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ABSTRACT

Previous studies of the long-wave perturbations of the free atmosphere have been based on mathematical
models which either fail to take properly into account the continuous vertical shear in the zonal current or
else neglect the variations of the vertical component of the earth’s angular velocity. The present treatment
attempts to supply both these elements and thereby to lead to a solution more nearly in accord with the
observed behavior of the atmosphere.

By eliminating from consideration at the outset the meteorologically unimportant acoustic and shearing-
gravitational oscillations, the perturbation equations are reduced to a system whose solution is readily
obtained. . .

Exact stability criteria are deduced, and it is shown that the instability increases with shear, lapse rate,
and latitude, and decreases with wave length. Application of the criteria to the seasonal averages of zonal
wind suggests that the westerlies of middle latitudes are a seat of constant dynamic instability.

The unstable waves are similar in many respects to the observed perturbations: The speed of propagation
is generally toward the east and is approximately equal to the speed of the surface zonal current. The waves
exhibit thermal asymmetry and a westward tilt of the wave pattern with height. In the lower troposphere the
maximum positive vertical velocities occur between the trough and the nodal line to the east in the pres-
sure field.

The distribution of the horizontal mass divergence is calculated, and it is shown that the notion of a
fixed level of nondivergence must be replaced by that of a sloping surface of nondivergence.

The Rossby formula for the speed of propagation of the barotropic wave is generalized to a baroclinic
atmosphere. It is shown that the barotropic formula holds if the constant value used for the zonal wind is
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that observed in the neighborhood of 600 mb.
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westerly current. The subsequent discovery of the
polar front by J. Bjerknes [2] made possible an
empirical confirmation of the theory, for, following
this discovery, the synoptic studies of J. Bjerknes and
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H. Solberg [3, 4] revealed that cyclones actually
develop from wavelike perturbations on the polar
front.

These important discoveries initiated several at-
tempts to construct a mathematical theory of the
frontal wave, the most successful of which was ‘the
theory presented by Solberg [15, 16]. Assuming a
model consisting of two isothermal layers in parallel
motion, he demonstrated that unstable waves, similar
to young cyclones with respect to wave length and
velocity of propagation, can exist in the sloping sur-
face of separation between the two layers.

In 1937 J. Bjerknes [6] studied cyclogenesis from a
new approach based on the concept of the upper-air
wave as an independent entity. Starting from the
principle embodied in the tendency equation that the
surface pressure changes are due to the integrated
effect of the horizontal ‘mass divergence, he found
that the deepening of cyclones can be attributed to
the relative horizontal displacement of the upper-
air wave with respect to the surface cyclone. This
displacement in turn is a consequence of the baro-
clinicity of the atmosphere in middle latitudes which
necessitates a vertical shear of the westerly winds.
Accordingly, the responsibility for the intensification
of pressure systems is transferred from the shear at
the: frontal surface to a general shearing motion
throughout the troposphere.

The early investigators of the cyclone problem were,
however, hindered by the sparsity of observations
and consequently were forced to rely prifarily upon
indirect information. The gradual establishment of
more dense observational networks made available
additional information concerning the nature of the
atmospheric flow patterns. The observations failed
to reveal a one-to-one correspondence between the
surface frontal perturbations and the major perturba-
tions of the upper atmosphere. It was found instead
that the number of surface frontal perturbations
greatly exceeds the relatively small number of major
waves and vortices at upper levels. Apparently there
exists a fundamental difference between the long
(3000-6000 km) waves and the frontal waves of
length 1000-2000 km studied by Solberg, and, while
there is undoubtedly a connection between the two
types, it is natural, because of the difference in scale,
to attempt to explain the motion of the long waves
in terms of the properties of the general westerly flow
without reference to frontal surfaces.

In line with this trend of ideas, in 1939 Rossby [14]
gave a theoretical treatment of the motion of long
waves for the special case of constant zonal motion of a
homogeneous incompressible atmosphere. His theory
led to the result that the speed of propagation of the
waves depends on (a) the strength of the westerlies
and (b) the wave length. It was found that the speed
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of propagation toward the east decreases with in-
creasing wave length up to the critical wave length
at which the waves become stationary and beyond
which they become retrograde. The theory was ex-
tended in 1940 by Haurwitz [10, 117], who took into
account ‘the curvature of the earth and the finite
lateral extent of the wave. Finally, in 1944, Holmboe
[12] derived a formula analogous to that of Rossby
for the more general barotropic atmosphere. The re-
sults of these investigations were in agreement with
the qualitative conclusions of J. Bjerknes’s theory.

The studies of incompressible and barotropic at-
mospheres with no shear, however, cannot solve the
problem of instability. Neither model contains a
source of potential energy that can automatically
convert itself into the energy of wave motion. It can
be shown that waves in an atmosphere without shear
are necessarily stable. This serious limitation can be
overcome only by the adoption of a baroclinic model.

In 1944 J. Bjerknes and Holmboe [7] presented a
theory of wave motion in a baroclinic atmosphere.
Their solution is derived from the following principle
[7, p. 10]: i

The wave will travel with such a speed that the pressure tend-
encies arising from the displacement of the pressure pattern are in
accordance with the field of horizontal divergence.

_The field of horizontal divergence is evaluated from

the pressure pattern by means of gradient-wind rela-
tionships, and on this basis the following relation is
established : If %(z) denotes the.speei:l of the westerly
current at any height z, %, an increasing function of
wave length, and ¢ the wave-velocity, then

c = alh) — u,

where £ is the height at which the mass divergence in
the horizontal velocity field is zero; the wave is un-
stable provided that % is sufficiently small:

This work presents a clear physical explanation of
instability in the westerlies and establishes necessary
criteria, such as the relation above, that any exact
mathematical treatment of baroclinic waves must
satisfy. However, fundamental problems concerning
the dynamics of the waves and their three-dimensional
structure cannot be solved by a method of “analysis
based on semiempirical considerations of the gradient
wind.

It is the purpose of the present investigation to
present a theoretical solution of these remaining
problems. A complete solution to the problem of
baroclinic waves can be obtained only by integrating
the fundamental equations of motion. Integration of
the tendency equation alone could lead to a solution
for barotropic waves, in which the motion is inde-
pendent of height, but it cannot lead to a solution for
the more general case of baroclinic waves because the
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wave patterns must first be ascertained. It will be
demonstrated that integration of the fundamental
equations of motion leads to the solution of the follow-
ing basic problems: '

(a) The determination of the speed of propagation
of the wave.

(b) The establishment of exact stability criteria.

(c) The determination of the three-dimensional
structure of the wave, i.e., particle velocities, pressure
pattern, temperature pattern, etc.

2. Discussion of results

A description unencumbered by mathematical de-
tail will now be given of the main contents of the
investigation in order to set forth more clearly the
physical basis of the procedure followed and the re-
sults obtained.

Section 3 concerns the construction of a model that
corresponds to the observed state of the atmosphere
and yet permits a not too cumbersome mathematical
treatment. The troposphere is characterized by nearly
constant values of vertical lapse rate and horizontal
gradient of temperature, and a consequent increase
of the zonal wind at a constant rate with height; the
stratosphere is assumed to be isothermal with a zonal
wind independent of height (see fig. 1).

In sections 4 and 5 the equations of motion and the
boundary conditions are formulated for a compressible
atmosphere in which the individual changes of pressure
and density are adiabatic. It is shown in section 6 that
these equations are satisfied by the mean flow pre-
scribed in the model.

The actual flow is considered to be a small perturba-
tion superimposed on the mean flow. The linearized
equations of motion for this perturbation are then
derived. They admit of a solution in the form of a
sinusoidal wave traveling in the west—east direction
with constant speed and with an amplitude depending
on elevation. The problem is reduced to that of de-
termining the amplitude as a function of height, and
the speed of propagation as a function of the wave
length and the parameters characterizing the mean
'state of the atmosphere, namely, the vertical shear of
the zonal wind, the surface zonal wind, the vertical
lapse rate of temperature, and the mean latitude of
the wave. The possibility that both velocity and
amplitude of the wave may be complex is not pre-
cluded, so that, for certain values of the parameters,
the wave may become unstable and the phase of the
wave may alter with height. These phenomena are

regularly observed on weather maps but are not ex- -

plainable in terms of a barotropic atmosphere. They
may, therefore, be attributed to the vertical shear of
the zonal wind, i.e., to the baroclinicity of the at-
mosphere.
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As an application of the general theory, the equa-
tions are integrated for the special case of the baro-
tropic atmosphere, and the wave-velocity formula of

" Rossby and Holmboe is rederived. Since the mode of

excitation is not specified, the solution includes both
the gravitational wave components, which are propa-
gated by the action of gravity, and the long waves,
in which the wave propagating force is predominantly
inertial. The two wave types are distinguished by the
fact that the wave velocity in the former greatly ex-
ceeds that of the latter. As pure gravitational waves
have no appreciable influence on large-scale weather
phenomena, it is shown, by means of a certain in-
equality, how these waves might have been eliminated
from the outset. Although nothing is gained by this
procedure in the study of the barotropic wave, the
process of elimination becomes of great value for the
more general baroclinic wave since here, were one to
attempt to carry through the general solution em-
bracing all wave types, severe analytic difficulties
would supervene. Accordingly, in the discussion of the
general problem of baroclinic motion, the elimination
of inconsequential wave types is carried out and a set
of equations obtained which are integrable by known
methods. An interesting by-product of the calculation
is that the meridional velocity component of the
wave perturbation is nearly geostrophic. Indeed, had
this been assumed ab initio, the simplified equations
of motion would have been obtained directly.

Before the integration is carried through, however, a
generalization of the Rossby formula is derived. It is
shown that the simple formula for the speed of a
barotropic wave will apply to the baroclinic wave if
the constant value of the zonal wind in the formula
is the mean zonal wind averaged with respect to
pressure from the top to the bottom of the baro-
clinic atmosphere. It turns out that this wvalue is
the zonal wind in the vicinity of 600 mb, a fact which
appears to be in good agreement with experience. A
further result is the fact that the magnitude or direc-
tion of the zonal wind at very high levels in the strato-
sphere, say above 20 km, is of little consequence in the

. determination of the wave velocity. It is hoped that

this result will help to clarify the rather vexing ques-
tion regarding the influence of motions at high levels
upon low-level weather phenomena.

It has been pointed out by Holmboe that the
formula for the barotropic wave speed is strictly true
only at the level of nondivergence in the atmosphere.
It follows, therefore, that this level is in the vicinity
of 600 mb.

It is of some interest to consider the case of a baro-
clinic atmosphere in which the zonal wind is constant.
This atmosphere differs from the barotropic only by
having statical stability. It is shown that this stabil-
ity alone has no perceptible influence on the motion
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of the wave, so that the speed is virtually the same as
that given by the formula for the barotropic wave.

The integration of the equations of motion for the
general case is accomplished by their reduction to a
single second-order linear differential equation of the
confluent hypergeometric type. The boundary con-
ditions reduce to a single transcendental equation
relating the wave speed to the wave length and phys-
ical parameters. In order to solve this equation it is
necessary to simplify the model further by supposing
that the zonal wind continues to increase with height
above the tropopause; it is shown, however, that this
expediency leads to no significant change in the
stability criteria. This may be seen by comparing the
dashed curve in fig. 7 with the solid curve beneath.

For a given wave length, the waves are found to be
neutral if the shear of the zonal wind lies below a cer-
tain critical value which increases with wave length.
Beyond this value the waves are unstable, and the
instability becomes more pronounced with increasing
shear. The stability of the wave is almost independent
of the value of the surface zonal speed (see fig. 7).

