KX, KY, KZ = 4xf, 4ng, 4wh,

and by equation (4) Art. 234,

IX dY de dZ X @ 4Y dZ_da
dy dx di’ de dz dY dz dy  d

hil dX dY n dz 9
wiiie ((Z:L d@ lz) P>
thus the force parallel to  due to the electric stresses may b2 written
de db
(g ey R Xp) AzAyAe.

In the same way the magnetic stresses may be shown to give
a force parallel to z equal to

ide  dB dy da
{B\dy daﬂ) (dx d~)
g dy
( F >} ArAyAz;
since by Art. 234

dy "
by df_, & de_dy_, dg d_du_, dh

e & T a
da dB  dy\
and M(d—;v+dy+dz') = 470,

where o is the density of the magnetism, the magnetic stresses give
rise to a force parallel to x equal to

( ag b +aa) ArAyAz;

R |
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hence the system of electric and magnetic stresses together gives
rise to a force parallel to z equal to

({(th (cg — bh) + Xp + ao) AzAyAz.

The terms Xp and ao represent the forces acting on the charged
bodies and the magnets in the element of volume, and are equal to
the rate of increase of momentum parallel to z of these bodies, the
remaining term

gt(cg — bh) A Ay Az
equals the rate of increase of the # momentum in the ether in the
element of volume. This agrees with our previous investigation; for
we have seen (p. 391) that the momentum parallel to » per unit
volume is equal to gec — hb.

281. A system of charged bodies, magnets, circuits carrying
electric currents &c. and the ether forms a self-contained system
subject to the laws of dynamics; in such a system, since action and
reaction are equal and opposite, the whole momentum of the system
must be constant in magnitude and direction, if any one part of the
system gains momentum some other part or parts must lose an equal
amount. If we take the incomplete system got by leaving out the
ether, this is not true. Thus take the case of a charged body struck
by an electric wave, the electric force in the wave acts on the body
and imparts momentum to it, no other material body loses mo-
mentum, so that if we leave out of account the ether we have
something in contradiction to the third law of motion. If we take
into account the momentum in the ether there is no such contra-
diction, as the momentum in the electric waves after passing the
charged body is diminished as much as the momentum of that body
is increased.

282. Another interesting example of the transference of mo-
mentum from the ether to ordinary matter is afforded by the
pressure exerted by electric waves, including light waves, when they
fall on a slab of a substance by which they are absorbed. Take the
case when the waves are advancing normally to the slab. In each
unit of volume of the waves there is a momentum equal to the
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product of the magnetic induction B and the dielectric polarization
N; B and N are at right angles to each other, and are both in the
wave front; the momentum which is at right angles to both B and
N 18 therefore in the direction of propagation of the wave. In the
wave B = 47uNV, so that BN —. LB

4 uV’
light; B is a periodic function, and may be represented by an
expression of the form B, cos (pt — nx), x being the direction of
propagation of the wave; the mean value of B? is therefore 1By
Thus the average value of the momentum per unit volume of the

V being the velocity of

. B2
o .
wave 1is B ¥ the amount of momentum that crosses unit area of

the face of the absorbing substance per unit time is therefore
1 B2

by the slab no momentum leaves the slab through the ether, so that
) ) . B2 .
in each unit of time g;-r‘L units of momentum are communicated to

the slab for each unit area of its face exposed to the light: the effect
on the slab is the same therefore as if the face were acted upon by
a pressure By%/8mu. It should be noticed that u is the magnetic
permeability of the dielectric through which the waves are advancing,
and not of the absorbing medium.

If the slab instead of absorbing the light were to reflect it, then
if the reflection were perfect each unit area of the face would in
unit time be receiving By?/8mu units of momentum in one direction,
and giving out an equal amount of momentum in the opposite
direction; the effect then on the reflecting surface would be as if
a pressure 2 x By?/8mu or Bg¥/4mu were to act on the surface. This
pressure of radiation as it is called was predicted on other grounds
by Maxwell; it has recently been detected and measured by Lebedew
and by Nichols and Hull by some very beautiful experiments.

