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The applied electric field used in most electrorheological (ER) experiments is usually
quite high, and nonlinear ER effects have been measured recently. In this work, a self-
consistent formalism has been employed to compute the interparticle force for a nonlinear
ER fluid in an attempt to investigate the effect of a nonlinear characteristics on the
particle interactions.
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1. Introduction

The prediction of the strength of the electrorheological (ER) effect is the main

concern in a theoretical investigation of ER fluids. The ER effect originates from

the induced interaction between the polarized particles in an ER fluid. As the

mismatch in material parameters (either conductivities or dielectric constants) is re-

sponsible for the ER effects, previous theoretical studies have taken the point-dipole

approximation,1,2 which is now believed to be over-simplified. Since the many-body

and multipole interactions have been ignored in these studies, the predicted yield

stress has been off by an order in magnitude. The gap between theory and experi-

ment further widens rapidly because the technological applications of ER fluids have

stimulated many experiments which measure directly the interactions between par-

ticles of various materials under different experimental conditions. It is now known

that for crystalline particles, not only force but also torque are exerted on the

particles due to crystalline anisotropy. It is also known that particles coated with

different materials have a significant impact on the ER response.3,4

Because of the inadequacy of the point-dipole approximation, substantial ef-

fort has been made to sort out more accurate models. Klingenberg and coworkers

proposed an empirical force expression for the interaction between isolated pairs

of equal spheres from the numerical solution of Laplace’s equation.5 Davis used

the finite-element method, which is proved to be effective.6 Clercx and Bossis con-

structed a fully multipolar treatment to account for the polarizability of spheres

up to 1,000 multipolar orders.7 Recently, Yu and coworkers developed an integral
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equation method which avoids the match of complicated boundary conditions on

each interface of the particles and is thus applicable to nonspherical particles and

multimedia.8 Substantial improvements have been achieved in reducing the differ-

ence between theory and experiment.

On the other hand, the applied electric field used in most ER experiments is

usually quite high, and important data on nonlinear ER effects induced by a strong

electric field were recently unveiled experimentally by Klingenberg and coworkers.9

However, the effect of a nonlinear characteristics on the particle interactions remains

unknown. A theoretical explanation of these data is urgently required, which is a key

aspect in this investigation. In this work, the effect of a nonlinear characteristics on

the particle interactions is investigated via a self-consistent formalism,10 in which

the recently established (linear) multiple image results11,12 will be converted to

nonlinear ones to compute the interparticle force for a nonlinear ER fluid.

2. Multiple Image Dipole for a Pair of Dielectric Spheres

We first consider a standard textbook problem13 in which a point dipole p is placed

at a distance r from the center of a perfectly conducting sphere of radius a. The

orientation of the dipole is perpendicular to the line joining the dipole and the center

of the sphere. The electric field vanishes inside the conductor while the electric

potential outside the sphere can be found by using the method of image. We put an

image dipole p′ inside the sphere at a distance r′ from the center; the image dipole

is given by p′ = −p(a/r)3, and r′ = a2/r. If the orientation of the point dipole is

parallel to the axis, then p′ = 2p(a/r)3.

We next consider a pair of perfectly conducting spheres, of equal radius a, sepa-

rated by a distance r. The spheres are placed in a host medium of dielectric constant

ε2. Assume that the two conductors are electrically neutral, and a constant electric

field E0 = E0ẑ is applied to the spheres. Induced surface charge will contribute

to each conductor a dipole moment given by p0 = ε2E0a
3. The dipole moment

p
(1)
0 induces an image dipole p

(1)
1 in sphere 2, while p

(1)
1 induces yet another image

dipole in sphere 1. As a result, multiple images are formed. Similarly, p
(2)
0 induces

an image p
(2)
1 inside sphere 1, and hence another infinite series of image dipoles are

formed. The multiple images obey a set of difference equations, which can be solved

exactly.11

We are now in a position to generalize the above results to a pair of dielectric

spheres of dielectric constant ε1. Upon the application of E0, the induced dipole

moment inside the spheres is given by:

p0 = εmE0ba
3 , (1)

where b is the dipolar factor and is given by:

b =
ε1 − εm
ε1 + 2εm

. (2)
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For a point dipole placed in front of a dielectric sphere, the generalization reads p′ =

−τp(a/r)3 and p′ = 2τp(a/r)3 for transverse and longitudinal fields respectively.