For a given value of the surface zonal speed, the
speed of the neutral wave increases with the shear of
the zonal wind, and, in the vicinity of the critical
. shear, the wave speed is nearly equal to the surface
zonal speed (see fig. 9). This conclusion is in qualita-
tive agreement with the results of Solberg and Godske
[5], who find that the incipient cyclone wave’s propa-
gation speed, which must be intermediate between the
translational speed of the warm layer and that of the
cold layer of the model described in the introduction,
is much nearer to the translational speed of the
warm layer. In the present case, of course, no sur-
face of discontinuity exists, but, if the shallow cold
layer is ignored and the theory is applied to the
thick overlying warm layer and if the surface zonal
wind is taken to be that of the lower part of the
warm layer, the results may be interpreted to mean
that the incipient cyclone wave moves with approxi-
mately the speed of the surface wind in the warm air.
However, it should again be emphasized that the
waves considered by Solberg and Godske are of a
different order of magnitude, and it may not be per-
missible to force a comparison between the two
theories.

A discussion of the properties of the damped or
stable baroclinic wave is not attempted, for presum-
ably such components are extinguished as soon’as they
are formed.

The structure of the neutral baroclinic wave is
similar to that of the barotropic wave. The two differ
only in that the perturbation fields of velocity in the
baroclinic case diminish with increasing height and
eventually approach zero, whereas in the barotropic
case these fields remain constant. In both cases the
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wave in the meridional-velocity field lags 90° behind
the wave in the pressure field and the wave in the
density field is in phase with the pressure wave.
Furthermore, the wave in the latitudinal-velocity
field is 180° out of phase with the pressure wave, and
the vertical-velocity wave lags 90° behind the pressure
wave, and in neither case is there a change of phase
with height. (Some of these relationships are shown in
fig. 10.)

With the appearance of instability, a thermal
asymmetry develops in the baroclinic wave, so that
the colder air is found behind the trough in -the
isobars. This asymmetry results in a tilt of the axes of
low and high pressure toward the west, the tilt being
most pronounced at low levels and diminishing to
zero as height increases. Like the neutral wave, the
meridional-velocity wave lags 90° behind the pressure
wave. (These relationships are represented in fig. 11.)
The waves in the remaining two velocity components
show a more complicated relationship to the pressure

wave. Vertical cross sections of the fields of vertical
_velocity, vertical momentum, and horizontal mass

divergence are given in figs. 12 and 13. These diagrams
show that, at low levels, the maximum vertical com-
ponent of velocity occurs some distance behind the
inflection point in the pressure profile, whereas at high
levels it is found to be slightly in advance of the point
of inflection.

The existing data on the three-dimensional distri-
bution of the vertical velocity component appear to
support these conclusions. Where it can be ascertained,
the maximum. vertical velocity component at, say,
700 mb is found closer to the trough than to the pre-
ceding wedge in the pressure field, while at high levels,
although no conclusive data are available, one may
cite as evidence that upper clouds are frequently ob-
served to form with west to northwest wind. The
maximum absolute magnitude is found at levels
above the tropopause. This result is questionable and
probably is due to the assumption of a continued in-

" crease of the zonal wind above the tropopause. It

should beexpected that, were the model to provide for
a decrease in the zonal wind above the tropopause, the
position of the maximum would be brought much
lower, so that the change from ascending to descend-
ing motion which is often observed to take place near
the tropopause would be verified.

Fig. 13 shows that the maximum horlzontal mass
divergence takes place between the trough and pre-
ceding wedge in the pressure pattern at low levels and
is replaced-by convergence at higher levels. It is also
seen that with instability there no longer exists a
constant level at which the divergence vanishes;
rather the divergence vanishes along an inclined sur-
face. However, with slight instability, the major part
of the surface of nondivergence is nearly horizontal
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and is found to be between 350 mb and 400 -mb. It is
proved in section 11 by means of the generalization
of the Rossby-Holmboe formula that, when observed
zonal winds are used in place of the assumed winds,
this level is in the vicinity of 600 mb. The discrepancy
here can also be attributed to the lack of correspond-
ence between the model and the observed state of the
atmosphere at high levels.

The field of vertical momentum shown in fig. 13

has a maximum along any vertical at the altitude’

where the horizontal divergence vanishes. This result
would have been obtained had the local time rate
of change of density as well as the horizontal density
advection been ignored in comparison with the re-
maining terms in the equation of continuity. One
may therefore infer that these quantities, at least in
the case of the baroclinic wave of small amplitude,
can properly be ignored. This conclusion has been
verified by those who have calculated vertical veloci-
ties by means of the equation of continuity.

It is seen from the preceding discussion that the
baroclinic wave model exhibits many of the charac-
teristics of the waves observed on the daily weather
maps, both with respect to speed of propagation and
internal structure. The theory, moreover, predicts
that waves of length less than 6000 km will be un-
stable when the vertical shear of the zonal wind is
greater than about 1.5 m sec'km™' (see fig. 7).
Since this value is usually exceeded in middle latitudes,
particularly in the winter months, one may infer that
the westerlies are a seat of constant instability. This
conclusion is verified by the observed storminess in
these regions and also by the fact that the observed
wave patterns almost invariably exhibit the tilt with
height which, according to the theory, is characteristic
of instability.

It should here be remarked that the investigation
does not tell what relationship exists, in the generation
of cyclones, between the frontal perturbation and the
long atmospheric wave. J. Bjerknes and Holmboe [7]
adopt the point of view that the initial impulse for
wave formation in the free atmosphere is supplied by
the frontal perturbation and that, thereafter, the
induced upper wave pro;ﬁagates and develops accord-
ing to its own law of motion, independently, so to
speak, of the frontal wave. The two, however, develop
and move along together, the upper waves lagging a
little behind in phase. There is here a suggestion both
of independence and of dependence in the motions of
the frontal and upper-air waves. On one hand, it is
true that by far the majority of deepening upper-air
waves in middle latitudes are associated with frontal
perturbations. On the other, it seems equally clear
that waves which form on a surface of shearing dis-
continuity possess essentially different characteristics
from the long upper-air waves—the waves differ in
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length and also frequently in direction of motion.
Waves of short period, having periods of the order of
24 hours and lengths of the order of 1000 km, are often
found on the frontal surface, but they are certainly
not the same as the long upper-air waves. Nevertheless
the two types of wave cannot be treated as independ-
ent phenomena, as, for example, the gravitational
waves and the long waves in the atmosphere, for,
whereas there is no appreciable linkage between the
latter pair (see the discussion in section 7), there must
be a linkage between the frontal and long wave.

The author wishes to make a final remark concern-
ing the application of the present theory to the prob-
lem of wave motion in the tropical easterlies. In this
case, the mathematical formulation of the problem is
similar to that for the westerlies. Although the solution
has not yet been brought to completion, a preliminary
analysis indicates that, where the shear of the zonal
current is positive, the stability criteria are qualita-
tively the same as for the westerlies, but, where the
normal meridional temperature gradient is reversed
so that the shear is negative, the flow is unstable.

3. The atmospheric model

We shall adopt, as an approximation to the atmos-
phere in middle latitudes, a model whose undisturbed
state is characterized as follows: (a) the motion is
zonal ; the speed is constant in each horizontal level,
is a linear function of height in the troposphere, and
is independent of height in the stratosphere; (b) the
lapse rate of temperature is constant in the troposphere
and zero in the stratosphere. A comparison, in meridi-
onal cross section, of the theoretical model with the
observed mean state of the atmosphere is shown in
fig. 1. It will be seen that the model corresponds
closely with the mean atmosphere in low levels. The
deviations are most pronounced at high levels, where
they become relatively unimportant because of the
exponential decrease of density with height. Thus,
in February, only 10 per cent of the atmosphere in
middle latitudes lies above 16 km.

4. The fundamental equations

We assume for purposes of mathematical simplicity
that the curvature of the earth can be neglected. This
simplification is permissible when the length of the
wave is small compared with the circumference of the
zonal circle along which the wave moves. The mean
motion can therefore be considered planar, and a
rectangular system of coordinates x, ¥, and 2z can
conveniently be introduced with x increasing east-
ward, y northward, and z vertically upward. If the
corresponding velocity components are denoted by
u, v, and w, density by p, pressure by p, angular ve-
locity of the earth by @, and geographical latitude by
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o, the Eulerian equations of motion become

du 1dp
— = ———+2stm¢——29wcos<p 1)
dt p ox
dv 1dp

= — —— — 2Qu sin ¢ (2)
dt pdy
dw 1491>_|_2Q 3)
— = ——-— U oS ¢ —
dt p 3z }<p &

In dealing with the large-scale quasi-horizontal
motions of the atmosphere it is customary to omit the
vertical components of acceleration and Coriolis
force as well as the horizontal component of the
Coriolis force involving w, for these quantities may be
- shown both empirically and theoretically to be neg-
ligible in comparison with the forces of pressure and
gravity. We may therefore replace the first equation
of motion by

du

14
———p—}—Zstmq,

1[
dt p 9x ()

and the third by the hydrostatic equation,

0= —-—~— 3

e g 3"

A fourth equation is obtained from the law of conserva-
tion of mass,

ap d

= - _.(pu) — —(pi}) - ;‘(P’w)v

at )

and a fifth equation from the condition that the motion
be adiabatic. This condition is expressed by means of
the differential relationship

d d
ap — g p ’ .‘ )
dt dt

where ¢ is the Laplacian velocity of sound. If € is the
ratio of the specific heat of air at constant pressure to
that at constant volume, R the gas constant referred
to unit mass of dry air, and T the absolute tempera-
ture, ¢ is given by the equation

o2 = eRT.
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The adiabatic hypothesis is valid when the effects of
radiation, turbulent heat transfer, and condensation
can be ignored. The first two effects are usually
regarded as of secondary importance in .the free
atmosphere, whereas condensation can produce ap-
preciable errors. However, as long as one is concerned
with waves of small amplitude, the vertical motions
will not be of sufficient magnitude to cause condensa-
tion, so that this factor may also be ignored. -

5. The boﬁndary conditions

The boundary conditions express the following

physical properties of the motion: (a) the normal
component of the velocity vanishes at the surface
of the earth, (b) the momentum vanishes at the limit
of the atmosphere, and (c) the variation of the velocity
components, pressure, density, and temperature
across the tropopause must be zero, i.e., the tropo-
pause is a discontinuity surface of the first order.
Condition (a) gives

w(xr Y, 0, t) = 0. (6>
Condition (b) gives

lim pu = lim pv = lim pw = 0,
22— 2—0 Z2—r0

]
and condition .(c) gives
Au = Av = Aw = Ap = Ap = AT =0, (8)

where the symbol A stands for a variation from one
side to the other of the tropopause.

6. The steady state

The fundamental equations (1’-5) together with
the boundary conditions (6—8) impose the necessary
restrictions on the theoretical model. It will be shown
that the specifications already given are consistent
with these restrictions and are sufficient to determine
completely the mean state of thé atmosphere.

We adopt the convention of denoting a steady-
state quantity by a bar placed over the symbol repre-
senting the same quantity in the perturbed state. The
condition for zonal flow is then given by the equations

a = u(y, 2), 7 =0, w = 0.

Since 7 = w = da/dt = /0t = 0, (1') and (4) state
that p and $ are functions of y and z only. Equation
(2) states that the undisturbed flow must satisfy the
condition of geostrophic equilibrium,

0=—-——fa o)

where the symbol f is used to denote the Coriolis
parameter 2Q sin ¢. Equation (3’) expresses the condi-
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tion for hydrostatic equilibrium in the mean state
(10)

and (5) is satisfied identically, since da/dt and dp/dt
both vanish. Integration of (10) shows that the pres-
sure field is completely specified by the mass field if
the pressure vanishes at z = o«. The relationship
between the fields of mass and velocity is then brought
out by the elimination of pressure from (9). Differ-
entiating with respect to z, and substituting /82 from
the hydrostatic equation, we obtain

195 fﬁ(laﬁ ;0
POy g \ posz

7 9z
The mass field, in turn, is related to the field of tem-
perature through the equation of state

p = pRT.