283. If the incidence is oblique and not direct, then if the
reflection is not perfect there will be a tangential force as well as
a normal pressure acting on the surface. For suppose 7 is the angle
of incidence, B, the maximum magnetic induction in the incident
light, By that in the reflected light, then across each unit of wave
front in the incident light Bg?/8mru units of momentum in the direction

A Y
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of the incident light pass per unit time, therefore each unit of
surface receives per unit time cos ¢B2/8mp units of momentum in
the direction of the incident light, or cos i sin iBy?/8mu units of
momentum parallel to the reflecting surface. In consequence of
reflection
cos ¢ sin 1By %[8mu
units of momentum in this direction leave unit area of the surface
in unit time, thus in unit time
cos ¢ sin 1 (By2 — By'%)/8mpu

units of momentum parallel to the surface are communicated to the
reflecting slab per unit time, so that the slab will be acted on by
a tangential force of this amount. Professor Poynting succeeded in
detecting this tangential force.

Since the direction of the stream of momentum is changed when
light is refracted, there will be forces acting on a refracting surface,
also when in consequence of varying refractivity the path of a ray
of light is not straight the refracting medium will be acted upon by
forces at right angles to the paths of the ray; the determination of
these forces, which can easily be accomplished by the principle of
the Conservation of Momentum, we shall leave as an exercise for
the student.

+884. We shall now proceed to illustrate the distribution of
momentum in some simpje cases.

Case of a Single Magnetic Pole and an Electrified Point.
Let A be the magnetic pole, B the charged point, m the strength
of the pole, ¢ the charge on the point, then at a point P the magnetic
induction is m/AP? and is directed along AP, the dielectric polariza-

L7 tion 1s e/4wBP? and is along BP, hence the momentum at P is

{0

mesin APB
4. AP? . BP?
and its direction is the line through P at right angles to the plane
APB. The lines of momentum are therefore circles-with their centres
along AB and their planes at right angles to it, the resultant mo-
mentum in any direction evidently vanishes. There will however be
a finite moment of momentum about AB: this we can easily show by
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integration to be equal to em. Thus in this case the distribution of
momentum is equivalent to a moment of momentum em about 4B.
The distribution of momentum is similar in some respects to that in
a top spinning about 4B as axis. Since the moment of momentum
of the ether does not depend upon the distance between 4 and B it
will not change either in magnitude or direction when 4 or B moves
in the direction of the line joining them. If however the motion of
A or B is not along this line, the direction of the line 4B and there-
fore the direction of the axis of the moment ,

of momentum of the ether, changes. But B B

the moment of momentum of the system
consisting of the ether, the charge point,
and the pole must remain constant; hence
when the momentum in the ether changes,
the momentum of the system consisting of
the pole and the charge must change so as to
compensate for the change in the momentum
of the ether. Thus suppose the charged point moves from B to B’
in the time 8¢, then in that time the moment of momentum in the
ether changes from em along 4B to em along AB'; this change in
the moment of momentum of the ether is equivalent to a moment
of momentum whose magnitude is emd0, where 80 = 2 BAB', and
whose axis is at right angles to 4B in the plane BAB'. The change
in the moment of momentum of the pole and point must be equal
and opposite to this. Since the resultant momentum of the ether
vanishes in any direction, the change in the momentum of the pole
must be equal and opposite to the change in momentum of the
point, and these two changes must have a moment of momentum
equal to emd0: we see that this will be the case if 3 the change in
momentum of the point is at right angles to the plane BAB’ and
emdo
A—B ’

and opposite to this. This change in momentum %%0 occurring in

Fig. 135

equal to while the change in momentum in the pole is equal

the time 8t may be regarded as produced by a force F acting on the
point at right angles to the plane BAB’ and given by the equation

em 60

F= 155"
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BB’ sin ABB’
Now 8= BLEEE,
or if v be the velocity of the point,
50— v8t sin ABB’
T 4B
. % _vsin ABB’
or it~ 4B
thus F= %’2 sin ABB’
= evH sin ¢,

where H is the magnetic force at the point and ¢ the angle between
H and the direction in which the point is moving; from this we see
that a moving charged point in a magnetic field is acted on by a
force at right angles to the velocity of the point, at right angles
also to the magnetic force at the point, and equal to the product of
the charge, the magnetic force and the velocity of the point at right
angles to the magnetic force. Thus we see that we can deduce the
expression for the force acting on a charged point moving across the
lines of magnetic force directly from the principle of the Conservation
of Momentum. We should have got an exactly similar expression
if we had supposed the charge at rest and the pole in motion: in this
case we must take v to be the velocity of the pole and ¢ the angle
between v and AB.

