
Figure 3 Tuning characteristics of Er 3�-doped fiber ring laser.
Inset: a numerical spectral plot tuned at 1515 nm. Notice a small
hump in the 1530 nm region having a similar profile as in Figure 4
Ž .arrow

Tuning the laser to a wavelength shorter than 1535 nm
brings about a significant drop in the output power level; see
Figure 3. The drop in power level is due to higher intracavity
losses incurred by the variation of the insertion loss of the
tunable filter. The plot shows the continuous tuning charac-
teristic of the laser, with small power variations in the
1535�1567 nm tuning range. Under certain conditions, with
regard to its intracavity loss, output coupler ratio, and EDF

Ž .length, an EDFL without a filter in the cavity will lase in
either the 1530 or 1550 nm region, but not in the 1540 nm
region. However, the laser with a filter incorporated in the
cavity can be tuned and lase at 1540 nm. A numerical study
shows that the filter functions such that only modes within
the filter bandwidth are allowed to oscillate and are ampli-
fied; hence, all of the power is pumped and channeled into
the tuned bandwidth. A numerical spectral plot of the laser
output tuned at 1515 nm is shown in the inset of Figure 3. A
small hump in the 1530 nm region, which illustrates a higher

Ž .amplified spontaneous emission ASE level that results from
high absorption and gain coefficient at 1530 nm, demon-

Ž .strates a similar profile arrow in Figure 4. The numerical
plot shows a close match with the measured result. The
measured output spectra of the EDFL tuned from 1515 to
1567 nm are shown in Figure 4, with a signal-to-noise ratio
Ž .SNR of about 70 dB. The tuning limitation of the filter
restrains further measurement beyond 1567 nm, although the

Figure 4 EDFL output spectra when tuned from 1515 to 1567 nm.
The 3 dB spectral width is 0.044 nm, limited by the optical spectrum
analyzer resolution bandwidth

plots in Figures 3 and 4 show relatively high output power in
this region. Numerical results show that the output power
drops substantially when the laser is tuned to 1570 nm and at
a longer wavelength. Photon reabsorption and emission to a
longer wavelength could not be realized due to the short
length of EDF used. At 12 m length of EDF, the model
shows that the laser exhibits a relatively high output power
when tuned at 1575 nm.

4. CONCLUSION

We have demonstrated a tuning range of more than 50 nm
from an all-fiber ring erbium-doped fiber laser with an SNR
of 70 dB. This tunable laser source can be used for wave-
length-division multiplexed systems. A numerical model was
briefly discussed and used to compare measured and calcu-
lated results. The experimental results have good matching
values with the modeled results.
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ABSTRACT: The usefulness of fractal Hilbert cur�es in antenna geome-
try is explored here for the first time. Apart from being simple and
self-similar, these cur�es ha�e the additional property of approximately
filling a plane. These properties are exploited in realizing a ‘‘ small’’
resonant antenna. This approach has resulted in an antenna size smaller
than 
 � 10 and still resonant, with performance comparable to a dipole
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whose resonant length is close to 
 � 2. Numerical predictions of the
input impedance of the antenna ha�e been compared with experiments.
The effect of additional fractal iterations on the reduction of the resonant
frequency has been studied. The radiation characteristics of the antenna
at the resonant frequencies pro�ided show that this is �ery similar to the
dipole characteristics. � 2001 John Wiley & Sons, Inc. Microwave Opt
Technol Lett 29: 215�219, 2001.

Key words: fractal antennas; Hilbert cur�es; multiband antennas;
small antennas

INTRODUCTION

With the widespread proliferation of telecommunication
technology in recent years, the need for small-size multiband
antennas has increased manifold. However, an arbitrary re-
duction in the antenna size would result in a large reactance
and deterioration in the radiation efficiency. Meander-line
and zig-zag antennas have been studied for their capability in

� �antenna size reduction 1, 2 . However, novel antenna con-
figurations using fractal Hilbert curves introduced here can
reduce the antenna size further. Once optimized for radiation
characteristics, these antennas can find many applications in
UHF�VHF communication antennas.

Two important properties of fractal patterns are self-simi-
� �larity and scale invariance 3 . Fractals consist of identical or

similar elements repeated in different magnifications, orien-
tations, and positions, most often in an interconnected fash-
ion to obtain the final structure. The seemingly random
nature of fractals is exploited in several fields of engineering

� �and science. Jaggard and Spielman 4 have shown that the
geometric similarity of fractals can be translated to their
electromagnetic behavior, in the context of diffraction stud-
ies. Similarly, the diffracted fields of self-similar fractal

� �screens are also found to be self-similar 5 . Although a large
number of fractal patterns have been studied in mathematics,
only very of few of these have actually been implemented for
antenna structures. Among those currently reported in the

�literature include Koch curves and the Sierpinski gasket 6,
�7 . Some of these geometries have recently been pursued for

antenna applications because of their inherent multiband
nature. However, incorporation of many new fractal geome-
tries into the antenna structures, and various aspects of their
optimization, are still in the incipient stages. Nonetheless, the
analysis of fractal distribution of elements in antenna arrays