(11)

(12)

We may therefore regard % and T as the fundamental
variables by means of which all other quantities are
determined. The necessary and sufficient relationship
between these two fields can be obtained by elimina-
tion of 5 and § from equations (9, 10, 12). By this
means we obtain the thermal wind equation for
zonal motion on a flat earth,
+ 194a )

Tos wadz/

19T  fa (

Toy g
Any distribution of % and T that satisfies (13) and
the boundary conditions (6-8) will therefore auto-
matically satisfy the fundamental equations. We shall
now show that this is the case for the distribution
prescribed in section 3. This distribution is expressed
by the equations

a(z) = @ + Az
T(y,2) = T(y,0) — vz
in the troposphere, and
du/dz = 0,

T="Ts

19T (13)

(@, A = const), (14a)
(v = const) (14b)

(15a)
(15b)

in the strat_osphere. Inserting the tropospheric values
of @ and 87 /93s into (13) we obtain the equation

oT fA _ 7
0T A5 _ _Jor
ay g 4
whose solution, subject to the condition (14b), is
given by
T(y,2) = [T(0,0) + d@oy/AJe /™10 — doy/A — vz
= T(y,0) — vz )

and holds throughout the troposphere. Equations
(14a) and (14b), therefore, suffice to determine @ and

(Ts = const)

. (16)
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T everywhere in the troposphere. Since the strato-

spheric values of % and T prescribed by (15a) and
(15b) satisfy (13) identically, it remains only to show
that the boundary conditions are satisfied. The re-
quirement of continuity for T in (8) will be fulfilled
if the tropopause is isothermal and has a temperature
equal to that of the stratosphere. The equation of the
tropopause is obtained therefore by setting T'(y, 2) in
(17) equal to T's. Differentiation of the resulting equa-
tion with respect to ¥ then gives thesslope of the tropo-
pause the value

dz . fA fa fA

et L i

(18)
dy g I4 g

and the variation of @ on the tropospheric side of the
tropopause is obtained from the equation

di d
ads (19)

which by the condition of continuity in @ in (8) also
determines the corresponding variation of @ with y
on the stratospheric side -of  the tropopause. This

condition coupled with the requirement (15a) com- -

pletely determines % in the stratosphere. The bound-
ary condition (6) is satisfied since @w = 0, and (7) is
satisfied since p—0, and therefore also @ — 0, as
z— o, Hence the model prescribed in equations
{14a—-15b, 17, 19) is consistent with the fundamental
equations (1’-5) and satisfies the boundary conditions
(6-8).

The theoretical cross section shown in fig. 1 is con-
structed in accordance with these equations by using
%o = 0m sec™, A = 2.2 m sec—km™!, T(0, 0) = 288C,
Ts = 213C, and v = 6.5 C km™.

7. The perturbation equations

The motion may be regarded as a small perturba-
tion with velocity components #’, ¥/, and w’ super-
imposed on the steady zonal current @ = %(2). Thus

u=1u(x1721 + ﬁ(z)]

v =v(x,9,31t) o
w=w(x, v, 21).

(20)

Similar expressions obtain for the density and pressure
in the disturbed state, thus

p=p'(x,9 21 + s, 2),}
p =921 + 5 2.

We assume that the velocity perturbation.is inde-
pendent of the meridional coordinate. This assump-
tion, introduced by Rossby, reduces the differential
equations in the final formulation of the problem from
the partial to the ordinary variety and leads to a
considerable simplification.

(21)

JOURNAL OF METEOROLOGY

Substituting the perturbed velocity, pressure, and
mass fields into the fundamental equations (1’-5),
and simplifying by means of the steady-state relations
(9-11), we obtain the system '

)

fa 1 :
fu' + LG +—p +-py=0
p p

1 .
L) —f + Aw' + 9.
.

g’ + . =0 (22)
f 1
W+ = (su + A + ( w'), + - L(p") =0
p
=2 .
(ke + —) v+ gk’ — L) + - L) = 0|
g p p
where the abridged notation
s=29 In p/dz
BE=1+a%/g [ (23)

L =293/dt+ ud/dx|

has been adopted, and the subscripts x, ¥, and z denote
partial differentiation with respect to x, ¥, 3 respec-
tively. From the definition of % it follows that .

— eR(va — 7)/g, -

where 74 is the adiabatic lapse rate. Elimination of p’
and p’ from (22) gives

eWer s L2(W) + A LW + L) )
+ f(su + AWz — sf L@) — f L")

E= (24)

g A
+ = (o) + 2 L) = 0

ELXu') + % L(u's) + %D(u’z)
6'2 —2
— kfL(v") +f(‘k12+-——1}) v,——fL(v '2)
g g
A . gk A 1(29)
+ — L[ (pw').] + — (pw')z + - L(pw') = 0
. gp p p

(l;ﬂ)%_éuw+ﬁuw

+f(f”+ )‘v ——'v +fL(v,)

J

u B
+ — (). — —j (s + A)pw' = 0.
gp gp

The details of the elimination will be found in ap-
pendix A:

The assumption that #/, v/, and ' are independent
of v is inconsistent with the fact that some of the

Vowm'm 4 .
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coefficients in (25) involve y. We may overcome this
difficulty by a mathematical expedient: following
Rossby [14], we replace f, wherever it occurs in
undifferentiated form, and f, by their values at the
mean latitude of the disturbance. Thus, if we are con-
cerned with waves in the zone between 35° and 55°,
we replace f by the constant value 2Q sin 45°, and we
replace f,, which may be written

d 20 s d 20 R de 2Qcos ¢
fu dy( sin ¢) d¢( sin ¢) 2 .
where R is the radius of the earth, by (22 cos 45°)/®.
The quantities @ and T, which are also involved in the
coefficients, are treated in a similar manner. Since @
is independent of y in the troposphere, we need only be
concerned with its variation in the stratosphere, and
this usually is small. For example, if v = 6.5 C km™,
A =2 m sec’km™t, and T = 220C, equation (19)
gives' 94/dy = 3.0 m sec™(20° lat.)~!; and, taking
the mean value of 4 at the tropopause to be 25 m sec™?,
we find that the largest proportional deviation from,
this value in the zone 35°-55° is only 6 per cent. We
may therefore with fair approximation replace @ in the

stratosphere by its mean value. Finally we assume |

that, in the troposphere, T may be regarded as a
constant, independent of y and z, whenever it occurs in
undifferentiated form. This approximation is similar to
that made in the study of motion in an incompressible
homogeneous atmosphere moving zonally with con-
stant speed. In this case the condition of geostrophic
balance requires the height of the atmosphere to in-
crease on the right of the current, but this height may
be assumed with good approximation to be constant
as long as it does not appear in differentiated form
(Rossby [147]).

8. Form of the perturbaﬁon and definition of stability

The most general expression for the velocity com-
ponents of a simple harmonic perturbation of infinite
lateral extent and wave length L, traveling in the
x-direction with constant velocity, is

u' = U(z) ewen
: U’ V(Z) eip(z—-t:t)
w' = W(z) en(==en,

(26)

where p = 27/L. While p is always real and positive,
¢ may be complex, i.e.,

c = ¢+ ic;

and the functions U, V, and W may also be complex.
If ¢ is complex, the exponential factor in (26) becomes

exp [u(x — c:2)] exp [ueit].

The first factor represents a sinusoidal wave of con-
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stant amplitude traveling with the velocity ¢.. The
second factor either increases indefinitely or decreases
to zero, according as ¢; is positive or negative. In the
first instance the wave is said to be unstable, in the
second it is said to be stable, and, if ¢; = 0, the wave
is said to be neutral.

9. The barotropic wave

As an introduction to the general problem, the solu-
tion for the barotropic wave is derived here. From the
condition of barotropy

p = p(p),
together with equations (5, 9, 10), we obtain
k=4=0

Simplifying the perturbation equation (25) by means
of these relations and introducing the expressions
(26) for #/, v, and w’, we obtain

iug[1 + (s/g)(@ — ¢)*1U + sfcV
+ tu(d — )*U, — fla — o) V. = — (g/p) (W)
w(@ — c)2U, — flu—c)V, =0
wU + (/HLfy — w¥@ — o)1V :
+ (pa/g) (@ — ) U, — (fa/g) Vs = 0.

The last two equations show that U and V are con-
stant, and elimination of U between the first and third
equations gives

{@[c+“—z(a—c—uc)(ﬁ——c)2]

(27)

9z f?
T g,
+ —;gp(u — ¢ — o) = —=(pW)., (28)
f f
where the quantity #. is defined by
QL? cos
= Ju _Lcos e (29)
u? 2m*R

and is called the ‘critical speed’ by Bjerknes and Holm-
boe [7]. Integrating (28) from 0 to 2, and utilizing the
condition W(0) = 0, we obtain :

{(ﬁ—ﬁ§)[c+§:—z(ﬂ—c—uc)(d—6)2]

u? gp
~EL-ma—c—u | v=-Lw @
Vi f
where po and P, are the mean surface density and
pressure. Evaluating the terms at z = «, we derive

“the following equation for the wave velocity :

f ¢

R S L —
W gHy — (@ — ¢)*

(1)

where Hy = RTy/g is the height of a homogeneous
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atmosphere whose surface temperature T is equal to
the mean surface temperature of the barotropic at-
mosphere. This equation was derived by Rossby [14]
for an incompressible atmosphere and by Holmboe
[12] for a barotropic atmosphere.
Introduction of 4% — ¢ — u., from (31), into (30)
gH — (i@ — ¢)?

gives
c
_f_[l gH — (@ =0
g gHoy — (@ — ¢)?

where H = RT/g. It can be shown that the equations
of the present section hold not only for an adiabatic
barotropic atmosphere but also for an arbitrary baro-
tropic atmosphere. In particular, we may set H = H,
in (32) and deduce the interesting conclusion that
W = 0 in an isothermal barotropic atmosphere.

- Since (31) is of the third degree in ¢, it has three
roots. Two of the roots can be shown to be nearly
equal to the solutions of

W=

] v, (32

. (@ — ¢)? — gHy = 0, (33)

which is Lagrange’s equation for gravitational waves
in a moving fluid. Writing

gH,

RTO =

6'02/ €,

we see that the gravitational wave speed is of the
order of magnitude of ¢, the speed of sound. As we
are here concerned only with long waves whose speeds
are very small compared with that of sound, we may
ignore (& — ¢)? in comparison with gH, in (31) and
so obtain the equation

_ fre

UG —C— Uhe = ——, (34)
wrgHo

whose solution can be shown to be nearly equal to the
third root of equation (31).

The preceding considerations suggest the following -

principle which will be adopted in the sequel: when-
ever % or ¢ occurs in conjunction with ¢ in a 'mathe-
matical expression, the expression can always be
simplified by means of any of the inequalities

?22

(@ — ¢)
1> —,
6'2

—, o 6—22 35)

& &2

By means of this principle we can separate out the
gravitational and acoustic wave components from
our solution and leave only the long wave component.?

2 Strictly speaking, sound waves, whose vertical accelerations
are of the same order of magnitude as the vertical pressure
forces per unit mass, are excluded by the requirement of quasi-
hydrostatic equilibrium. An important exception occurs when
the wave fronts are planes perpendicular to the ground. In this
case, since sound waves are longitudinal, the vertical acceleration
vanishes identically; the force of, gravity is exactly balanced by
the vertical pressure force, and the sound waves are consequently
indistinguishable from long gravitational waves. In order for
such waves to exist the atmosphere must be isothermal: if the
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It will now be shown that 2/, the meridional com-
ponent of the perturbation velocity, is approximately
geostrophic. From (22) and (26) we derive

’ 1_; (,ﬁ — C) Ueiu(z—ct)'

7 —v"=v’—ip' 1L(u’)=
gs _ z
A

f f

and substituting for U in terms of V from the third of
equations (27), we obtain

v — vy = qVenE—e) = ' (36)

where

1= W@ — )@ —c — uo).