&

285. From the expression given on page 391 for the momentum
in the field we can prove that the momentum in the ether due to
a charged point at P and the magnetic force produced by a current
flowing round a small closed circuit, is equivalent to a momentum
passing through P whose components F, @, I parallel to the axes
of z, y, z respectively are given by the equations

F = pia (mg1~nii 1),

der dyr
. dl d1
6= puia (n g2 ~12.0),
. 41 dl1
H:,u,w (ld—y; —m%;),

where ¢ is the current flowing round the circuit, a the area of the
circuit and I, m, n the direction cosines of the normal to its plane,

=
i

s
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Z, ¥, z are the coordinates of P and r the distance of P from the
centre of the circuit, the charge at P is supposed to be the unit
charge. We see that

dF  dG . d? 1 1 41 d? 1

dy " da M {m@dﬁ = (72, ‘*Jiﬂ)“dx‘d‘z;}’
21 1 1

or since

da2r " dytr T d2yT
dF 4G . d? 1 d? 1 a1
it A i (Pt Mgder g2y
. d dl d1 d1
= pia g (157 M )
—e

¢ being the z component of the magnetic induction at P due to the
small circuit. We have similarly if ¢ and b are the  and Y com-
ponents respectively of this induction

aw_ar_,
dr dz
d6¢ dH
A dy T ¢

The usual expression for the electromotive force due to induction

follows at once from the principle of the Conservation of Momentum.,

For the momentum in the ether is equivalent to a momentum through
P whose components are F, ¢, H. Suppose that in consequence of
the motion of the circuit or the alteration of the current through it,
F, G, H become F + §F, ¢ + 8G, H -+ 8H, then the momentum in
the ether still passes through P but has now components F I §F,
G+ 8G, H + 8H instead of F, ¢, H; but the momentum of the
whole system, point circuit and ether must remain constant; thus
to counterbalance the changes in momentum OF, 3G, 8H at P due
to the ether, we must have changes in momentum of the unit charge
at P equal to — 8F, — 8@, — SI. Suppose that the time taken by
the changes SF, 8¢, SH is dt, then in the time 8¢ the z momen-
tum of the unit charge at P must change by — 8F, i.e. the unit

charge must be acted on by force —i‘g Thus there is at P an

electric force whose component paralle] to  is — Cfi—{, similarly the
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¢ dH
de’  dt”
whose components we have just found is the force due to electro-
magnetic induction, and its magnitude is that given by Faraday’s
law. To prove this we notice that the line integral of the electric
foree round a fixed circuit of which ds is an element is equal to

[ (dF dz  dGdy dHdz
SICE S T )

components parallel to ¥ and z are — The electric force

_d dx dy dz
—‘deFazg‘*“G:zﬂHas)ds

d aGd dH dH dF dF d&
:‘m,f{l(zz‘dg)“”(drzz")”(a};—gx)}dS

by Stokes’ theorem; here I, m, n are the direction cosines of the

normal to a surface filling up the closed curve, dS is an element of
this surface. Substituting the values already given for %g - %lg, &e.
the preceding expression becomes
47
- Ez‘ij (la-+ mb -+ nc) dS;

the integral in this expression is the number of lines of magnetic
induction passing through the closed circuit, hence we see that the
line integral of the electric force due to induction round a closed
circuit equals the rate of diminution in the number of lines of
magnetic induction passing through the circuit; this however is
exactly Faraday’s law of induction (see Art. 229).

286. When a charged particle is moving so rapidly that +?/V?
cannot be neglected, the distribution of the Faraday tubes round the
particle is no longer uniform and the expression 2ue?v/3a given in
Art. 277 for the momentum of the charged sphere has to be modified.

When v approaches V, the value of momentum v, the apparent
mass, increases rapidly with »; thus if an appreciable amount of
the mass of a body is due to electric charge, the mass of the body
will increase with the velocity, it is only however when the velocity
of the body approaches that of light that this increase becomes
appreciable, in the limiting case where the velocity is that of light
the apparent mass would be infinite. The influence of velocity on
the apparent mass of particles travelling with great velocities has
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been detected by Kaufmann by some very interesting experiments,
a short account of which will be found in the author’s Conduction of
Electricity through Gases, page 533. Kaufmann found that a particle
moving with a velocity about five per cent. less than the velocity
of light, had a mass about three times that with small velocities.