� �has been extensively studied 8 .
The fractal antennas using a Siepinski gasket have been

� �configured to obtain multiple-frequency bands 9 . These an-
tennas resonate at frequencies in a near-logarithmic interval.
The individual bands at these resonant frequencies are gen-
erally small. However, their relative positions can be con-
trolled by perturbing the shapes of the fractal geometry of

� �the antenna configuration 10 . This approach has resulted in
a multiband antenna with the individual bands located almost
arbitrarily. Apart from this, other important features of this
fractal antenna include low profile, the possibility of multiple
frequency bands, and moderate gain. The gain of this an-
tenna is quite promising, considering its overall size. These
have been extended further to make them wideband and

� �conformal 11 .
In this paper, we present a new set of fractal patterns

which are used here in antenna design for the first time.
These consist of Hilbert curve patterns, which have several
important characteristics hitherto unexplored in antenna en-
gineering.

FRACTAL HILBERT CURVES

Various iteration stages of fractal Hilbert curves are shown in
Figure 1. It may be observed that geometry at a stage can be
obtained by putting together four copies of the previous
iteration, connected to additional line segments. For exam-
ple, the geometry of order 2 can be thought of as four copies

Žof the geometry with order 1 arranged in different orienta-
.tions , connected to the additional segments shown with

dashed lines.
It would be interesting to identify the fractal properties of

this geometry. The plane-filling nature is evident by compar-
ing the first few iterations of the geometry shown in Figure 1.
It may, however, be mentioned that this geometry is not
strictly self-similar since additional connection segments are
required when an extra iteration order is added to an existing

Žone. But the contribution of this additional length shown
.with dashed lines in Fig. 1 is small compared to the overall

length of the geometry, especially when the order of the
iteration is large. Hence, this small additional length can be
disregarded, which makes the geometry self-similar.

A similar ambiguity also prevails in determining the di-
mension of the geometry. The topological dimension of the
curve is 1 since it consists only of line segments. However, the
dimension of a fractal curve can be defined in terms of a

� �multiple-copy algorithm 12 . The similarity dimension D is
defined as

Ž .log N
D � Ž .log 1�f

where N is the number of copies and f is the scale factor of
consecutive iterations. The dimension of the Hilbert curve is

�Ž n . Ž n�1 .�log 4 � 1 � 4 � 1
D � n n�1�Ž . Ž .�log 2 � 1 � 2 � 1

Ž n n�1 .log 4 �4 log 4
Ž .� for large n � � 2.n n�1Ž . log 2log 2 �2

The similarity dimension of this curve approaches an integer
Ž .value 2 because of the approximation involved when a large

fractal order is considerd. But if we consider the length and
number of line segments first and second iterations, the
dimension is

Ž .log 15�3
D � � 1.465.2 Ž .log 7�3

The corresponding numbers in the new two iterations are
1.694 and 1.834. These numbers point to the fact that the
dimension of the geometry is still a fractional number, albeit
approaching 2.

Figure 1 Generation of four iterations of Hilbert curves. The
segments used to connect the geometry of the previous iteration are
shown in dashed lines
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As the dimension approaches 2, the curve is almost filling
a plane. In other words, the total length of the line segments
Ž .with topological dimension 1 tends to be extremely large.
This could lead to a significant advantage in antennas since
the resonant frequency can be reduced considerably for a
given area by increasing the fractal iteration order. It may be
recalled that the dimension of this curve is larger than that of

Ž . � �Koch curves dimension � 1.262 studied elsewhere 8 , re-
sulting in a larger reduction factor for the antenna size. The
studies presented here indicate that, by increasing the fractal
iteration order, the resonant frequency of the antenna can be
significantly reduced. Thus, this approach strives to overcome
one of the fundamental limitations of antenna engineering

� �with regard to small antennas 13 . It may, however, be
notioned that, since fractals do not come under the purview
of Euclidean geometry, stipulations based on this may be

� �relaxed for fractals 11 .

NUMERICAL SIMULATIONS

Numerical simulations were done using NEC, which is mo-
ment-method-based software. This is very effective in analyz-
ing antennas that can be modeled with wire segments, such as
the one under consideration here. The model gives accurate
results when the segment length � 
�20. To suit the re-
quirements, the antenna is modeled without any dielectric
present, although some of the practical implementations do
require dielectric support. A typical antenna geometry with a
third iteration fractal curve is shown in Figure 2. This geome-
try is created with a recursive algorithm consistent with
common fractal generation approaches. Since a reduction in
the overall size of the antenna is of primary importance, this
algorithm is implemented in such a way as to divide this into
equal-sized segments. Thus, for a fractal geometry of third

Žiteration in Figure 2 nominal outer dimension � 7 cm �
.7 cm , each line segment is of length 1 cm.

