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PROFESSOR’S NOTES

14.1  OVERVIEW:  THE MOSFET DEVICE AND ITS SPICE MODELS

The MOSFET is a charge–control, field–effect device.  The acronym ”MOS” refers to its construction, which con-
sists of a series of layers forming a metal–oxide–semiconductor (MOS) sandwich.  By means of a voltage bias
across the oxide layer, which is thin, of thickness typically around 50 nm, electric fields on the order of 105 to 106

V/cm will be created.  These are formidable E–fields, and will have strong effects on the charge and conductance
properties of the semiconductor substrate.

The principal consequence of this strong E–field is that it induces a highly–conductive layer of mobile charge in the
surface region of the semiconductor substrate.  This surface charge layer forms a conductive channel, between two
end terminals, usually identified as the ”source” and ”drain” terminals, with its properties directly controlled by the
transverse E–field.  The terminal which applies the transverse E–field is called the ”gate” terminal, and is the prin-
cipal control terminal.

The MOSFET can be fabricated at dimensions of microns or less, and therefore lends itself well to the fabrication of
high–density VLSI circuits.  Most integrated circuits are constructed with the MOSFET as the principal compo-
nent, not just as a transistor device, but even one that supplants resistances, since the MOSFET device can be
constructed at much smaller dimensions than those needed for the typical resistive paths.

Consistent with the concept of a control element, we like to apply the MOSFET as if it were a 3–terminal compo-
nent.  This concept is consistent with the perspective of a transistor as an electrically–controlled ‘valve’ for electric
current, as represented by figure 14.1–1. 

Figure 14.1–1:  Conceptual and circuit models of the (n–channel) MOSFET.

These models are all a little too ideal for robust circuit design, but are adequate for first–order conceptual purposes.
In order to make a circuit that will actually work, it is necessary to take a closer look at the device, identify the
physical mode(s) of its operation, and deploy mathematical models that yield a realistic representation of its operat-
ing characteristics,

The conductance of the FET is most directly controlled by the gate–source bias VGS.  There is a threshold level of
VGS, usually labelled as VTH,, which must be reached in order to create the conductive charge layer.  In fact, if the
bias between gate and any point within the channel drops below this threshold, the device self–limits the level of
conducting current, reaching a state usually referred to as ”saturation”.  When the drain end of the channel ap-
proaches this limit condition, the gate–drain bias VGD 

�

 VTH, and the conducting charge hypothetically �  0. Due
to this pinching effect on the level of conducting charge, this condition is usually referred to as ”pinch–off”. 



ID

VDS
VGS – VTH
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Of course the charge does not really pinch–off to zero, but it makes the concept of a conduction–limiting effect
within the channel more graphic.  What really happens is that the charge layer self–limits itself to a very small but
finite level as the carriers approach terminal velocity, somewhere near the drain end of the channel.

Since VGD = VGS – VDS,  the pinch–off condition may also be stated in terms of drain–source bias VDS , for which
VDS  = VDSAT = VGS – VTH  as represented by figure 14.1–2.   Since there are three terminals to this device, this is a
necessary perspective, since the ID vs VDS characteristics describe the output properties of the current channel.
Figure 14.1–2 shows these properties for a  fixed value of VGS.

It might be noted that the drain–source characteristics are manifested by a finite conductance when VDS = small,
consistent with the idea of a conductive bridge layer in between source and drain.  But as VDS increases, this channel
gets more constricted at the drain end, and conductance rolls off to a zero slope as VDS  

�
 VDSAT.  This behavior is

consistent with an approximately parabolic form for the ID – VDS characteristics of the transistor, and makes it rea-
sonable, to first–order, to model the MOSFET electrical behavior as a quadratic equation fitted to the I–V drain
characteristics, as represented by Figure 14.1–2. 

This quadratic fit gives us the equations:

for VDS
�

VGS � VTH : ID � K[2(VGS � VTH)VDS � V2
DS]

for VDS
�

VGS � VTH : ID � K(VGS � VTH)2

(14.1–1)

(14.1–2)

These equations are for the n–channel (nMOS) transistor, for which VTH is (usually) a positive value.  Note that the
saturation condition, for which VDS  > VGS  – VTH, is also the same as the “pinch–off” condition, VGD < VTH.  We also
should note that the transistor conducts only when VGS > VTH, necessary for formation of the charge–layer in the
first–place, and if this condition is not met, we say that the transistor is in “cut–off”.

Figure 14.1–1  Fitting of a parabolic model to drain characteristics of the MOS transistor

Equations (14.1–1) and (14.1–2) are also called the Shichman–Hodges model[14.1], and are used as the LEVEL–1
model for SPICE.

The conduction characteristics of the p–channel transistor are the same as those of the nMOS transistor, approxi-
mately parabolic in form, except that the currents and bias polarities are opposite in polarity.  Equations (14.1–1)
and (14.1–2) are therefore equally appropriate to the pMOSFET as they are to the nMOSFET.  The main change is
that all of the junctions are reversed, so that all voltage polarities are reversed.  Therefore VGS is negative, VDS is
negative, VTH is negative.  The conditions for conduction and saturation are also reversed.   Therefore for the
pMOSFET, the transistor conducts when VGS < VTH, and the saturation condition (or pinch–off) is VDS < VGS –
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VTH, (or VGD > VTH).