We now replace (@ — ¢ — u,) by its value from (34)
and obtain

@37

_ c(@ — ¢c) B ec(@ — ¢)
= o, =

which by (35) is much less than 1. Hence from (36)

n , (38)

Go?

RN

10. Reduction of the perturbation equations

Returning to the problem of the baroclinic wave, we
substitute the wave expressions (26) into the perturba-
tions (25) and obtain

— (g/p)(pW). = ugU + f(A + s0)V

+ (@ — 0)*U. — fla — o) V. (39)
A gk
— (@ = )W), + — (W)
gp P
. A
= —ip[k(ﬁ—c)2+-———(12—c)]U
g
‘ A 1uG? .
—f(kc+—-—) V-—~@@ — o).
g 14
. o
+—@—=0oV. (40)
g
AG A .
— — (pW). + — (su + A)pW
gp gp
A
= ipl — -=) v
T f(x g)
+* - ou ~ v, @
g g

wave fronts are to remain ?erpendicular to the ground, the
relative wave speed (dp/dp)* must be constant; therefore it
follows from (12) that 7 must be constant and (dp/dp)} equal
to (RT), the Newtonian velocity of sound. Since the relq.-
tive speed of long gravitational waves in an arbitrary barotropic
atmosphere depends only on the mean surface temperature (33),
we have an explanation for the fact that this speed is always
equal to the Newtonian velocity of sound. Furthermore, since (33)
applies in the limiting case of constant density if Hy is interpreted
as the actual height, we see why R7"/g must be the height of the
homogeneous atmosphere. -
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where
x = W/fAE — ¢ — u)

and the following inequalities are assumed to hold :

PG CEL ]
@:—6) , ‘Zz } ~ 10--10~ (42)
g [
1>>|S(1Z;6)21 sd(ﬂ,—c),
g .
sc(d — ¢) siz? '
—_— = } ~ 1072-10— (43)
g g
1> ”? , ‘%H ~ 102103, (44)

The justification of the first set follows directly from
(35) or may be verified by the substitution of observed
values of ¢, 4, and . The orders of magnitude ob-
tained by the latter method are shown at the right.
The second set receives a similar justification since
s/g is of the order of magnitude of 1/62 To show this
we write

s 195 19p 1 aoT
g B gp 9z - gp 9z gT 9z
1 - +R 1
RT RT &

The last set of inequalities (44) can be demonstrated
by exhibiting them in a form similar to that of the
first two. For instance, the second inequality in (44)
may be written

Since the expression on the extreme right is an increas-
ing function of z, it has its maximum value at the
tropopause. Hence, if the height of the tropopause is
21, we must show that

1> [a(er) — o u(zr) .

g2t

But gzr is of the same order of magnitude as the

dynamic height, RT,, of a homogeneous atmosphere,

so that the last inequality is equivalent to

[a(zr) — woJu(zr)
RT,

? (ZT) _ € 2 (ZT)

1> —
) RTO 6’2

1

which was established in (42). Finally, the first of the
inequalities (44) can be demonstrated by similar
reasoning.

By linear combination of equations (39-41) and
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the use of the inequalities (42-44), we obtain (see
appendix B)

(ga/p)(pW). = — dugcU — f(Ac + siac + gn) V, (46)
(gku/p)(pW) = ius*(@ — c)U
— flkac + a*Ac/g + &)V, (47)
A
0 = —i,uU+f(x——) 14
g
— 2u(u - oU. +fiz Ve, (48) -
g g

and eliminating 5 between (46) and (47) we get

il (g + eRvyd - 32A)c — egu U
+ fL(@ + eRya/g + &*A/g)Ac
+ gnit — @(6*n/8), ]V + ipei(@ — o) U,
— flkca® + &*Atc/g + ¢a) V, = 0. (49)

By linear combination of equations (46-49) and use of
inequalities (42-44), we at last arrive at the system,

wlU =f(x — A9V + A — 9 (fa/g) V., (50)
kW = — f(ghkc + &*A)V + (1 — n)f*(@ — ¢) Vs, (51)
— (&/p)(pW): = fles + gx)V + (1= n)feV., (52)

where U, V, W, and (W), are now expressed in terms
of Vand V..

The quantity n appearing in (50-52) and defined by
(37) was shown to be entirely negligible in the.case
of the barotropic wave. The following argument will
serve to demonstrate that » is always small. Referring
to (37) we observe that 5 is of the same order of mag-
nitude as the quantity u2¢?/f?, which may be written

2r\? sL? Pg
( f ) / ct P 12,
where P; is the period of an inertial oscillation at the
latitude of the long wave, and P, is the period of the
long wave. The inertial period is one half of a pendu-
lum day, or approximately 17 hours at 45°. On the
other hand, the period of oscillation of the long waves
in the atmosphere is of the order of three to four days.
The ratio P;?/P,?is therefore of the order of 0.05 and
may be neglected in comparison with 1.
The approximation n <1 has an interpretation
similar to that given for the barotropic wave; when

taken together with the inequalities (42-44), it is
equivalent to the assumption that o’ is nearly geo-

_strophic; for if ¢’ is assumed to be geostrophic, then

without further assumption a system identical to
(50-52), without the n-term, will result; and, con-
versely, if we begin with the system (50-52) without
the g-term, it can be shown by retracing the steps
that o will be geostrophic.

Equations (50-52) can now be replaced by the
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system

il = fix — ARV + (fa/g) V., (53)
W = — fghe + #A)V + f3@ — ) V., (54)
— (/D) W) = fles + g0V + feVo,  (55)

which will be taken as the starting point for all future
deductions.
We have in effect obtained the system of equations
above by ignoring acoustic and shearing-gravita-
- tional wave components, both of which are con-
tained in the original equations of motion. We have
 shown that this procedure is equivalent to assuming
2’ to be geostrophic. It would be desirable to have a
general principle whereby this assumption could have
been introduced a priori. Such a principle would be
useful for eliminating what may be called the ‘meteor-
ological noises’ from the problems of motion and would
thereby lead to a considerable simplification of the
analysis of these problems. -

11. Generalization of the Rossby formula

Recalling the definitions of s and x (in sections 7
and 10 respeptively), we may write for (55)

— /NG, | ,
= ghw/f)( — ¢ — w)V + (5.V + 5V, (55)

and integrating from 0 to « we obtain, with the aid
of condition (7), ’

g;—?Jj (@ —¢c—u)Vpdz = —-c];w (V). dz, (56)

or

0 : f
f @ —c—uVdp = == puVs,  (56)
Po 22 .
where V), is the surface value of V. The last equation
may be regarded as a generalization of the formula of
. Rossby [14] and Holmboe [12], since it reduces to
(34) in the special case of a barotropic atmosphere.
To show this we substitute the barotropic conditions
V = Vyand %@ =const and obtain

FrepoVo  fic
ppoVe  wgHo'
which is identical with (34).

Equation (56’), although not the final solution for
the wave velocity ¢ since it contains the unknown
amplitude factor V, is well adapted to computation
from observed data. Both V and % may be determined.
empirically as functions of the mean pressure, and ¢
obtained by a numerical integration. If this is done,
the right-hand term is found small in comparison with
the individual left-hand terms, never amounting to
more than 10 per cent of the latter, and may there-
fore be ignored.

U—C— U =
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While, strictly, (56”) is derived for a constantly
increasing zonal wind, this assumption need not have
been made, and by a slight modification of the proof
the equation can be shown to hold for. any zonal-
wind profile whose curvature is not excessive.

Let us denote the function V by

V= | V]ewo,

where ¢ is the phase angle between the wave at the
level z and the surface wave. If the displacement of

the trough between the upper wave and the surface

wave is denoted byl, ¢ becvomes
¥ = 27l/L,
and substitution into equation (56”) gives

0
f_ | V| (cos ¢ + i sin ¥)dp

Po

c = — Ue,

0
f 1 V](cos ¢ + i sin ¥)dp
Po -
from which both the real and imaginary parts of ¢
can be calculated. Ordinarily it will be found that the
imaginary part is small in comparison with the real
part and that the amplitude remains nearly constant.
Under these circumstances we may set siny = 0,
cosy =1, | V| = const, and obtain the simplified
expression,
1 po
Cr = — _—f u(p) dp — ue = a* — u,, (56')
° Do v,
where 4* is the mean value of the zonal speed averaged
with respect to pressure from the bottom to the top
of the atmosphere. Let % be the level at which @* is
equal to % so that

¢ = a(h) — ue.

In this form the formula for the wave speed is closely
analogous to (34) without the small right-hand term.
It implies that the correct value for the wave speed is
obtained from (34) if the actual atmosphere is re-
placed by a barotropic atmosphere whose zonal wind
is given by (k).

Because of the practical use which has been made
of (34) at the University of Chicago and in the 5-day
forecasting project of the U. S. Weather Bureau, it is
of interest to indicate the proper level % at which (34)
applies. It has been pointed out by Holmboe that this
equation is strictly true only at the level of non-
divergence in the atmosphere. A determination of %
by means of (56'") will therefore also fix this level.

The quantity @* is evaluated by calculating the area
bounded by the curve @ = @(p), the lines § = P,
$ = 0, and the p-axis from H, to 0, and dividing this
area by Po. In fig. 2, curves of @(p) are drawn for the
following distributions of zonal speed: (A) That
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F1G. 2. Illustration of the method of calculation of ©* = (k) for observed and theoretical distributions of zonal velocity.

between 35°N and 55°N compiled from mean data
for the month of February by V. Bjerknes [8, p. 649].
(B) That for the same zone compiled by Willett [18]
from more extensive North American winter data.
(C) The distribution prescribed for the model. (D)
The distribution corresponding to a constant increase
of wind to the top of the atmosphere. (E) The dis-
tribution above 20 km compiled by Gutenberg [9]
from mean data.

By piecing together curves (A) and (E) and (B)
and (E), two curves representing somewhat different

versions of the variation of zonal wind in the atmos-"

phere are obtained. The values of %* are calculated for
each of these curves and also for the theoretical dis-
tributions (C) and (D). These values are represented
by the horizontal arrows A, B, C, and D.

Both Bjerknes's and Willett’s data indicate that the
zonal wind should be evaluated at a level between 4.0
km and 4.5 km, or 610 mb and 570 mb. This result
agrees well with the experience at the University of
Chicago, where it is found that the level at which (34)
holds best is in the vicinity of 600 mb. The levels at
which @* is evaluated for the curves (C) and (D) are
found to be too high. This is to be expected since

neither of these distributions provides for a decrease of
zonal velocity above the tropopause.

From the character of curve (E), which represents
the variation of the zonal wind above 20 km, it can
be seen that, although the velocities become very
large, their contribution to the total area is very small.
It may therefore be stated that the motion in the
stratospheric regions above 20 km has no appreciable
influence on motions in the lower troposphere.

12. The normal equation for V
Elimination of W from (54) and (55) gives

=2
%(a — )V — (@ — Vs + (eh + gkx)V = 0. (57)

This becomes, if the explicit values of &2, k, and x are
substituted,

(58)

where

: a? = p’R(va — v)/(f*H), (59)
and

8y = te + A/(@HD, (60)
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and A and v are both understood to be replaced by
zero in the stratosphere.

13. The boundary condition for V

The solution of (58) is subject to the boundary
conditions (6-8). Condition (6) states that W must
vanish at the ground. If W is set equal to zero in
(54), the condition to be satisfied by V at the ground

becomes
( Vz) gkc + &2
V /o & —c)

Condition (8) states that U and V are continuous at
the tropopause. Applying this condition to U and V
in equation (53) we obtain

VAN = 9 A(V).

(61)

V must therefore satisfy the relations

AV =0
A(V,)  A(@) A (62)
v @ a
at the tropopause. Condition (7)_ requires that
lzl_rg pV =0 (63)

at the top of the atmosphere. Since p is proportional
to exp [— g2/RTs] in an isothermal atmosphere

.whose temperature T's is equal to that of the strato- -

sphere, this condition may be written

lim 'V exp (— 2/Hs) = 0 (63)

where Hs = RTs/g.