The factor τ is known as dielectric contrast and is given by:

τ =
ε1 − εm
ε1 + εm

. (3)

By using the idea of multiple images, we can deduce the total dipole moment of

each sphere (normalized to p0), for a transverse field:

pT

p0
= (a sinhα)3

∞∑
n=1

[
(−τ)2n−2

(a sinhnα+ a sinh(n− 1)α)3
+

(−τ)2n−1

(r sinhnα)3

]
. (4)

The subscript T denotes that the applied electric field is a transverse field. The

parameter α is given by

coshα =
r2

2a2
− 1 . (5)

Similarly, for a longitudinal field:

pL

p0
= (a sinhα)3

∞∑
n=1

[
(2τ)2n−2

(a sinhnα+ a sinh(n− 1)α)3
+

(2τ)2n−1

(r sinhnα)3

]
. (6)

We should remark that the present generalization is only approximate because there

is a more complicated image method for a dielectric sphere.12 However, in the limit

τ → 1, the above expressions reduce to the perfectly conducting sphere results. We

expect that this approximation to be good at high contrast, i.e. τ → 1. We have

checked the validity by comparing these analytic expressions with the numerical

solution of the integral equation method.8 The transverse force FT between the

spheres is given by14

FT = E0
∂pT

∂r
. (7)

Similarly, for a longitudinal field:

FL = E0
∂pL

∂r
. (8)

3. Self-Consistent Formalism for Nonlinear ER Effect

We are in a position to examine the impact of a nonlinear characteristics on the ER

effect. We concentrate on the case that only the suspending spheres have a nonlin-

ear dielectric constant, with the host medium being linear. Naively, the nonlinear

characteristics gives rise to a field-dependent dielectric coefficient ε̃1 = ε1 +χ1〈E2
1 〉,

which depends on the average electric field inside the spheres,4 where χ1 is the non-

linear coefficient of the spheres. In other words, the electric displacement-electric

field relation inside the spheres is given by

D1 = ε1E1 + χ1〈E2
1〉E1 = ε̃1E1 . (9)
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This constitutes an approximation: the local field inside the spheres is assumed to be

uniform and the assumption is called the decoupling approximation.10 It has been

shown that such an approximation yields a lower bound for the accurate result.10 It

is clear from the above consideration, the effect of a nonlinear characteristics enters

the force expression in two places: from the dipolar factor b and from the dielectric

contrast τ appearing in the infinite series [Eqs. (4) and (6)]. The latter effect gives

rise to a deviation from the nonlinear point-dipole results, as we shall see below.

To calculate the force between a pair of separated spheres, we replace ε1 by

ε̃1 in Eqs. (7) and (8), which means that we have to calculate the local field self-

consistently inside the spheres. The electric field inside the spheres can be conve-

niently calculated by considering the effective dielectric constant of a composite in

which the spheres are embedded in a host medium of much larger volume V . For a

two-component composite, the effective dielectric constant εe is given by:

εe =
1

E0V

∫
V

ε(r)|E(r)|2dV =
fε1

E2
0

〈E2
1 〉+

(1− f)ε2
E2

0

〈E2
2〉 , (10)

where f is the (infinitesimal) volume fraction of component 1. For a pair of spheres

inside a transverse field, the effective dielectric constant can be expressed as:

εe = εm + 3fεm

(
2bpT

p0

)
. (11)

The electric field inside the spheres can be calculated by using Eq. (11):

〈E2
1〉 =

1

f
E2

0

∂εe

∂ε1
= 6E2

0εm

[
b
∂

∂ε1

(
pT

p0

)
+

(
pT

p0

)
∂b

∂ε1

]
, (12)

where pT/p0 is given by Eq. (4). For a nonlinear characteristics Eq. (9), we replace

ε1 by ε̃1 and then solve Eq. (12) self-consistently.10 The local field inside the spheres

and the force between the spheres can be determined. The force for the longitudinal

field case can be calculated in essentially the same way.