Once you get the polarities and the conditions straightened out, these equations are very easy to use, and therefore
are readily applicable to first–order hand calculations and first–order analysis of a circuit.  Unfortunately, physical
reality is not quite as accommodating, and we must adjust our circuit analysis accordingly if we are to have a robust
design. Equations (14.1–1) and (14.1–2) are compromised by the fact that the MOSFET is actually NOT a three–
terminal device but a four–terminal device, as represented by Figure 14.2–1 (two pages ahead).  The fourth termi-
nal belongs to the substrate.  This terminal has value such that the substrate junctions are kept in reverse bias.
Although substrate bias VB has an effect on transistor conductance, it is not usually used for control of the circuit.
But it does exercise a strong influence on the uncovered charge layer below the conducting channel, which is a
major effect in the definition of the threshold VTH.  Therefore the assumption that VTH is a constant, on which equa-
tions (14.1–1) and (14.1–2) rely, is not valid.  For the sake of simplicity, we often assume a constant VTH, in order to
make an approximate assessment of the device behavior using the Shichman–Hodges equations.  But it is not a
physically good assumption, and if the circuit is not re–evaluated, we may well find ourselves with an unworkable
circuit and a localized disturbance in the Force.

As a matter of grace, the Shichman–Hodges equations are adequate for the rough, analytical, analysis of circuit
performance needed to initiate the circuit design.  But we must relinquish much of this simplicity in order to gain a
mathematical model that (1) considers the more complete charge effect of the MOS sandwich and (2) lets our simu-
lation software converge.  This upgrade implies a few more parameters.  Table 14.1–1 lists parameters that define
the LEVEL–2 model of the MOSFET.  This model makes a reasonably complete assessment of the device physics
underlying the MOS transistor and therefore is used as a basis for most adjustments we might use in reshaping or
remodeling a circuit with MOS transistors.

Software is also our main means by which we refine our circuit design. If the circuit is of VLSI form, where it is
difficult or impossible to electrically probe the circuit, it may be our only means of assessing critical aspects of its
performance.

In the table there are at least six parameters (PHI, VTO, GAMMA, XJ, DELTA) that are needed to define the thresh-
old.  They are a result of the charge–control effects which defines VTH.  It emphasizes that the regrettable fact that
VTH is not constant, but a parameter which is dependent on at VS, VD, and VB.  As a consequence, the equation for
drain current will be considerably more of a mess than the quadratic Shichman–Hodges model given by equations
(14.1–1) and (14.1–2).

The physical model of I(V), generally identified as the gradual–channel, strong–inversion (GCSI) model, is not
particularly useful for hand calculations, unless disciplinary mathematical exercises just happen to strike your
fancy.  It is for use by software, which will apply it in an iterative, Newton–Raphson process.  The model of I(V) is
subject to the corollary that it must include a reasonably good assessment of all of the physical effects without over-
burdening the iterative analysis.  Your task, should you choose to accept it, is to identify the physical effects and the
parameters needed thereto, to be able to assess the SPICE simulation of the circuit, and make knowledgeable ad-
justments in the circuit design.

In this respect the engineer is more of an executive designer, using and applying his/her understanding of the way
that the MOS junction and the MOS transistor works to implement a circuit design.  Knowledge of transistor ef-
fects, and how they are set by the parameters, represent a more and more significant part of the design process.
Circuit design, particularly of VLSI circuits, is a process that follows a design cycle, with the simulation of the
circuit being a critical step iterating the design to meet physical and tolerance criteria.
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Table 14.1–1  SPICE parameters

Symbol Description Keyword Units Default Typical

Level model index LEVEL

VTO zero–bias threshold voltage VTO V 0 1.0

KP transconductance parameter KP A/V2 2
�

10–5

� body–effect parameter GAMMA V
�

0 1.3

3.1
�

10–5

�
B inversion potential PHI V 0.6 0.8

�
channel–length modulation LAMBDA 1/V 0.0 0.02

RD

RS

drain ohmic resistance

source ohmic resistance

RD

RS

�

�
0.0

0.0

2.0

2.0

CBD zero–bias B–D junction capacitance CBD F 0.0 20F

CBS zero–bias B–S junction capacitance CBS F 0.0 20F

IS bulk–junction saturation current IS A 1
�

10–14 1
�

10–15

�
0 bulk–junction potential PB V 0.8 0.8

CGSO gate–source overlap capacitance

gate–drain overlap capacitanceCGDO

CGSO

CGDO

F/m

F/m

0.0

0.0

4
�

10–11

4
�

10–11

gate–body overlap capacitanceCGBO CGBO F/m 0.0 4
�

10–11

RSH drain & source diffusion resistance RSH
�

/sq 0.0 10.0

tOX oxide thickness TOX m 100nm 50nm

NSUB substrate doping NSUB #/cm3 0.0 4
�

1015

NSS surface state density NSS #/cm2 0.0 1
�

1010

TPG TPGtype of gate material – 1 1

(opposite to substrate)

(same as substrate)

(aluminum gate)

1

–1

0

NFS fast state density NFS #/cm2 0.0 1
�

1010

XJ metallurgical junction depth XJ m 0.0 1 � m

LD lateral diffusion LD m 0.0 0.8 � m

� S surface mobility cm2/Vs 600 400UO
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14.2  THE MOS JUNCTION

We also need a view of the MOSFET along the drain–source cross–section, as represented by Figure 14.2–1, in
order to assess the effect of the E–field and induced charge layers.  The cross–section of an nMOS transistor is
represented.   Note that the substrate is p–type semiconductor, and that the connection between source and drain
must therefore be an induced channel of n–type carriers, to form the n–channel MOSFET ( �  nMOSFET).

We see that the polysilicon gate lies over a gap in the diffusion path, which, in this case is an n+ implant.  The gap is
of length L.  When the transistor is in its conducting mode, this gap is bridged by field–induced charge–layers.