14. Solution of the normal equation
Case I, A =0

We shall first investigate the simplest case, where
A = 0 throughout_the atmosphere. In this case, the
coefficients in (58) depend only on 7T, and, while it
is possible to perform the integration of (58) keeping
T a linear function of z in the troposphere, no appre-
ciable error is introduced if T is replaced by a suitable
mean value. With this simplification the coefficients
become constant, and the integral can immediately
" be written down as follows:

V = Ade™* 4 Be™?, (64)
where m and » have the values
m*l— 1_1_0'212—5—14c 3
2H 4H? i —
(65)
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The constants involved in the expressions for m
and #, as well as the constants of integration 4 and B,
will, in general, have different values in the tropo-
sphere and stratosphere. If we denote tropospheric
quantities by the subscript T and stratospheric
quantities by the subscript S, conditions (61) and
(62) hecome

Army + Bt = gke[6*(@ — ¢) (A1 + B1), (66)
Ar exp (mrzy) + Brexp (nrzr)

= Agexp (mszr) + Bsexp (nszr), (67)
mrArexp (mr3r) + nrBrexp (nrz1)
= mgdsexp (mszr) + nsBsexp (nszr). (68)

‘Suppose now that (@ — ¢ — u,)/(@ — ¢) is posi-
tive;# then it follows from (65) that ns > 1/Hs, and
condition (63’) gives Bs = 0. With substitution of
Bs = 0, equations (66—-68) become linear and homoge-
neous in Ar, Br, and As. A necessary and sufficient
condition for their consistency is the vanishing of the
determinant of the coefficients. Thus we obtain the
following determinantal equation for the wave

speed ¢:
mt — 0 #nr — & 0
exp (mrz7) exp (n1zr) exp (mszr) |=0 (69)

mr exp (mr21) nr exp (nrz1) Mms exp (Mmsz7)
where § = gkc/[52(% — ¢)]. Expansion and rearrange-
ment of terms gives

mg — mr
my — 8 = (nr — §) ———exp [(m1 — n1)zr]. (70)
m nr .

Substitution of typical values of T, L, f, v, 4, and ¢
into the right-hand term of the last equation shows
that it is small in comparison with mt and 8. Hence,
approximately, ’ '

mr — 6=0
or

gkc

1 ( 1
2Hq AH 2 T osu — )

Transposing, squaring, and rearranging, we obtain
. e ( 1 _]E . ,
wgHr
since, by (24) and (59),
@ = — guh/(F).

The nondimensional factor —k/¢ = R(yq — v)/g ap-
pearing in (71) measures the extent of the baroclinicity
of the atmosphere. It varies from 0.0 in a barotropic

G —C— e — -
€EU — C

: )=0 (71)

3 This assumption is required for determinacy of the solution
under the condition that pV shall approach zero with increasing
height. Professor Rossby has called my attention to the fact that
negative values of (& — ¢ — u.)/(@ — ¢) correspond to long in-
ternal waves having nodal surfaces at finite levels
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atmosphere to 0.289 in an isothermal atmosphere.
One root of (71) is extraneous and the other can be

shown to be very close to the solution of the equation

U— ¢ — U

c kad — ue
P (1__u u)=0,
wegHr € U, .

which, except for the occurrence of

1 (1 kd—uc)
HT E_uc

instead of 1/H, in the small term f%/(u’gH,), is
identical to (34). Hence there is no significant differ-
ence, with respect to the motion of long waves, be-
tween a barotropic atmosphere and a baroclinic
atmosphere with a constant zonal wind. One may con-
clude that here, at least, the statical stability of the
atmosphere plays no important role.

Case IT, A = 0

We now consider the problem of wave motion in the
baroclinic model specified in section 3. We shall
solve this problem by determining V(z), the amplitude
factor of the meridional component of wave velocity.
All other quantities can easily be found in terms of V.

The equations governing V are (58-60). For the
sake of mathematical simplicity, the following ap-
proximations are made: T is replaced by its mean
value, T, in the troposphere and zr, the height
of the tropopause, is replaced by its value at a
mean latitude. The quantities H, @, and . then
become constant, and the boundary conditions (62)
apply at the constant level zr. The mathematical
problem is now strictly determined ; we must find the
solution to (58) that satisfies the boundary conditions
(61-63") at z = 0, 2T, and .

In the troposphere A 5 0, and (58) can be reduced
to a standard form by the following change of de-
pendent and independent variables:

v = Vexp[(@ — 3HrY)z]

t = Qa/M (@ — ¢ = 205+ 2a/N) @ — o), D
where
at = a®+ 1/(4H?). (73)
With this change of variables (58) becomes
axy ay
— - =0,
tow T E T (74)
where
. _ i', a2 + A ) _ TR 13)
"Toaa\e™  2H:) T 2an”

Equation (74) is a special case of the conﬂuent hyper-
geometric equation
dry
E—+ (b —£)~—a\lf—0

7 (76)
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which is satisfied by the functions
b= @by =1+t
1-5 21606 + 1)
and
Yy=£8°"Ma—b+1,2—0,¢%). (78)

" In the present case only the latter integral is a solution

of equation (74), since M(a, b, £) is undefined for
b = 0. Another solution is obtained by contour inte-
gration in the complex domain; it is shown in appendix
C that the following function satisfies (74):

‘sin ma
Y = - IdEM(d—i-l,Z,E)
I(a) (1)
1 -2
X[ et T'(a) I’(l)]
® 1 .- —1
4 yp et oty )5"}» (79)
n=1 (n— 1)!n! -
where ¢ = — r, and
3 __nil( 1 2 )+1
A a -+ v 1+ n

The tabulated values of the two functions (78) and
(79) will be found in appendix D. Denoting (79) by
y1 and (78) by ¥2, we may take, as the general solution
of (74), the linear combination

¥ = Ay1 + Bys. (80)

The solution for the stratosphere has already been
determined in the investigation of the case A = 0.
Recalling equation (64) we may write, since Bs = 0,

V = Asexp (ms3z), (81)

where ms is defined by (65).

15. Determination of the wave velocity

The arbitrary constants in the solutions (80) and (81)
must be chosen in such a way that they satisfy the
boundary conditions (61-63"). We see from the manner
in which the solution for the stratosphere was de-
termined that it automatically satisfies the condition
(63’). For the purpose of satisfying condition (62) we
change to the new variables ¢ and ¢ defined by (72),

and obtain A
14V ( 1 ) 1dy d§
V dz 2H ¥ dt dz
- 1 2a dy (82)
R AT

in the troposphere and

1/ V)dV/dz = ms (83)



150

in the stratosphere. If these values of V./V are sub-
stituted into (62), we obtain

AT U N (3
v 2 4GH: 2@ @ 244z
where ' = dy/dt. Let us denote the right-hand side
of this equation by A and the value of £ at the tropo-
pause by £;; then, if we substitute for ¢ the expression
in (80), we derive
Ay (&) + B/ (&) N
A (&) + B a(én)

We satisfy condition (61) by a similar procedure and
obtain

ms

(85)

A ' (&) + B (%) n B

= o -

A Y1(&0) + B y($0) %o

where &, is the value of £ at 2 = 0 and « and B8 are de-
- fined by the equations

o =L — gk/(2a5%) — 1/(4aHry), (87)
B =1+ gkio/(A52). - (88)

Equations (85) and (86) are linear and homogeneous
in A and B. The determinant of the coefficients of 4
and B must therefore vanish. This gives the following
equation for the determination of c:

(86)

A — NA -
11 10 - a E_’ (89)
A01 - )\AOO EO
where )
Aes = (&) (&)
T @) (&)
Cand 1@ = Y1, 2@ = o, 1@ = Py, ¥ = Py,
Equation (89) is of the form
F(Sﬂx Ely v, >‘v ay-ﬁ) = 0. (90)

Since «, 8, and 7 are functions of A, 1y, and L, while
£, &1, and X involve these quantities as well as ¢, we

may write instead
F(A, @, L, c) = 0. (90"

This equation expresses the dependency of the wave

speed ¢ on. both the wave length and the physical .

parameters characterizing the mean flow of the at-
_mosphere. As we are not primarily concerned with
the variation of the parameters v, ¢, To, T, and Zr,
they are given appropriate constant values. We shall,
however, be able to say something about the influence
of ¢ and v on stability. .

Equation (89) is solved by a graphical method. The
left- and right-hand sides of the equation. are plotted
separately as functions of &. The graphs consist of two
triply infinite families of curves depending on the
parameters A, o, and L. The points of intersection of
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members ‘corresponding to the same values of L, A,
and %, give the roots £&. Since &, is a function of c,
the value of ¢ is determined. The points of tangency
give the critical values of the parameters at which ¢
becomes complex. Since (89) has analytic functions of
£ on each side, except at & = 0, the roots of this
equation will occur in conjugate complex pairs. Ac-
cording to the definition of stability in section 8, a
value of ¢ with a positive imaginary part corresponds
to an amplified wave, and a value of ¢ with a negative
imaginary part corresponds to a damped wave. Thus,
if complex roots exist at all, there must be both
stable and unstable wave components. Presumably the
stable component is damped out as soon as it is formed,
so that we may limit our considerations to neutral
and unstable waves. ’

Fig. 3 shows the critical curve for @, = 0 calculated
from (89). Values of A and L at points above the curve

3.0
= 2.5 /
e /
H
—.D
H /
E 2.0
v 4
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w
@ -
@
> /
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) /
<
z
o
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S 1o
[ 4
<
w
x /
w

0.5

0.0 -

o ] 2 3 4 5 [ 7 8 9
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F1G. 3. The critical stability curve for @, = 0.

correspond to instability and values at points below
correspond to stability. The curve shows that in-
stability increases with shear and diminishes with
wave length. Although calculated for a particular
value of %, the curve represents approximately the
stability criteria for a wide range of @, A proof of this
assertion will be given in section 16. Here, to make the
assertion plausible, the explanation may be offered
that increases in %, unaccompanied by variations in
A merely impart to the atmosphere a slightly greater
absolute rate of rotation without changing the relative
motion of its parts. Such a change should not be ex-
pected to affect the stability beyond increasing slightly
the gyroscopic stability that a rotating body has by
virtue of the conservation of angular momentum.

In order to avoid the extremely laborious computa-
tions involved in a further analysis of (89), we shall
assume that the zonal wind in the atmospheric model
is defined in the stratosphere as well as in the tropo-
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sphere by the function i, + Az. This assumption
eliminates the necessity of piecing together separate
solutions for the two atmospheric layers, but is of

course subject to the criticism that the zonal winds

in the statosphere will here depart considerably from
the observed values. However, the influence of this
discrepancy upon the wave motion cannot be great,
for the exponential decrease of density with height
reduces the zonal momentum to a negligible value
and nullifies the influence of the increasingly large
zonal winds. Thus it is shown in section 11 that the
rapid increase of the magnitude of the zonal wind
above 20 km has no perceptible influence on the wave
speed in the troposphere. The effects produced at
lower stratospheric levels by deviations of the postu-
lated from the observed winds are indicated in fig. 2,
where it will be seen that the change from a constant
to an increasing zonal-wind distribution lifts the mean
level of nondivergence 68 mb. On the other hand, it
is proved in section 16 that the stability criteria are
left virtually unaltered by this change.