The feed source point is placed at the point of symmetry
for these structures. The real and imaginary parts of the
input impedance of this Hilbert curve fractal antenna with
two, three, and four iterations are shown in Figure 3. The
antennas occupy a square of side 2, 4, and 8 cm in these
cases. Thus, an antenna with a third iteration fractal consists
of four subgeometries occupying the same area as with the
second iteration considered here. This shows the multiple
resonance characteristics of the antenna, as well as the self-
similarity of its characteristics.

To explore the extent of the plane-filling characteristics of

Figure 2 Antenna configuration with Hilbert curve fractal patterns,
used in simulation

Figure 3 Real and imaginary parts of the input impedance for
three iterations of Hilbert curve fractal antennas obtained with
numerical simulations. The second resonant frequency for the third
iterated curve is slightly lower than the resonant frequency for the
second iterated curve. This may be due to the loading effects, in
addition to the small connector segment added in the fractal genera-
tion. The imaginary part of the fourth iterated antenna shows many
more resonances, and is truncated for clarity

the antenna geometry, these three iterations are also made
within a uniform area of 7 cm � 7 cm, and the corresponding
results are shown in Figure 4. These indicate the self-similar-
ity in the antenna characteristics. Another important charac-
teristic to be noticed is the lowest resonant frequency in each
case. The resonant frequencies are for the third iteration:
360, 980, and 1440 MHz, and for the fourth iteration: 270,
720, 1000, and 1370 MHz. This shows a reduction in the

Ž .resonant frequency in this case by 25% with an increase in
the fractal iteration order, despite the outer dimensions of
the antenna being the same. The predicted radiation patterns
at the resonant frequencies for the third iterated fractal
antenna at its resonant frequencies are shown in Figure 5.
The geometry is placed in the xy-plane, and the pattern cuts
are provided for all three orthogonal planes. These indicate
that, at least for the first two resonances, the shape of the
radiation pattern remains the same. This is in contrast to a
normal dipole antenna where additional nulls appear with
each subsequent resonances. The reason for this difference is
that the overall size of this radiator remain considerably less
than that of an equivalent linear dipole at these frequencies.
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Ž . Ž .Figure 4 Computed input impedances for a third and b fourth
iteration Hilbert curve antenna. Both antennas have outer dimen-
sions of 7 cm, and are modeled with a wire of 1.3 mm diameter

EXPERIMENTAL RESULTS

The NEC prediction for the third iteration antenna geometry
has been compared with experimental results. The measured
results for this antenna made with copper strips of 4 mm
width are shown in Figure 6. The corresponding simulated

Ž .results are presented in Figure 4 a . In the simulation, how-
� �ever, an equivalent wire diameter is used 14 . The slight

mismatch in this is attributed to the feed arrangement being
unbalanced. The low values for the real part of the impedance
are consistent with other similar small antennas, such as

� � � �Koch antennas 15 and small meander-line antennas 2 .
However, by using impedance-matching circuits, or even by
changing the feed location, this can be remedied.

CONCLUSIONS

The effect of self-similarity and plane-filling properties of
fractal Hilbert curves in antenna characteristics is studied
numerically using a moment-method-based software, and the
predicted input characteristics are compared with experimen-
tal data. The results presented here establish the link be-
tween the self-similarity of the antenna geometries and its
frequency response. Another important advantage of using
Hilbert curves is the incorporation of its plane-filling charac-
teristics to realize resonant antennas with a smaller overall
physical size. A fourth iterated fractal Hilbert curve geometry
inscribed in a square of side 7 cm is shown to result in a
resonant frequency of 267 MHz, which is much lower than
any other resonant antenna of similar size.

Figure 5 Predicted radiation pattern in two orthogonal planes
intersecting the antenna geometry, at different resonant frequencies.
The antenna geometry is in the xy-plane. The pattern cuts in the
Ž . Ž . Ž .a xz-plane, b yz-plane, and c xy-plane are shown. The input

Ž .impedance of the geometry used here is shown in Figure 4 a
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Figure 6 Measured input impedance of a Hilbert curve fractal antenna. The antenna is fabricated with 4 mm wide copper strips of
the third iterated fractal geometry occupying a 7 cm square area. The measured performances of this antenna is comparable with the

Ž .simulated response in Figure 4 a
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ABSTRACT: A new configuration of a three-port rectangular microstrip
power di�ider and coupler has been proposed. It can easily implement
unequal power di�ision of a large ratio, i.e., the power coupled to the
third port can �ary from �3 to �26 dB. The configuration has been
analyzed using a transmission-line model, as well as method-of-
moments-based software. � 2001 John Wiley & Sons, Inc. Microwave
Opt Technol Lett 29: 219�223, 2001.
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1. INTRODUCTION

Power dividers and couplers are the building blocks of mi-
crowave and millimeter-wave systems. In a planar configura-
tion, the branch-line directional coupler was first proposed by

� �Reed and Wheeler in 1956 1 , and the n-way power divider
� �was reported by Wilkinson in 1960 2 . After that, several

types of power dividers and couplers, including direct-coupled
� �and coupled-line configurations, were reported 3�11 . An

unequal power divider can be realized by using a two-way
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