Note that the basic structure of the active transistor region is of the form of an ’MOS junction’, as represented by the
inset to Figure 14.2–1, which shows a slice across the transistor structure.  The acronym “MOS” is for
(M)etal–(O)xide–(S)emiconductor, which is the basic form of the junction “sandwich”.  For modern transistors the
acronym is not completely correct, since polycrystalline silicon or an alloyed form of semiconductor is usually
applied in place of a metal (M).   But the acronym “SOSFET” is not in the common vernacular,  so we will identify
these types of transistor all as ”MOSFET”s regardless of their religious convictions.
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Figure 14.2–1  The nMOS transistor in cross–sectiion

Looking at the MOS ‘sandwich‘, particularly when the (M) is replaced by semiconductor, we see that it is very
much like an np junction.  In this case, the np junction has a thin layer of insulating material sandwiched between
the n and the p materials.  If the n material is very heavily doped, i.e. n+, which is usually the case, it acts almost like
a metal in its conduction and charge properties.  Almost. The comparison of the MOS junction to the np junction is
informative, and is represented by Figure 14.2–2.
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Figure 14.2–2  Comparison between the MOS junction and the pn junction

Note that both the MOS junction and the pn junction have (i) a built–in potential associated with the work–function
difference between the two sides, and (ii) a depletion layer, related to the E–field within the junction.  The E–field
will be defined by the gate–to–body potential, VG – VB  = VGB.

The layer of charge on the semiconductor side of the MOS junction uncovered by the E–field is of the same form as
that uncovered in the np junction.  This uncovered charge, which is also called the “depletion layer” since mobile
charges have been pushed away by the E–field, is of thickness:

Wd + LB 2, S - VT

.
(14.2–1)

where LB is the extrinsic Debye length, given by

LB + / SVT - qNB

.

The parameters εS and NB are the permittivity and the substrate doping, respectively, of the semiconductor.  φS is the
potential of the surface relative to the substrate potential VB.  

Since we have distributed charge, we have capacitance.  The capacitance per area associated with this layer of
uncovered charge is the same as that of the pn junction.  It is given by the equation

CS + / S

Wd
+ / S

LB 2, S - VT

. (14.2–2)

Equation (14.2–2) is usually called the “depletion capacitance” of the semiconductor since it is associated with the
layer of ”depletion” charge. The ratio es / LB is of the form capacitance/area.

Equation (14.2–2) is sometimes called the depletion approximation. It assumes that the charges are uniformly un-
covered to a finite depth, at which point the effect abruptly terminates.  The depletion approximation is reasonably
good for ψS large, but it fails as φs  0   0.  If we make a more exact analysis using Boltzmann statistics, which is done
in section 14.9, we would find that when ψs   0  0,  Cs  0   es / LB.  Of course as φs   0  0, the E–field also goes to zero,
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and the semiconductor bands EC and EV are no longer ’bent’.  Therefore es/LB is given the name “flat–band” (= zero
field) capacitance of the semiconductor.  We give it the label

CFBS
� �

s

LB

From these definitions we can assess the voltage–induced behavior of the capacitance/area of the MOS junction.
Knowledge of the capacitance behavior tells us how the charges are distributed under the influence of the gate field.
If we think about the MOS sandwich as if it were two capacitances in series, one associated with the oxide and the
other associated with the semiconductor, as shown by Figure 14.2–3, then

CMOS
� COX

1
�

COX

�
CS

(14.2–3)

where CMOS is the capacitance/area of the MOS junction and Cox is the
capacitance/area across the oxide, Cox  = εox / tox .
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Figure 14.2–3  Capacitance of the MOS junction.  The layers are equivalent to capacitances/area in series.

Equation (14.2–3) is not greatly enlightening if we merely relate Cs to φS.  We need its behavior in terms of the
potential across the junction VG – VB.  We can make use of Gauss’ law to to develop this relationship, as follows:

�
OXEOX

� �
OX

(VG ')( S)
tOX

� QS
� qNBWd (14.2–4)

The parameters εox and Eox are the permittivity and the E–field, respectively, for the oxide layer.  We have identi-
fied the thickness of the oxide layer as tox, usually on the order of 50 nm.  Qs is the charge/area in the semiconductor
substrate that is uncovered by the E–field.  For lower–level gate fields this charge is the “depletion” charge, for
which Qs  =  qNBWd.  For stronger gate fields, however, Qs may include other charge effects.  We will check out the
stronger field–effects in section 14.4.

It might be noted that a relatively–high gate–field strength is necessary to induce charge effects in the semiconduc-
tor.  E–fields must be on the order of strength 10 kV/cm to push mobile (+) charges (holes) away from their home
sites.  After these mobile (+) charges are evicted by the E–field they leave a “depleted” zone of uncovered doping
sites.  Each empty site is left as a net (–) site.  This space–charge layer is the “depletion” layer.
Equation (14.2–4) can be rewritten in the form
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COX(VG
� �

S) � VT

�
S

LB
2

�
S � V t

�
(14.2–5)

Which, with a little manipulation, using equation (14.2–2), gives 

C2
OX

C2
S � 2

COX

CS

� 2
C2

OX

CFBS
2

VG

VT
� 0 (14.2–6)

Note that this is an equation in Cox/Cs, which is what we need for use in equation (14.2–3).  Equation (14.2–6) is
quadratic, and only the positive root is applicable since negative capacitance would make no sense.  Taking the
positive root and applying it to equation (14.2–3), we get

(14.2–7)CMOS � COX

�
1 � 2C2

OX

C2
FBS

VG

VT

� � COX 	 1 � 4
 2 VG

�
where we have defined a parameter γ, which will turn out to be useful when we get to section 14.4.  It is of the form,


 � CFBS

COX
2VT

� � 2 �
SqNB

�
COX

(14.2–8)

This parameter is usually called as the “body–effect” coefficient since it is associated with the layer of depletion
charge in the ”body” or “bulk” of the semiconductor substrate.   It reappears in a number of places in analysis of
MOS devices, so you might consider adding it to your analytical menu.