The problem now reduces to the integration of the
single equation (74). It was shown in case II of section
14 that two independent integrals are given by the
functions ¥, and .. For the present purpose, it is
more convenient to employ two other integrals. It is
demonstrated in appendix C that two independent
integrals of (74) are

1 E\"
W1=—_f (1—-‘) etdt
271 J v, t

1 r
W2=——_f (l—g) etdt,
27t J, t

where the paths of integration 1 and v¢ are shown in
fig. 4. The asymptotic expansions of W; and W; are
given by

91)
and

92)

Wi~ [(= 8/T(IG(— 71 —r; — ), (93)
W ~ [£7¢t/T(— nIGU + 7,75 ), (94)
where
Glu, v; ) =1 +%+“(" +2Vs(: DL o)
The general solution of (74) may be written
V=AW, + AW, (96)

This function must satisfy the boundary condition
(63')

3
lim V exp —E—-)=O.
e Hs

The behavior of the functions Wy and W at infinity is
determined- by the asymptotic expansions (93) and
(94). Transferring back to the variables V and z, we
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find that
Vi= Wu§) exp[— (@ — $Hx)z]
~ Kiz"exp [— (@ — 3Hx™)z], (93")
and
Va = Wa(§) exp [~ (& — 3Hr)z]
~ Koz—7exp [(@ + 1Hr)z], (94"

where V3 and V; are particular solutions of (58) corre-
sponding to Wy and W, and K, and K, are constants.
Since

1 b 1 1
a= ( a* + ) > =~ R
4H? 2Hr 2Hs

the first of the expansions above shows that

Viexp (— 3/Hg) — 0,
whereas the second shows that

Vaexp (— z/Hg) — .
Consequently, (96) can satisfy the boundary condi-
tion at infinity only if 4, = 0, i.e., if ¢y = 4:W1. Now
it can be shown that the function ¢, defined by (79),
is equal to (—1)~"W; (see appendix C). Hence the
appropriate solution of (74) is given by a constant

multiple of 1.
An equation similar to (86) is obtained from the

.requirement that ¢ satisfy the surface boundary condi-

tion (61). In the present case, instead of two functions

F1G. 4. Paths of integration for the integrals W; and W,

¥1 and ¢, only the single function ¢, is involved, and
the resulting equation becomes

¥i' (&, 7) 8
—— =a+—, 97
Y1(éo, 7) “ ) ©n
where, as before,
a =3 — gk/(265%) — 1/(4aHy) = % 4 Ac,

1+ ghiio/(AG?) = 1 + AB,

a ( a*u, n A )
r=— .
2A a - @Hr
For convenience in following the ensuing discus-

sion the definitions of the quantities involved in £, r
a, and B are here reproduced:

w
Il

>
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@ = angular velocity of earth,
¢ = latitude,
v = lapse rate in troposphere,
~v4 = adiabatic lapse rate,
R = gas constant,
® = radius of earth,
Tr = mean temperature in troposphere,
L = wave length, ’
7o = mean surface zonal speed,
A = shear of mean zonal speed,
f=2Qsin ¢, u = 27/L, % = 1 + Az,
6* = eRTr, Hr = RT1/g, k = — (eR/g)(va — v),
2 2
u = QL cos«p’ o = MR (ya— ), @ = a? +
'R fHy 4H

In order to solve (97) for ¢, suitable numerical values
must be assigned to the constant parameters ¢, v, and
T'r. The following values are selected :

o = 45°,
v = 6.5 Ckm™,
Tr = 260C.

With the assignment of these quantities, we may de-
rive numerical expressions for the parameters &, z, a,
and B in terms of the fundamental parameters L, A,

10.0
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and 4. Thus,
@ = (0.48/L* + 4.0 X 109,
£ = 2a(i@ — ¢) X 10/A,
Aa = a— %= —2.50 X 10~5/g,
AB =B — 1= — @/(78A),
r = — Aa(2.52 + 3.90/A),

where L is measured in km, 1, and ¢ in m sec™!, an
A in m sectkm™. ‘

Equation (97) is solved for &, and hence ¢, by graph-
ing the quantities ¢1//¢1 and « + B/% as functions
of £. (The values of ¢, and ¥, are given in tables 1
and 2 of the appendix, and the graphs of y.'/¢, are
shown in fig. 5.) The intersections of the graphs of
Y1'/¥1 and « + B/&, determine the roots. The critical
values of &, separating real from complex solutions
are determined by the points of tangency. The roots
are most conveniently represented graphically by
plotting %, as a function of r for constant values of
a and B. The graphs obtained in this way are shown in
fig. 6. The parameters ¢, v, and T need not have been
specified in this type of representation, so that the
effect on the wave velocity of varying these parameters
can be studied.
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16. The stability criteria

The upper and lower curves in fig. 7 represent the
critical values of L and A for 4, = 0 and @, = 20 m
sec™!, calculated by means of the approximative
process described in the last section. The middle curve
is a reproduction -of fig. 3 and represents the critical
values of L and A for @, = 0 calculated without ap-
proximation directly from (89). The accuracy of the
approximation is attested by the close correspondence
of the two curves for %, = 0. It will also be seen that,
as anticipated, the influence of the variation in %, on
stability is small; a very slight increase in stability
accompanies a large increase in 1. As before, the

curves show a slightly greater than linear increase of
the critical shear with increasing wave length.

The influence of lapse rate on stability can be ascer-
tained from the representation in fig. 6 of £ as a
function of 7, «, and 8. It is found that instability
increases both with lapse rate and with latitude.

17. The wave velocity

Case I, the neutral wave

The real solutions of (97) correspond to neutral
waves, and one result of a consideration of these
solutions is that the relative zonal velocity, #y — ¢, is
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Fic. 7. Approximate critical stability curves for %, = 0 and

%o = 20 m sec™!, The dashed curve is a duplicate of the exact
curve in fig. 3.

always positive. This is a consequence of the fact that
In & appears in the expression for both ¥i(f) and
¥1'(&). If & were real and negative, In & would be
complex, and the left-hand side of (97) then would
also be complex; but this is an impossibility because
the right-hand side is always real for real values of
. Since & = 2a(do — c)/A, we conclude that %, — ¢
is always positive. '

The speed of the neutral wave is a function of the
parameters L, A, and @,. The dependency on L and A
when @, = 0 is illustrated in fig. 8. Changes in %, have
a small effect upon the character of the curves. The
exact nature of this effect is illustrated in fig. 9,
where %, — ¢ is plotted as a function of A for different
values of 4y and for L = 4150 km. Referring to fig. 8
we note -that the limiting curve corresponding to
A = 0 virtually coincides with the graph of

i@ — ¢ — u, = fc/(u2gHo).

This result was anticipated when it was shown in
section 14, case I, that waves in a baroclinic atmosphere
with zero shear have virtually the same velocity as.
waves in the corresponding barotropic atmosphere.

The curves in fig. 8 show that the wave velocity, at
constant wave length and constant surface zonal
speed, increases rapidly with increasing shear; and
that for A > 0 we always have

0<4—c¢c<u,.

‘Case I1I, the unstable wave

In order to calculate the speed of the unstable wave
it would be necessary to evaluate the complex roots
of (97), and this_is an extremely - difficult process.
However, one may make several inferences concerning
this speed from the real solutions already obtained.
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Let us consider what happens to the speed of a neutral
wave when the shear is gradually increased while
L and 4, remain constant. An inspection of fig.. 9
shows that %, — ¢ decreases from its value in a baro-
tropic atmosphere to its value at the point where A
is equal to A,, the critical shearcorresponding to the
given values of L and 4, It can be seen that for
@ > 0 the value of 7y — cat A = A, is slightly greater
than zero, whereas for 1, < 0 it is equal to zero. In
either case %, — ¢ is small. In the case of incipient

instability, where the shear is only slightly greater

than its critical value, we may employ the argument
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of continuity to deduce that the real part of & does
not vary greatly from its value at the critical shear.
The value of 4, — ¢ therefore remains smdll, and we
may infer that the speed of the incipient unstable wave
does not differ greatly from the surface zonal speed.

18. The structure of the wave

Case I, the neutral wave

(a) Phase. The relation between the amplitude V
of the meridional wave component of the velocity and
the function ¥; may be written

V(z) = A (¢ ) exp [—
or, if we define V, = V(0),

%wnem[_(d;Z;)z} (99)

(@ — $HrDal, (98)

Vizg) = TV,

¢1(£01 r)

Since this function is real for the neutral wave, a
consequence of the relation

?), = Veiy(z—ct)

is that the phase of the wave cannot change with
height.

(b) Amplitude. 1t can be shown by means of (99)
that, as height increases, ¥V may either increase or
decrease initially but finally tends toward zero.

(c) Pressure pattern. It was proved in section 10
that the y-component of the velocity is very nearly
geostrophic, i.e.,

=~ pfv.

— Veilx(a:—ct)

Hence, from

we obtain the equation _
P = = i(pfV/weneed = (pfV/u)einee=%r,  (100)

which shows that the wave in the field of meridional
velocity lags 90° behind the wave in the field of p’.
Since by condition (63) 5V — 0 as z — «, it follows
also that the amplitude of the pressure wave ap-
proaches zero with increasing height.

(d) Density paitern. The density perturbation is ob-
tained from the pressure perturbation by means of the

third of equations (22). Substitutihg the expression _

for p’ in (100), we obtain

ﬁV( m). |
=q— s + —_ ew(-""‘t‘),
p. 1 14

(101)

and, introducing the value of V./V given by (82),
we obtain

s —a-+

+ 2a _) ginlz—ct), 102
. " (102)

Examination of the coefficient of e#@®=¢d in (102) re-
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F1G. 10. Pressure, density, and meridional velocity
component in the neutral baroclinic wave.

veals that the wave in the density field at the ground
may be either 180° out of phase with, or in phase with,
the pressure field, but that at sufficiently high levels
it is always in phase with the pressure field. Since the
amplitude of the pressure wave decreases to zero, the
last property can also be deduced as a consequence of
the rule derived from the hydrostatic equation that
cold highs and warm lows decrease in intensity with
height. The upper-level density field together with the
fields of pressure and velocity are shown in fig. 10.

(e) Pattern of vertical velocity component. The ampli-

tude W of the w'-perturbation is expressed in terms of
V by (54), thus

gk gke
W=—(—+A)V+(1Z—C)Vz
fa? &
V. gke/a® + A
=(d_c)v(__g_+_)
|4 4 -~ C
Y B)
=2a@ — )V ——a—--). (103
a@ — ¢) o YT (103)

By (97) the last parenthesized quantity equals zero
when z = 0, and, since, as can be shown, ¥,'/¢; de-
creases faster than a + 8/¢, the parenthesized expres-
sion is negative. From this, together with the fact
that & is negative and @ — ¢ positive, it follows that W
has the same sign as V, and the w’-perturbation is
always in phase with the v'-perturbation.

(f) The horizontal divergence. The horizontal mass
divergence D is defined by

D = (pu), + (ov),. (104)

In terms of the perturbations #' and v, D may be
written, with the aid of (11),

D = pu'z + (8f/g)(su + M)’

= plinU + (f/g)(sa + A) Ve, (104"
whence by (53) we obtain
D=,3f[(x ) V4 - V:Iew.(x—ct)
2
=ﬁV%(u—c—m+fﬁ
A u’g
+ 72V gen (1047

wg v
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An evaluation of the orders of magnitude of
fisu ffav,
e wg v
in this equation shows that these terms are negligible

in comparison with the remaining parenthetical terms.
Therefore, we may write '

D = (pVu*/f)(@ — ¢ — uo)en—ed), (105)

The level where D = 0 is called the level of nondi-
vergence. If the height of this level is denoted by £,
we derive from the preceding equation the result that

(k) — ¢ — u, = 0. (106)

Since at the ground %@ — ¢ is less than u,, the result
follows from (105) that the field of D is 180° out of
phase with the field of ¢' at low levels; but, at levels
above the level of nondivergence, D is in phase with
the field of ¢'.