4. Results and Discussion

If we ignore the mutual polarization effect between the spheres, the force between

point dipoles can be derived by noting that the nonlinear dipole moment varies as

p̃ = βE0 + γE3
0 + · · ·, where β and γ are constants. Since the interparticle force F

varies as p̃2, we find that F = (βE0)2(1 + cE2
0 + · · ·), where c is a constant. A plot

of F/E2
0 against E2

0 would yield a straight line.

In order to demonstrate the effect of the nonlinearity on the force between the

spheres, we plot FT/E
2
0 versus E2

0 (Fig. 1) and FL/E
2
0 versus E2

0 (Fig. 2). In Fig. 1,

the force for a transverse field is shown, the nonlinear coefficients are given by

χ1 = 0.01 and 0.1, and the separation parameters are given by σ = r/2a = 1.1 and

1.5. In both case, the dielectric constants of the sphere and host medium are chosen

to be ε1 = 2 and εm = 1 respectively. The dashed lines represent the point dipole

(PD) case and the solid line indicate the full multipole calculation or the multiple
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Fig. 1. Normalized force FT/E
2
0 plotted against E2

0 for a transverse field for two reduced sep-
arations σ = 1.1 and 1.5. The magnitude of the MID force is generally smaller than that of the
PD force due to multipole interactions. For a weak nonlinearity (χ1 = 0.01), FT/E

2
0 varies with

E2
0 almost linearly for both the PD and MID case. For a larger nonlinear coefficient (χ1 = 0.1), a

significant deviation from a linear relationship occurs.

induced dipole (MID) case. For the transverse (longitudinal) case, the magnitude

of the MID force is generally smaller (greater) than that of the PD force due to

multipole interactions.

We will concentrate on the case for a transverse field; the analysis for the lon-

gitudinal case is similar. Let us first consider the case for a weak nonlinearity

(χ1 = 0.01). In Fig. 1, we found that, for both the PD and MID case, FT/E
2
0 varies

with E2
0 almost linearly, in accord with the nonlinear PD results. For the MID case,

although the total dipole moment [as expressed in Eq. (4)] differs from the bare

point dipole moment p0, we can still expand FT/E
2
0 to the first order of χ1〈E2

1 〉.
This explains the linear behavior of FT/E

2
0 versus E2

0 . The linear behavior prevails

even when the separation is small (σ = 1.1) and we recover the linear results when

E2
0 → 0.

Next we extend our discussion to the case of a larger nonlinear coefficient

(χ1 = 0.1). It is evident that a significant deviation from a linear relationship occurs.
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Fig. 2. Similar to Fig. 1 but for a longitudinal field. Here the magnitude of the MID force is
generally greater than that of the PD force due to multipole interactions.

The slopes decrease as E2
0 increases, which indicates a weaker dependence on E2

0 .

The deviation from a linear relationship is attributed to when χ1 gets larger, FT/E
2
0

will also depend on the higher orders of χ1〈E2
1 〉. Here a few comments on our results

are in order. As pointed out by Felici and coworkers,15 when the applied field is

sufficiently strong, The attractive force between two touching spheres will have a

F ∼ E0 dependence while our results (Figs. 1 and 2) show a similar tendency. The

major difference here is that while the previous results15 were based on a conduction

model for two touching spheres, we have extended the considerations to two spheres

separated by an arbitrary distance. As we have included all multipole interactions

in our self-consistent calculations, the results will be useful in computer simulation

of ER fluids at an intense applied field. To this end, the implications of our results

on the shear modulus deserves further exploration.

5. Conclusion

In summary, the effect of a nonlinear characteristics on the particle interactions

is investigated via a self-consistent formalism, in which the previously established
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multiple image results have been converted to nonlinear ones to compute the inter-

particle force for a nonlinear ER fluid.
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