Equation (14.2–7) tells us about the distribution of depletion charge for the MOS junction since capacitance =
∆Q/∆V.  More about the nature of this junction is represented by Figure 14.2–4.

There are two curves represented by Figure 14.2–4.  One curve is equation (14.2–7), which is discontinuous at 
VG = 0 , and for which the depletion approximation is no longer valid.  The smooth curve is a more detailed analy-
sis, representing the equilibrium behavior of the electron gas under the influence of the E–field.  We see that the
equation for the electron gas departs from equation (14.2–7) at the special value VG   =  VTH.  This point is called the
“threshold” VTH.  At this point it is apparent the strong E–field is not just depleting the substrate but causing another
effect on the charge distribution.  Since the junction capacitance, CMOS, makes a sharp increases to Cox at this
point, it informs us that charges are accumulating at the surface layer rather than continuing to deplete at greater
depths.

Instead of more loose (+) charges being pushed away by the strong E–field, and uncovering more negative doping
sites, the increased E–field at VG  > VTO  is beginning to induce a major accumulation of loose (–) charges at the
oxide–semiconductor surface.  Inasmuch as this effect is equivalent to having a thin n–type layer of charge at the
surface, it is called “inversion”, as if the p–type substrate at the surface had somehow been changed (inverted) into
an n–type material within this thin surface layer.
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Figure 14.2–4  Capacitance characteristics of the MOS junction vs VGB.

The charge characteristics of the MOS junction are represented by Figure 14.2–5, which show the various types of
effects.  They include the case for which the field direction is reversed (VG  <  0).  Under this circumstance there is
an accumulation of loose (+) charges at the surface.  Therefore the capacitance CMOS appears as a separation of
charges on each side of the oxide,  =  Cox.

Figure 14.2–5  Charges induced by the gate–body bias VGB for the MOS junction
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14.3  BUILT–IN POTENTIALS IN THE MOS JUNCTION

Like most junctions between dissimilar materials, the MOS junction has potentials which are built–in.  In the MOS
junction these potentials result from two different types of effects:

(1)  the work–function potential, (or, electron potential), and 
(2)  potentials resulting from trapped charges in the oxide.

These effects give the transistor its own personal contribution to the gate potential, ∆VG.  This potential represents
an offset which becomes a significant contribution to the device threshold, VTH.  Our mission, should we choose to
accept it, is to determine the nature of these effects, and see how their contributions affect the VTH in our circuits.

The work–function potential:

The work–function potential is a simple effect that we can make more complicated, if we so choose, by introducing
such concepts as the electron affinity of the insulator and vacuum energy–levels.  Although such concepts are often
included in more comprehensive treatments, these complications are not necessary.  All that we need is to identify
the electron potentials on either side of the oxide layer, since it is the difference that defines the electron (or work–
function) potential.

The nature of the work–function potential is more evident when we make a comparison of the MOS junction and
the pn junction.  Assuming an nMOS transistor (has p–type substrate) with an n–type polysilicon gate, it is evident
that we have an np junction, if we ignore the small matter of the oxide layer in the middle.  We know that at equilib-
rium, the Fermi energy, which is our index, must be the same everywhere, across the junction, across the n, the p and
oxide, the connecting wires, and the rest of the world if we so desire, provided no external biases are applied.  For
the pn junction, this equilibrium condition identifies a “built–in” potential φ0 across the junction, which the elec-
trons can easily see and feel.  Comparison between the band diagrams for the MOS junction and the np junction, as
represented by Figure 14.3–1, shows that the same built–in potential, φ0 exists for the MOS junction, being merely
the difference in electron potential between the two sides.  The difference potential will be of value = φp  – φn, inde-
pendently of what material exists in middle of the sandwich.

We note that the orientation of the built–in potential is important. For the nMOS structure represented by Figure
14.3–1, ∆VG  = φp  – φn.  Note that if we happened to have a metal instead of an n–type semiconductor as gate
material, we might identify the electron potential of the gate as φm.  Since the substrate is always semiconductor
material, we might identify its electron potential, more generally, as φs.  Therefore we specify the built–in work–
function potential as

�
VG ��� s � � m � � � ms (14.3–1)

where φm is the work–function (or electron potential) of the gate and φs is the work–function (or electron potential)
of the semiconductor.
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Figure 14.3–1 The work–function potential φms for the MOS junction, in comparison to pn junction potential φ0.

*********************************************************************************
EXAMPLE 14.3–1:  Suppose we have a gate material of polysilicon, doped at concentration 
1019#/cm3 of donors, and a semiconductor substrate doped at density of 1015#/cm3 of acceptors.

SOLUTION:  φm = – VT  ln (ND/ni)  =  –0.525 V. /     φs = + VT  ln(NA/ni) = 0.287 V.

We have used ni  = 1.5 x 1010#/ cm3   and  VT = .02585V (at 300 K).

RESULT:  φms = –0.525 V – 0.287 V  =  –0.812 V.
*********************************************************************************

0
 Note:  If the gate is heavily doped, as was represented by this example, and which is often the case, then the gate

work–function potential is taken to be approximately +0.56 V or –0.56 V, default. This option is controlled by the
SPICE parameter TPG, which is +1 if the gate is of doping opposite to that of the substrate, e.g. n–type gate and
p–type substrate, and is –1 if the gate is of doping which is like to that of the substrate, e.g. p–type gate and p–type
substrate.  SPICE will establish a default gate work function of φm   =  1  0.56 V, according to the substrate type and
this parameter.

Charges trapped in the oxide:

The other built–in effect is due to trapped charges.  When ionic charges are trapped in the oxide layer, which is
usually unavoidable, then the fact that these charges are proximal to the semiconductor surface can induce a rela-
tively strong field in the semiconductor material.  This effect is represented by Figure 14.3–2.