Case I1I, the unstable wave

The velocities of the unstable waves correspond to
complex roots of (97), whose evaluation presents great
difficulties. However, a qualitative description of the
structure of the unstable wave can be given without
such an evaluation. For this purpose, we approximate
£ in the vicinity of its critical values by means of an
expansion in Taylor’s series in the following manner:
Consider the variation in £, produced by a small in-
crease of 7 from its critical value r.. We may study this
variation in one of the diagrams of fig. 6 by noting the
intersections of the vertical line for constant » with
the curve for constant 8. If we confine our attention. to
the case %, > 0, AB is less than zero, and we need only
consider the curves for 8 < 1. Denote the critical
values of 7, @, and B8 by r., a., and B.; then the line
corresponding to r = 7, is tangent to the curve corre-
sponding to 8 = B, in the diagram for a = a.. At the
point of tangency, d7/d& = 0 and 9% /9d&* > 0. The
relationship between &, 7, «, and 8 is expressed by

poti@n o B_,
216! &o :
If F is analytic, this equation defines 7 as an analytic
function of % in the vicinity of its critical value. An
inspection of the expression for &; in (79) shows that
F is analytic whenever £, is greater than zero. As this
condition is assured by the provision that 4, be greater
than zero, r may be expanded in Taylor’s series about
%o; thus,

_ +(3r) (
Y =7 'a_go CSO_SOG)

+ 1 0%
2

' E;) (80 — &0)? + -+, (107)
. (] [
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where %90, (87/8%0)., and (8%/8&0?). denote critical
values. Recalling that (97/d%0).=0 and (8% /9%¢%).>0,
we obtain

r — 7o

fo — foe = £ (2( (108)

% /3tN. ) '
if terms of third and higher orders are neglected. Since
r — r. is negative when A — A, is positive, we may
write ’ .
(109)
where

&0 = Eoc + 2§,
7 — to

w2 ga)

the minus sign in (108) being selected since ¢; is greater
than zero and therefore ¢; is less than zero in the un-
stable wave. ' ’
Equation (109) gives the surface value of £ The
corresponding value of £ at any height z is

£ =(2a/A) (@ — ©) + 2az
= £ + 2az = £oo + 202 + <&,

and, if the quantity &. -+ 2dz is denoted by £, we
have

£ =t + ik (110)

Expanding the function ¢, about £, we obtain
Y1(§) = Ya(do) + & ¥/ (&)

if terms of second and higher orders are neglected ; or,
in polar coordinates,

(111)

Yi(8) = [Pa(§)]e®@ . )
= {¥12(&) + &1 (&) 2} te®@,  (1117)
where . e
®(z) = - tan—!] & —>2 |, 112
@ =~ tan [ b ] (112)

and, if this expression is substituted into equation
(99), we obtain

e[l - (5]

21¢3)
¥1(&0)

Since v = Ve we may infer that the phase of
the unstable wave changes with height and that the
equation of the trough line at the time ¢ = Oisgiven by

(113)

B(H—0] (987)

« + ®(z) — B(0) = 0.

Since §; is negative and ¥i/'(%.)/¥1(&.) is a positive,
monotonically decreasing function of £, the trough
line slopes toward the west at first rapidly and then
less rapidly with height and eventually approaclies the
vertical. (See fig. 12.)

The expressions (98-105) for the fields of pressure,
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density, vertical velocity component, and horizontal
divergence derived for the neutral wave hold as well
for the unstable wave. The real parts of the functions
involving &, and £ are sensibly unaltered by the change
from £ and &, since &; is assumed to be small com-
pared with &, but we have now to consider the
~ imaginary parts. ‘

(a) The pressure pattern. Since £ is not involved
explicitly in the equation between p’ and ', the phase
relationship between these two fields remains the
same as for the neutral wave.

(b) The density pattern. The nature of the density
perturbation may be deduced from (102). If we de-
fine the function Q(%) by .

We 1 s 1

U8 2 . 2a ' 4aH.

and recall the relation (100) between p’ and v’, we
may write for equation (102)

—2aQ(8) .

Approximating Q by a terminating Taylor’s series
about ¢ = £, we obtain

Q&) = Q& + &) = Q(&) + 14 Q'(&0),

or in polar coordinates

Q) = [Qx&.) + &2 Q*(E) T
X exp {4 tan~! [& Q'(&)/Q(&:) 1}
~ Q&) exp {i tan™ [£ Q'(£)/Q(¢.) 1.

It can be shown that, depending on the values of A,
L, and ,, (a’) Q may be positive or negative at the
ground and (b’) Q decreases monotonically with height
and approaches a negative value. These properties
imply that the wave in the density field precedes
the pressure wave by a phase angle |tan™ (£Q'/Q)1,
which increases with increasing |%| and therefore
with increasing instability. Thus, with the appearance
of instability, the density wave develops, with respect
to the pressure wave, an asymmetry of such a nature
that the coldest air is in advance of the wedge in the
isobars. It is this asymmetry which accounts for the
previously noted tilt in the pressure and meridional
velocity waves. The phase relationship between the
waves p/, p’, and v’ is illustrated in fig. 11.

Q) =

o= (1027)

e N

FicG. 11, Pressure, density, and meridional velocity
component in the unstable baroclinic wave.
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(c) The pattern of the vertical velocity component. The
nature of the field of vertical velocity may be deduced
from (103). If we replace 2a(2% — ¢) by A¢ and multi-
ply through by e®*@—<®_ this equation becomes

| w = — [/ ()] M(E) o,
where i (®) 8
ME = —¢| 2 B
® %%@ g]

It is not possible to approximate M at the ground
by the first terms of a Taylor's series because M
vanishes there. However, for large values of £, the
approximation is valid and we may write

M) =~ M(&) + i& M'(&o)
~ M(&) exp {4 tan™ [& M'(£.)/M(&) 1}, (103")

from which it can be shown that (a’) | M| increases

continuously with height and is asymptotic to af., and

(b") the argument of M is negative and approaches

zero with increasing height. Since, by (93'), &V — 0

as g — o, it follows from (103’) and (a’) that '

finally approaches zero with increasing height. The

conclusion (b’) together with (103’) leads to the result
that the w’-wave precedes the »’-wave by the angle

|tan™ (& M’'/M)| at high levels.

Near the ground @’ is evaluated indirectly by
numerical integration of (55) with the result that the
amplitude of the w'-wave increases with height and
the wave lags, in low levels, behind the v’-wave.
Since the v’-wave lags 90° behind the wave in the
pressure field, we may summarize the statements
above by saying that in low levels the maximum

-vertical velocities occur between the point of inflec-

tion and the trough to the west in the pressure profile
whereas at high levels the maximum vertical velocities
occur between the point of inflection and the wedge
to the east.

Fig. 12 contains a schematic representation of the
field of vertical velocity in the unstable wave. The
corresponding horizontal patterns of pressure and
vertical velocity at a constant level are also indicated
in the lower part of the diagram.

(d) The horizontal divergence. If the real and imagi-
nary parts of the wave velocity are denoted by ¢; and
¢; respectively, (105) becomes

D = (pu/f)(@ — ¢ — uc) Veistz—o
— i(pp2/f)ciVere—e (114)

and it follows that the field of horizontal divergence
consists of two wave components: the first in phase
with, or 180° out of phase with, the ’-wave according
as % — ¢ — #. = 0; the second preceding the v’-wave
by 90° since ¢; is positive.

No definition of a level of nondivergence can be
given, for there is no constant level at which both wave
components vanish simultaneously. If, however, the
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F1G. 12. Schematic representation of the field of vertical velocity component in the unstable baroclinic wave in vertical cross section
(upper diagram). The dashed lines in the upper diagram are isopleths of vertical velocity component, the unit being cm sec™, and the
solid lines indicate the positions of the trough and wedge in the pressure field. The position of the vertical-velocity wave relative to the
pressure wave at the level indicated by the dotted line 1s shown in the lower diagram.

wave is only slightly unstable, ¢; will be small in com-
parison ‘with ¢, and the second component will be
negligible. In this case the level of nondivergence is
approximately determined by # — ¢ — %, = 0. In’
general, it is possible to define a surface of nondiver-
gence by setting the magnitude of D in (114) equal to
zero. For this purpose let V = | V|e®* 2, &(z) being
defined by (112), and obtain

D = (3u2/f)(@ ~ ¢r — us)| V|eite—oté®
+ (pu?/f)ei| V|ent—ertd=inlz, = (1147)

and, when |D| = 0,
(@ — & — o) sin [u(x — et + ®)]

—cicos [ulx — ¢t +®)] =0, (115)
or
. 1 Ci .
X — ¢ = —d 4 —tan! — (116)
M U — Cr — Yo

(We note that the same result could have been ob-
tained by a polar representation of (114).) A vertical

cross section showing the field of divergence, calcu-
lated from (114'), and the field of vertical momentum,
calculated from the vertical velocities of fig. 12, is
given in fig. 13. The numerical values used in figs. 12
and 13 are correct only in order of magnitude and
do not necessarily correspond to an actual situation.
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APPENDIX

A. Elimination of density and pressure from the
perturbation equations. Elimination of p’, by differen-
tiation of the first of equations (22) with respect to
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F1G. 13. Schematic representation of the fields of horizontal mass divergence and vertical momentum component in the unstable
baroclinic wave. The dashed lires are isopleths of vertical momentum component, the unit being 1073 g cm™2 sec™!. The light solid lines
are isopleths of horizontal mass divergence, the unit being 108 g cm™3 sec™.

y and the second with respect to x gives

fu's + fir' + L(v'2)
+ L it ap+ -0
gb I3

and elimination of p’, by differentiation of the first of
equations (22) with respect to z and the third with
respect to x gives

Au'y, 4+ sL(u') — sfo’ + L(u'.)
A g
e = ) = S = 0. (24)
p B

The last two equations together with the first, fourth,
and fifth of (22) constitute a system equivalent to (22).

The first of equations (25) is now obtained by elimi-
nation of p’ from (2A) - and the fourth of (22), the
second by elimination of p’ and p’ from (2A) and the
first and fifth of (22), and the last by elimination of
p’ and p’ from (1A), (2A), and the first of (22).

B. Reduction of the perturbation equations. Equation
(48) is obtained by elimination of pW and (W), be-
tween (39), (40), and (41); equation (47) is obtained
by elimination of U,, V., and (sW),.between (39),
(40), and (48); and equation (46) is obtained by
elimination of U, V., and pW between (39) and
(48), when, after each elimination, the resulting expres-
sions are simplified by means of the inequalities
(42-44).

Applying the same inequalities, we obtain equation
(50) bv elimination of U, between (48) and (49), equa-

tion (51) by elimination of U between (47) and (50),
and equation (56) by elimination of U between (46)
and (50).