The increase in the mass of a slowly moving charged sphere is
2ue*/3a, i.e. 4 (potential energy of the sphere)/3 V2, thus if this mass
were to move with the velocity of light its kinetic energy would be
two-thirds of the electrical potential energy. The proportion between
the increase in the mass due to electrification and the electrical
potential energy can be shown to hold for any system of electrified
bodies as well as for the simple case of the charged sphere.

287. Effects due to changes in the velocity of the
moving charged body. We shall take first the case of a
charged sphere moving so slowly that the lines of force are symmetri-
cally distributed around it, and consider what will happen when the
sphere ig suddenly stopped. The Faraday tubes associated with the
sphere have inertia and are in a state of tension, thus any disturbance
communicated to one end of a tube will travel along the tube with
a finite and constant velocity—the velocity of light. Let us suppose
that the stoppage of the particle takes a finite small time 7. We can
find the configuration of the tubes, after a time ¢ has elapsed since
the sphere began to be stopped, in the following way. Describe with
the centre of the charged sphere as centre two spheres, one having
the radius V¢, the other the radius V (f — 7). Then since no dis-
turbance can have reached the portions of the Faraday tubes
situated outside the surface of the outer sphere these tubes will be
in the positions they would have occupied if the sphere had not
been stopped, while since the disturbance has passed over the tubes
within the inner sphere, these tubes will be in their final position.
Thus consider a tube which when the particle was stopped was along
the line OPQ), O being the centre of the charged sphere, this will be
the final position of the tube; hence at the time ¢ the portion of this
tube inside the inner sphere will be in the position OP, the portion
P'Q)’ outside the outer sphere will be in the position it would have
occupied if the sphere had not been stopped, i.e. if O’ is the position
to which O would have come if the sphere had not been stopped,

T. E. 26

.

e e,
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P'Q’ will be a straight line passing through O’. Thus to preserve
its continuity the tube must bend round in the shell between the
surfaces of the two spheres, and take the position OPP'Q’. Thus
the tube which before the sphere was stopped was radial, has now,
in the shell, a tangential component, and this implies a tangential
electric force; this tangential force is, as the following calculation
shows, much greater than the radial force at P before the sphere
was brought to rest.

Let us suppose that 3, the thickness of the shell, is so small that
the portion of the Faraday tube inside it may be regarded as straight,

4

Q’ @

Fig. 136

then, if T is the tangential force inside the pulse, R the radial force,
we have
T PN O00'sin@ wtsinf
g e (1),

RPN~ 5
where w is the velocity with which the sphere was moving before
it was stopped, and @ the angle OP makes with the direction of
motion of the sphere; ¢ is the time since the sphere was stopped.
Since OP = Vit and R = ¢/K . OP?, K being the specific inductive
capacity of the medium, we have, writing 7 for OP,

ewsin f

T KV .r5"
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Thus the tangential force varies inversely as the distance and not
as the square of the distance.

The tangential Faraday tubes move radially outwards with the
velocity ¥V, they will therefore produce a magnetic force at right
angles to the plane of the pulse and in the opposite direction to the
magnetic force at P before the sphere was stopped; this force is
equal to ’

KT ewsind

V><47'r.4—7r= s
the magnetic force before the sphere was stopped was ew sin /72,
thus the magnetic force in the pulse, which however only lasts for

a very short time, exceeds that in the steady field in the proportion

of r to 8.

Thus the pulse produced by the stoppage of the sphere is the

seat of very intense electric and magnetic forces; the pulses formed
by the stoppage of the negatively electrified particles of the cathode
rays form, in my opinion, the well-known Réntgen rays.

288. Energy in the Pulse. The energy due to the mag-
netic force in the field is per unit volume
p ePwtsin? 6
8w 0%
integrating this through the pulse we find that the energy due to
the magnetic force in the pulse is
“ pew?
36%
The energy due to the tangential electric force in the pulse is
pet unit volume
KT? ¢’ sin?d
87 8. KV%%Y
integ;ating this through the pulse we find that this energy is equal
to ’%w—z, since pK = e
Thus the total energy in the pulse is g ”e;uf; and this energy

radiates away into space. The energy in the field before the sphere
was stopped was jue®w?/a, where a is the radius of the sphere (see
Art. 277). Thus if & is not much greater than the diameter of the

S - e

e e e 2k e
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sphere a very considerable fraction of the kinetic energy is radiated
away when the particle is stopped.