Figure 14.3–2  Effect of a thin layer of charge in the oxide on threshold
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Analysis is straightforward, using the known relationship between charge and voltage.  From our definition of ca-
pacitance we do know that �

V � �
Q

C

where C  = εoxA/x, x  being the distance from the gate plane to the plane of the thin charge layer, as shown by Figure
14.3–2.   A is the area of the gate.  This view is sufficient to generalize the process, because we can assume that we
have a distribution of infinitesimally thin layers, i.e. of thickness dQ.  Then the effect can be identified in terms of a
charge density qρ(x):

� Q
A

� q� (x)dx

so that

�
V �

�
dV � 1

C

�
dQ � q

COX

� tOX

0

x
tOX

� (x)dx (14.3–2)

We have taken the convenience of factoring out the 1/Cox from the integrand, which we accomplished by multiply-
ing and dividing by tox. This modification makes the end analysis much simpler.  We can be a little more sophisti-
cated with our mathematics to confirm that ∆V is a positive quantity for trapped positive charges, but it should be
apparent that positive charge in the oxide will induce an E–field from left–to–right, corresponding to a positive
built–in potential from gate to substrate.

**********************************************************************************
 
EXAMPLE 14.3–2:  What is the resulting ∆V if a fabrication process which creates a distribution of
charge in the oxide of density ρ(x)  = ρ0  (1  – x2 / tox

2 ).   The total dose of charge/area is Nox   =  1011#/ cm2.
Assume  tox  =  69  nm.

SOLUTION:  Note that ρ0 is not a given.  It must be determined from Nox, the dose/area.  This dose/area is
related to density by

NOX �
� tOX

0

� (x)dx (14.3–3)

where ρ(x)  =  ρ0(1  – x2/tox
2) .

Carrying out the mathematics of (14.3–3) we eventually will get Nox   =  ρ0 � tox  � ( 1 – 1/ 3 ).   Now we can
use the result of our previous analysis, (14.3–2), to give

�
V � 3

2
NOX

tOX
� q

COX
� tOX(1

2 � 1
4

) � 3
8

qNOX

COX

For oxide thickness given,  Cox  = εox/tox  =  5 � 104  pF/cm2, 

where we have used εox  =  3.9 � (8.85 � 10–14 )F/m  = 0.345 pF/cm.

Therefore:
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RESULT:

�
V � 3

8
� (1.6

�
10 � 7pC)

5
�

104pF � cm2
� 0.12V

*********************************************************************************

Note that we generally identify Nox, the charge density per area, rather than ρ0.  This choice is made because we
may choose to implant ionic charges, and we implant them as a charge “dose”.  This implantation gives us a way to
adjust the built–in potential term.

Combining effects, which are given by equations (14.3–1) and (14.3–2) we see that the total built–in potential term
is then �

VG(bi) ����� ms 	 QOX � COX (14.3–4)

where, for convenience, we have lumped all of the distribution of the oxide charge into a single term Qox.  A more
strict analysis may choose to break the lump Qox up into several parts.  For the SPICE circuit simulator, fixed
trapped charges in the oxide are indicated by the parameter NSS.  Strictly speaking,

QOX � q


 tOX

0

x
tOX � (x)dx � q� MNOX (14.3–5)

which tells us that, in general, we should NOT just take Qox  to be  =  qNox.  The distribution factor, γM, is, in general,
somewhere between 0 and 1.  SPICE will assume that NSS = γMNox.

A more sophisticated analysis would look at types and stabilities of these trapped charges[14.3–1], some of which,
called “fast–states”, will migrate as result of the gate field.  SPICE, in fact, defines a parameter NFS which repre-
sents the fast–state dose present.  But in this case we will generalize to just those that are fixed within the oxide as
result of impurities incurred during the gate–oxide process, which are usually positive ions.

As a matter of convention, we usually identify equation (14.3–4) in terms of the voltage that we need to apply to the
gate to bring the E–field in the semiconductor to zero.  This voltage is called the “flat–band” voltage, VFB.   A
zero–field is equivalent to the situation where the energy bands are not bent (note that the presence of an E–field
always bends the bands).  Hence

�
VG(bi) ��� VFB ����� ms 	 QOX � COX

or,

VFB �
� ms � QOX � COX

The use of VFB is a handy way to relate all of the built–in effects to a reasonably direct physical measurement.  As it
turns out, VFB is not used as a SPICE parameter since it can be embedded under another parameter, VTO.  But is not
improper to assume that some other circuit simulation software or some different version of SPICE may elect to
make more direct use of it as a parameter.
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14.4  THE CHARGE–CONTROL MODEL OF THE MOSFET

So far, we have seen that the MOS junction has many similarities to the pn junction, in that it includes such effects as
work–function potentials and depletion charge.  In this respect, we have discovered that, for every charge layer that
can be identified in the junction, we can also identify a potential.  This type analysis is called “charge–control”
analysis, since the charge effects can be interpreted as being under control of applied voltages.