C. Solution of the confluent hypergeometric equation
for the case b = 0. The functions

M((l,b, E) El_bM<a_b+1)2 —'bi E)

fail to yield two independent integrals of (76) when b
is an integer, for M(a, b, £) is then undefined. Two
different independent integrals may be derived by the
method of Laplace: thus Mott and Massey [13]
prove that the integrals

1 £\
W, =— f 1 —-- eldt,
2w I t
1 £\
w5 e
2wt Jv t

satisfy (76) when b = 0. The paths of integration v
and «. are shown in fig. 4. The first integral may be
expanded in an infinite series as follows: if we express
Y1 = (— 1)W; as a contour integral of the Mellin-
Barnes type, it can be shown, by a method employed
by Archibald [1], that
_
27t T'(— a)

% f“’il“(s) 'N(—s4+a)T(—s+a+1)

T(a) T(e + 1)

where the contour has loops if necessary so that the
poles of I'(s) and those of T(— s + a) T(— s + a + 1)

and

Y1 =

£4ds,

—0i
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TasLE 1. Values of the function y¢1(%, r).
sin 7g T(e) _ I‘ (1)] al@a+1)---(a+n— 1)
i) =22 Lar s+ 12,9 [me+ T8 250 [ 414+ £ 5. Lot 39
nzl 1
Ba (a + v 1 + v) + r.
The function ¥, satisfies the confluent hypergeometric differential equation &' — &' + ry = 0.
\r 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
EN - .
0 1 1 1 i 1 1 1 1
- 0.1 1.031 1.065 1.105 1.152 1.210 1.287 1.400 1.598
0.2 1.049 1.106 1.173 1.254 1.357 1.497 1.708 2.090
0.4 1.077 1.167 1.277 1.415 1.595 1.847 2.239 2.972
0.6 1.098 1.215 1.360 1.546 1.793 2.147 2.709 3.781
0.8 1.115 1.255 1.431 1.659 1.968 2.418 3.142 4.544
1.0 1.130 1.290 1.494 1,760 2.128 2.667 3.548 5.274
2.0 1.184 1.421 1.735 2.164 2.782 3.726 5:334 8.622
3.0 1.222 1.515 1.914 2.475 3.302 4.607 6.884 11.68
4.0 1.251 1.589 2.060 2.732 3.750 5.388 8.282 14.50
5.0 1.275 1.652 2.184 2.962 4.150 6.096 9.606 17.16
6.0 1.295 1.706 2.293 3.164 4.513 6.751 1 10.84 19.75
7.0 1.313 1.754 2.392 3.349 4.851 7.367 12.03 22.27
8.0 1.328 1.798 2.482 3.518 5.164 7.951 13.17 24.71
9.0 1.343 1.837 2.564 3.677 5.461 8.507 14.25 27.09
10.0 1.356 1.873 2.642 3.827 5.740 9.040 15.31 29.43
N\ 0.9 1.5 . 2.5 3.5 4.5 5.5 -0.5 —-1.5
[N ’
0 1 1 1 1 1 1 1 1
0.1 2.133 1.296 1.295 1.242 1.154- 1.039 0.8820 0.7304
0.2 3.144 1.351 1.164 0.883 0.553 0.198 0.8202 0.6114
0.4 5.048 1.175 0.442 - 0.361 — 1.124 - 1786 - 0.7390 0.4742
0.6 6.863 0.752 — 0.588 — 1.788 — 2.681 —  3.216 0.6815 0.3878
0.8 8.622 0.149 - 1.750 —  3.089 - 3.722 —  3.693 . 0.6381 0.3290
1.0 10.34 - 0.603 — 2932 —  4.088 — 4.076 - 3.158 0.6035 0.2865
2.0 18.53 - 6.053 — 6.816 - 2.126 3.779 8.004 0.4882 0.1468
3.0 26.33 — 13.64 — 3.302 10.99 15.86 10.15 0.4270 0.1138
4.0 33.84 — 22.89 11.51 27.48 12.04 — 14.10 0.3840 0.0890
5.0 41.18 - 33.56 40.59 33.56° - 2141 -~ 52.59 0.3600 0.1700
6.0 48.38 — 4546 - - 86.15 11.00 — 83.01 — 66.34 0.3300 0.1070
7.0 55.47 — 58.52 151.20 — 62.44 —151.20 — 4.76 0.3080 - 0.0770
8.0 62.46 - 72.59 235.77 —-210.33 —175.68 17.13 0.2940 0.1280
9.0 69.35 — 87.65 345.19 —464.65 — 79.68 464.65 0.2740 0.0190
10.0 76.18 - —103.61 4771.79 —851.97 252.47 795.86 0.2900 0.6400

* See table 3 for definition of M.

are on opposite sides of it. The integrand has a simple
pole at s = ¢ and double poles at s = a -+ n, where
=1,2,3, +--. Therefore (sce Whittaker and Wat-

son [17])

Y= — :

I‘(F a)I'(a) T'(a + 1)
where R, denotes the residue of
J) =T(s)I(—s+a) I'(=s+a+ g

at the simple pole s = g, and R, the residue at the
double pole s = a + . Since

Ru+iRn),

n=1

1 1 1
= ¥z + —_ + —_ e,
® 0lz 1l(z+1) 21 (z+2) ‘
where ¥ ‘is an integral function, the résidue of
I'(— s+ a)ats =ais — 1. Therefore

Ro = — I‘((l)-ga.

To evaluate R, we proceed as follows: By means of
the relation
rxrid —x =

r'(z)

«/(sin wx)

we may express f(s) as ‘

f(s) = — #*{sin® [x(s — a)]}"20(s),
where
T(s) &

¢(s)=1‘(1-—a+s)I‘(—a+s)'

Now, utilizing the relation

_ e © 1
. =2
sin? [w(s —a)] —=(s— a4 n)?
and the Taylor expansion of ¢(s) about s = a + =,

we find that the residue of f(s) at the pole @ + n is
— ¢'(a + n). But

T'(c + a) g+e
¢ tn '*[r(a+ D r<a)]
I'(n + a) ¢ [ TV(rn + a)
T T(n+ 1) r(n)[ T(n + a)
n+1)
T Tm+1)

'

r') + In E]y

T'(n)
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TABLE 2. Values of the function ¢,' = dy./d¢.

N 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.3
0 .
0.1 0.213 0.432 0.725 1.071 1.525 2.136 3.192 5.066
0.2 0.174 0.344 0.586 ' 0.903 . 1.269 1.826 2.767 4.535
0.4 0.121 0.262 0.450 0.719 1.061 1.588 2.440 4,161
0.6 0.082 0.213 0.374 0.614 0.930 1.417 2.248 3.894
0.8 0.066 0.182 0.326 0.539 0.836 1.294 2.118 3.726
1.0 0.055 0.161 . 0.291 0.484 0.772 1.197 1.987 3.570
2.0 0.048 0.102 0.198 0.346 0.579 0.958 1.627 3.121
3.0 0.034 0.076 0.155 0.282 0.489 0.838 1.466 2.873
4.0 0.028 0.065 0.130 0.235 0.428 0.744 1.358 2.726
5.0 0.019 0.053 0.100 0.210 0.374 0.683 1.278 2.591
6.0 0.014 . 0.044 0.094 0.180 0.343 0.621 1.214 2.508
7.0 0.010 0.042 0.088 0.164 0.306 0.582 1.107 2.427
8.0 0.009 - 0.040 0.079 0.148 0.289 0.541 1.106 2.446
9.0 0.007 0.033 0.079 0.151 0.295 0.519 1.040 2.438
10.0 0.007 0.028 0.074 0.149 0.298 . 0,533 1.072 2.443
X 0.9 15 2.5 3.5 45 5.5 —0.5 -5
0
0.1 10.30 —0.691 —1.460
0.2 9.495 ’ : —0.459 —0.849
0.4 9.036 _ —0314  * —0472
0.6 8.613 : —0.242 —-0.329
0.8 8.536 ~ 1.851 ’ —0.198 —0.255
1.0 8.478 —~ 9.517 —0.171 —0.207
2.0 7.952 -~ 6.265 —0.081 -0.071
3.0 7.635 —~ 8.386 —0.043 —0.005
4.0 7.445 —~ 9.724 18.76 : —0.035
5.0 7.289 —11.07 36.12 —0.027
6.0 7.160 -12.09 54.36 -~0.021
7.0 7.100 T —~13.22 73.63 — 9241 -0.016
8.0 6.996 —~14.16 95.02 —~194.34 —-0.012
9.0 6.727 -~15.16 121.16 —-322.93
10.0 .6.780 —16.06 145.72 —477.10 585.73
and - sin 7a
Vi +a) o1 1 T (a) Y = et Ma+1,2,9
I‘('ﬂ + d) =0 @ + v I‘(d) ’ % | ’ + I"(a) ) I"(l) + )
n _
'at+1) =2 1 (1) ¢ I'(a) (1)
n+1) =14y T’ +iBa(a+1).--(a+n—l)£”}
() a2 1 (1) st (n—1!n!
T'(n) = + y T 1) The asymptotic expansions of W; and W, given in
p P
Combining these results we obtain (93) and (94) are demonstrated by Mott and Massey
: [13, p. 391.
£e D. Tables of Y1 and ;. The function ¥1(§, 7) was
Y= I'(a) & luated for § =4 b f the infinite seri
I‘(— a) I‘(a) I‘(a + 1) evaluated for £ = y means of the infinite series
=  T(n+a) expansion (79), and for £ = 4 by means of the asymp-
+Ingy ——— grta totic expansion (93). Some of the calculations were
»=1 '(n + 1) T'(n) facilitated by use of the recursion formula
® I'(n 4+ a .
+ X Bn-———(———)~——§"+“ ryis,r — D +rdlgr+ 1) = — (8= 2n) (g ).
ST+ 1) T . o o
I'(a) 1) = T(n+a) The tabulations are given in table 1. The derivatives
+ [ ) ] En+d} , of ¥, evaluated graphically, are tabulated in table 2.
I'(a) I'(1) 1»=1T(n + 1) T'(n) The function ¥s(£, r), defined by
where S
mif 1. 2 1 at1
B,.=z( - )+__ = EMe 12D =8 1+t
=0 \ a -+ » 14+v» n o
g o @+ D +2) |
From the definition of M in (77) it follows that s g4 .., a= —r,
s Trn+a ' . e . .
" =al(a) E Ma +1,2,8), was evaluated directly from the infinite series, and its

=1 T(n + 1) T'(n) derivatives were calculated graphically. The tabulated
whence we obtain for ¢; the expression values are given in tables 3 and 4.
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TABLE 3. Values of the function ya(t, 7) = § M(a + 1, 2, £), where ;1 = — rand

a(a 4 1)
M+t T

The function y, satisfies the confluent hypergeometric differential equation &' — ' + r¢ = 0.

M@ b8 = 1+ 175 6+

\E'\ 0.1 0.2 0.3 0.4 - 05 0.6° 0.7 0.8
0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.1 —0.01046 —0.02082 —0.03108 — 0.04123 — 0.05128 ~0.06123 —0.07107 —0.08082
0.2 —-0.02192 —0.04340 —0.06445 — 0.08507 — 0.10526 —0.12503 —0.14439 —0.16334
0.4 —0.04821 —0.09450 —0.13889 — 0.18144 - 0.22218 —0.26114 —0.29838 —0.33401
0.6 —0.07978 —0.15480 —0.22520 — 0.29112 -~ 0.35269 —0.41005 —0.46334 —0.51304
0.8 -—0.11776 . —0.22618 —0.32564 — 0.41649 ~— 0.49909 —0.57378 —0.64090 —0.70166
1.0 —0.16349 —0.31086 —0.44291 — 0.56040 — 0.66410 —0.75471 —0.83295 —0.90130
2.0 —0.58020 —1.05048 —1.42153 — 1.70335 -~ 1.90526 —2.03598 —2.10352 —2.13381
3.0 —1.66374 —2.88290 —3.72026 — 4.23255 — 447087 —~4.481135 —4.30451 —4.05807
4.0 —4.515 —7.538 —9.338 —10.151 —10.181 . —9.607 . —8.586 —~7.491
TABLE 3.—Continued. Two solutions of this equation are found to be ¢ and
N7 0.9 L5 2.5
N 2 £
- X=flnt+ 2 —|—1
0 0.00000 0.00000 0.00000 S+ Din
8% - 0.0904(; —  0.14622 — 0.23141
. — 0.1818 — 028474 — 0.42626 The function X and its derivative are tabulated in
0.4 — 0.36777 — 0.53789 — 0.71017 ble 5
8’3 - 8.;28;9 - 0.75770 — 0.85963 table 5.
R — 0.75370 — 0.94222 — 0.88284 F
;g - 12).9.;4;95 - 1.08229 — 0.78830 REFERENCES
. — 2.07882 — 1.16727 1.12710 . Archi . 1., 1938: Th 1 i f the di -
%0 Z 358391 02140 £47090 1 rc}.ubald, W J., 1938: The complete solution o the dlffefe_n
1.0 — 56716 3.89358 758565 tial equation for the confluent hypergeometric function.
5.0 — 9.320 11.52548 8.17913 Phil. Mag., 7 ser., 26, 415-419.
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tions of (74) anew. In particular, when 7 = 1, we have