289. Distribution of Momentum in the Field. There
is no momentum inside the surface of the sphere whose radius is
b (t — T), there is a certain amount of momentum in the pulse, and
momentum in the opposite direction in the region outside the pulse;
we shall leave it as an exercise for the student to show that the
momentum in the pulse is equal and opposite to that outside it, so
that as soon as the sphere is reduced to rest the whole momentum
in the field is zero.

290. Case of an Accelerated Charged Body. The
preceding method can be applied to the case when the charged body
has its velocity altered in any way, not necessarily reduced to zero,
Thus if the velocity instead of being reduced to zero is diminished
by 8w, we can show in just the same way as before that the magnetic
force H in the pulse is given by the equation

- eAw . sind
™
and the tangential electric force I' by
p . cAwsind
KVrs ~

Now & = V&t if 3t is the time required to change the velocity by
Aw, hence we have

m_ Awsin 6 e Awsing,
Ve r TKVES r
but Aw/d = — f, where f is the acceleration of the particle, hence
e fsinf . e fsind
==y T="gr

Tt must be remembered that f is not the acceleration of the sphere
at the time when H and T are estimated but at the time 7/V before
this. We see that when the velocity of the sphere is not uniform,
part of the magnetic and clectric force will vary inversely as the
distance from the centre of the sphere, while the other part will
vary inversely as the square of this distance; at great distances
from the sphere the former part will be the most important.

-
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The energy in the pulse emitted whilst the velocity is changing
is equal to 2e2f2
3 v
where d is the thickness of the pulse; since d = V8¢, where 8 is the
time the acceleration lasts, the energy emitted in the time 8¢ is
262 '
S5t
3V o,
thus the rate of emission of energy is 2¢2/2/3V.

d,

291. Magnetic and Electric Forces due to a charged
particle vibrating harmonically through a small distance.
The magnetic force proportional to the acceleration which we have
just investigated arises from the motion of the tangential part of
the Faraday tubes—the portion P'N’ of Fig. 134; the radial tubes
are however also in motion, their velocity at right angles to their
length being w sin 6, where w is the velocity of the particle when
its acceleration is f, i.e. at a time r/V before the force is estimated.
This motion of the radial tubes produces a magnetic force ew sin 8/r®
in the same direction as that due to the acceleration. Thus H the
magnetic force at P is equal to

ewsinf efsind

T TV
and is at right angles to OP and to the axis of z along which the
particle is supposed to be moving. Let the velocity of the particle
along this line be w sin pt and its acceleration therefore wp cos pi.
The magnetic force at P at the time ¢ will depend upon the velocity

. . r
and acceleration of the particle at the time ¢ — 7 these are respec-

tively w sin p <t — ;;> and wp cos p (t -~ —;,) , thus H the magnetic

force at P is given by the equation

. . 7
ew sin  sin p (t — %) N ew sin Bp cos p (t — V>
72 ‘ Vr '
If @, B, y are the components of this force parallel to the axes of

z, i, 2, then

_ Y
e= rsinBH’ B

H=

z
" rsind

H, y=0.
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Hence
i t— T sin <t—1)
“dewsmp(——v) Igﬁ_iew P v
T P

If X, Y, Z are the components of the electric force, we have by
equation (1), page 363,

. r
dX_dy dﬂm I ewsmp(t—v>

L R R A e e

- r
AY da dy & ewsin (1~ )

BG=% @ @ ; ’

7 B de (@ ewSh’p<‘“"V)
gy i)
Hence the periodic parts of X, Y, Z are given by the equations

r
17 d‘ ‘ éw CO8 P ( t— —I;,)
pdzdz r
ew CoS p (t — T)
1 a |4
pdydz r

Kz-1 (ili + (ZE) M
p\da? " dy? 7
In addition to these there are the components
_edl_edl  edl
Kdxr’ Kdyr’ Kdzr’
of the electrostatic force due to the charge at 0. In this investigation
w is supposed to be so small compared with V that w?/V2 may be

3

KX = —

KY =

2

neglected.