In examining the MOS capacitance, we found (equation 14.2.5) that

COX(VG
� �

S) � QS (14.4–1)

where QS � VTCFBS 2
�

S � VT

�
.  With a little manipulation, and use of the definition given by equation (14.2.8)

for γ, we can change this to
COX(VG

� �
S) ��� COX � S

�
(14.4–2)

where, if we also include the reference level VB, would read

COX(VG
� �

S) �	� COX

�
S
� VB

�
(14.4–3)

In section 14.2 we identified Qs  as being entirely the uncovered depletion charge QB.  But then we realized that at
some potential VG  =  VTH,  (minority type) charges begin accumulating at the surface, as shown by Figures 14.2.4
and 14.2.5.  Therefore, for strong fields, we need to subdivide charge Qs into two different types,

QS � QB 
 qI (14.4–4)

where qI is the thin sheet of minority–carrier charge that is accumulated at the surface by the “pull” of the strong
gate field.  Highly conductive, this layer of charge is easily analyzed by modifying equation (14.4–1) as follows:

COX(VG
� �

S) � QB 
 qI (14.4–5)

qI is usually referred to as the “inversion” charge layer.  The condition for which this inversion layer charge begins
to be of significant conductivity is approximately at the state when φS �  2φF, φF being the Fermi potential of the
substrate, given by

�
F � VT ln(NSUB � ni)

where we have indicated the substrate doping as NSUB rather than the less explicit form NB used in section 14.2.  The
value of φS at which inversion occurs we will call φB.  This condition can be seen by Figure 14.4–1, which shows the
band–bending when VG  �  VTH.  At this point the bands are bent so that the Fermi level (which defines the equilibri-
um level of carrier concentration) is approximately as close to the conduction band EC as it is to the valence band EV
deep within the semiconductor, far from the junction fields.  This condition is represented by Figure 14.4–1.

A more accurate value of φB results from analyzing the effect of the fields on the Boltzmann statistics, as will be
done by section 14.9, for which[14.4–1]

�
B � 2.1

�
F 
 2.08VT (14.4–6)
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Figure 14.4–1  Band–bending at the onset of inversion.

At the value φB, whether we use the traditional value 2φF, or equation (14.4–6), it is assumed that at or about φS  = φB,
the highly–conductive inversion layer qI is formed.

The SPICE parameter corresponding to φB  is PHI.

Now, when the MOS junction has source and drain nodes attached to either side, as shown by Figure 14.4–2, then
they will make conductive contact with the inversion charge layer when the inversion condition φS = φB is met.
Since we expect that the voltage will change gradually from VS to VD, then we identify the behavior of the surface
potential as

�
S � �

B  V (14.4–7)

where VS  <  V  <  VD.   Equation (14.4–7) is called the gradual–channel approximation (GCA).

If we now apply equation (14.4–5) to the gradual–channel approximation we then get

COX(VG ! � B ! V) � QB  qI (14.4–8)

In order to accommodate the built–in contributions to the gate voltage, we need to make a correction to VG of the
form,

VG " VG  $# VG(BI) � VG ! VFB

Furthermore, from (14.4–3), which is the case where Qs = QB, we can identify the depletion contribution QB of
(14.4–8) as
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Figure 14.4–2  The MOS transistor and the gradual–channel approximation.

QB 798 COX : S ; VB

<
7=7>8 COX : B ? V ; VB

<
(14.4–9)

where we have taken used (14.4–7) to specify ψS for the case for which the transistor is in a conducting state.

Now what we see that equation (14.4–8) is a means of defining qI. Combining equations (14.4–8) and (14.4–9), and
solving for qI, we get

qI 7 COX(VG ; VFB ;@: B ; V) ;A8 COX : B ? V ; VB

<

which can be rewritten as

qI 7 COX(VG ; (VFB ?@: B ?A8B: B ? V ; VB)
<

; V) (14.4–10)

At V  =  VS, we can see how qI relates to the source potential:

qI 7 COX[VG ; VS ; (VFB ?@: B ?A8B: B ? VS ; VB

<
)] 7 COX(VG ; VTH ; VS)

This condition defines threshold for the MOS transistor, which is associated with formation of a conducting inver-
sion layer at the source end, as

VTH 7 VFB ?@: B ?A8C: B ? VS ; VB

<
(14.4–11)

where we usually write  VS  – VB  as  VSB.

Equation (14.4–11) is an interpretation of threshold VTH in terms of charge and junction effects.  It shows that
threshold is associated with the onset the highly conductive Inversion layer at the oxide–semiconductor interface.
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This inversion layer is of the form of a sheet charge, and so the analysis which we have used in deriving (14.1.11) is
also called the “charge–sheet” analysis.

SPICE uses a parameter VTO, the zero–bias threshold defined as

VTO - VFB .0/ B .213/ B

4
(14.4–12)

corresponding to VSB  =  0.  This parameter eliminates the need to include VFB in the SPICE parameter list, since
VTH can be expressed as

VTH - VTO .21 ( / B . VSB

4 5 / B )
4

(14.4–13)

14.5  THRESHOLD ADJUST

The first term of the threshold equation (14.4.11) represents a potential that is built into the junction

VFB -6/ ms

5
QOX 7 COX

Note that excess trapped charges help to define threshold voltage.  In many respects this effect is a hindrance, and it
is necessary to purge the MOS junction of impurities which cause excess charges.  The environment must therefore
be of extreme cleanliness, with high quality and high–purity of materials and environment.  It is therefore not likely
that MOS transistors can be made in the back of your garage, if so equipped with furnaces, etc.

However, the built–in charges are also the means by which we may adjust the threshold up or down.  Charges can be
implanted through the gate and gate oxide into the oxide–semiconductor interface by means of a high–voltage ion
gun, also referred to as an ion–implanter.  This process is represented by Figure 14.5–1.  The thin gate oxide may
suffer a little, but the damage will be annealed out by the high temperatures used in a later step of the fabrication
process.

Figure 14.5–1  Effect of an implant layer of charge approximately  at the oxide–semiconductor interface

Whether or not these ions are in the oxide or in a layer close to the oxide, the effect can be treated by the same
analysis as used to derive equation (14.3.2).  Implanted ions assume that a layer of the form

8 (x) - NI9 (x
5

tox)



157

is created by implant, where NI  represents implant dose/area of charges, driven in at a depth localized at or near to
the oxide–semiconductor interface.

Note that, using (14.3.2) this gives us a threshold adjust of

�
VTH ��� qNI

COX
(14.5–1)

In general, we implant donor and acceptor impurities, so that NI will be either of the form ND
+ or NA

–.  Note that a
negative shift of threshold results from an implant of donor ions, and a positive shift from an implant of acceptor
ions.

14.6  KEEPING TRACK OF THE POLARITIES

The threshold equation (14.4.11) shows that there are three basic terms which define threshold voltage:

1.  VFB =  the flatband built–in junction voltage
2.  φB  = the potential needed to create inversion
3.  ��� B � VSB

�
=  the body effect

The previous sections have shown that these terms are based either on the presence of a charge distribution or on
work functions.  Each therefore has a polarity.

For example, the potential needed to create inversion φB, is of polarity defined by the type substrate material,

� B �
	 (2.1� F � 2.08VT) (14.6–1)

which takes the (+) sign if the substrate is p–type ( �  nMOS transistor) and the (–) sign if the substrate is n–type 
( �  pMOS transistor).  This equation is derived from a field condition, and the polarity of the field defines the sign.

Note that the body–effect term likewise is dependent on the substrate. As we saw in section 14.2, (Figure 14.2.5) a
positive gate potential has to be applied in order to induce the (negative) depletion charge in the p–type substrate.  If
we had analyzed a pMOS junction, with n–type substrate, then a negative potential would have had to be applied.

We can indicate the polarity of the body–effect contribution by means of

�
VTH �
	 � COX |(� B � V � VB)|

�
(14.6–2)

where the (+) sign corresponds to a p–type substrate and the (–) sign corresponds to an n–type substrate.  Note that
an nMOS transistor requires a p–type substrate, and this term represents a large positive fraction of VTH for the
nMOS enhancement transistor, and conversely for the pMOS transistor.

The flat–band term and the threshold adjust term contribute to the threshold according to equations (14.3.5) and
(14.5.1) as: �

VTH ��� qNI 
 COX � (� ms � qNSS 
 COX)

where we have taken liberty of indicating that the charge Qox distributed in the oxide can be expressed  as qNSS.  The
polarity of the implant ions NI and the oxide–trapped ions NSS may be considered in terms of donor impurities,
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which form positive ions, and make a negative contribution to the threshold.  The converse is true for acceptor
impurities.

Note that for the threshold terms addressed so far, i.e. inversion, body–effect, oxide ions, and implant ions, we see
that n–type impurities yield terms of (–) polarity, and p–type impurities yield terms of (+) polarity.  All terms except
φms can follow this rule.  As we saw in example 14.3.1, a heavily doped gate silicon gate material will usually have
φm = 
�

  0.56V, with n+ doping taking the (–) sign and p+ doping taking the (+) sign.

However, the substrate, in this case, is a subtractive term, so that a p–type substrate will subtract, and an n–type
substrate will add, to the φms term.  The SPICE terminology uses the parameter TPG, toggling φm = 

�
0.56V ac-

cording to whether the transistor is designated as nMOS or as pMOS.  If TPG  = 1, and the transistor is nMOS, then
φm = –0.56V.  If TPG = –1 and the transistor is nMOS, then φm = + 0.56V, resulting in a much smaller φms.  If TPG  =
0, then SPICE assumes that φm will take a default value, usually φm  =  0.  It may take a negative value if the work
function for a metal is inserted in the default list.

14.7  CHARGE–SHARING AND NARROW–CHANNEL EFFECTS

In the analysis of the threshold, it should be apparent that one of the major terms of VTH, if not the dominant one, is
the “body–effect”. Behavior of channel conductance gI as a function of VGS and VBS is indicated by Figure 14.7–1,
which shows the effect of the “body–effect coefficient” γ.

Figure 14.7–1 Plot of gI vs VGS.  In this case  ��� 1 V
�

, VFB ��� 1V, and � B � 1V , realistic, but sim-
plified approximate values for the nMOS transistor parameters. We see that when we have a VSB of as little
as 3V, the threshold VTH  will approximately double in value.

There is a tendency to make transistors at dimensions on the order of microns and less.  Therefore it is important that
we see what effect these shrinking dimensions will have on the transistor.  These effects are not easily modeled, and
therefore the analysis is qualitative as much as it is quantitative.
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Figure 14.7–2 shows the effect of a reduced channel length on the threshold.  We see that the source–drain junctions
have some influence over the depletion charge under the gate.  For long–channel devices, this influence is negligi-
ble, since the source–drain depletion regions are only a small fraction of the channel region.  For short–channel
devices, the source–drain ends are a large fraction of the depletion region, and consequently ”share” a larger por-
tion of this part of the body–effect.  We therefore usually identify this effect as “charge–sharing”. 

Figure 14.7–2  Charge–sharing effects in the short–channel MOSFET.  An nMOS transistor is shown.  Note
that the effect is related to the junction depth of the source–drain regions, indicated in the Figure as XJ.

There are a number of different ways to approach this particular effect.  The one which used by SPICE takes a
geometrical, approach in which  γ  is reduced by two end terms, αS and αD, as follows:

!
S " ! (1 #%$ S #%$ D) (14.7–1)

where

$ S " XJ

2L

&
1 ' 2WS ( XJ

) # 1 * (14.7–2)

and

$ D " XJ

2L

&
1 ' 2WD ( XJ

) # 1 * (14.7–3)

where L is the channel length, and where WS and WD are the depletion depth of the source and drain junctions,
respectively, given by

WS " LB 2(VS # VB ',+ 0) ( VT

)
and

WS " LB 2(VD # VB ',+ 0) ( VT

)
where φ0 is the built–in potential of these junctions.

These terms can be obtained geometrically from Figure 14.7–2.  We will not attempt to derive (14.7–2) and
(14.7–3), even though their derivations are relatively straightforward.  The main intent is to indicate that the
“charge–sharing” effect can be defined by the junction depth XJ , or the parameter XJ, as used by SPICE.  We see that
as L is reduced, then αs and αd increase in magnitude, diminishing the body effect and reducing the magnitude of
VTH.  This is represented by Figure 14.7–5.

We see that even the threshold is of a somewhat more complicated form than we would want to calculate by hand.
From equation (14.7.3), we see that the threshold depends on VD.  In this sense, VTH is more a conduction threshold
rather than a simple inversion threshold, and depends on the biases VS, VD, and VB associated with the MOSFET.
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It also depends on the width of the gate, as represented by Figure 14.7–3.  This Figure represents the “narrow–chan-
nel” effect.  As we see from the figure, the fringing lateral fields also command a finite fraction of depletion charge.
If the gate is wide, this fraction is small.  If the gate is narrow, this fraction is large.

This effect can also be analyzed geometrically by including the lateral areas indicated by Figure 14.7–3.  But it also
will vary along the channel since channel potential V, and hence depletion effects, will vary from source–to–drain.
The “narrow–channel” effect therefore adds a term to the depletion charge QB, equation (14.4.9) of the form

��� S�
4WCOX

(� B � V � VB) (14.7–4)

�	�

��


��
�����������

Figure 14.7–3  Narrow–channel effects in the MOSFET.  An nMOS transistor at an end–view cross–sec-
tion is shown.

Note that the magnitude of this term is defined by the factor δ, which under SPICE, is called DELTA.  For V  =  VS, ,
we see that the “threshold” will therefore increase as W decreases.  This is represented by Figure 14.7–5.

Figure 14.7–4  Representative plots showing the effect on threshold of (a) short–channel and (b) narrow–
channel effects  in the MOSFET.
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14.8  THE MEYER MODEL OF THE MOSFET

We can determine link the conductance of the channel to charge–control analysis by means of the conductivity
within the channel, given by �

I � q� SnI (14.8–1)

where µS is the mobility of the carriers in this surface layer.  Note that nI varies monotonically from source to drain,
since it is affected by the channel voltage V as it varies from VS to VD. Therefore all that we need to do to evaluate
the I–V behavior is to define conductance between source and drain in terms of the conductivity along the channel.
The details of the charge layers and coordinate framework are indicated by Figure 14.8–1.  
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Figure 14.8–1  The nMOS transistor in cross–section.

Referring to the figure for the coordinates, current density in the y–direction is given by

Jy � �
IEy �-, q� SnI

.
V.
y

(14.8–2)

Then the current in the y–direction is given by

Iy � /
JydA �-, / W

0

/10
0 2 q� snI

.
V.
y 3 dxdz (14.8–3)

If we make the approximation /10
0

� sqnI

.
V.
y 4 � s

.
V.
y

/10
0

qnIdx (14.8–4)

This approximation is equivalent to the assertion that most of the inversion charge is concentrated in a thin “sheet–
charge” layer at the surface, and that the transverse mobility at the surface, µS and field dV/dy do not change much
over the depth (x–direction) of this thin conductive layer.

It also lets the charge per area be a separable function, i.e.

qI � / 0
0

qnIdx
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The sheet charge interpretation avoids any need for defining a depth for the highly conductive layer of inversion
charge.  Since it is of the form of a electron gas accumulated at the surface, any attempt to define a depth may
require us to determine whether or not this layer may have “condensed” into a Fermi liquid  form rather than a
Fermi gas. We have identified a reasonably good form for qI in section 14.4, and can apply it to (14.8–4) without
need for any additional qualification:

Iy
��� � W

0 ��� sqnI � V� y � dz ��� ��� sqnI � V� y �
� W

0

dz

� W� sCOX 	 VG
� VFB

��

B
�
��


B � V � VB

� � V � � V� y
(14.8–5)

Note that there is no dependence of the integrand on z, and therefore the integral in  z merely returns the width of the
device, W, as a cross–section factor.

Recognizing that Iy  =  – ID, and evaluating this differential equation gives� L

0

IDdy � W� sCOX

� VD

Vs

	 VG
� VBI

� V �
��
 B � V � VB

� � dV (14.8–6)

where, we have used for convenience, VBI  =  VFB  +  φB

Evaluating (14.8–6) we get

ID
� W

L
Kp � 12 � (VGS

� VBI)
2 � (VGD

� VBI)
2 � � 2

3
��� (
 B � VDB)3 � 2 � (
 B � VSB)3 � 2 ���

ID
� Kp

W
L � (VGS

� VBI)VDS
� 1

2
V2

DS
� 2

3
��� (
 B � VDB)3 � 2 � (
 B � VSB)3 � 2 � � (14.8–7)

where Kp  = µSCox is the SPICE parameter KP.  The conduction coefficient of equation (14.1.1) is  K � 1
2 � sCOX

W
L

.

 Some treatments of the Meyer model may elect to use � � � sCOX
W
L

instead of K.

Equation (14.8–7) is the charge–control equivalent to equation (14.1.1). It is the form used by the LEVEL–2 of
SPICE.

Since the threshold is voltage–dependent, the condition for saturation is not as concise as  VDS = VGS  –  VTH.
Assuming that saturation corresponds approximately to the classical “pinch–off” where qI = 0 for some V  =  VD,
equation (14.4.10) gives

VG
� VFB

��

B
�
��


B � VD
� VB

� � VD
� 0

This equation is quadratic in φ  =  φB  +  VD  – VB.  With a little manipulation, the quadratic equation will be


 2 � 2
�� VGFB � � 2

2  � V2
GFB
� 0

where, for simplification, we have let VG  – VFB  – VB  =  VGFB.  Solving this equation, we get
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�����
VGFB ��� 2

2 �
	 � 2

2
1 � 4� 2 VGFB

�
so that saturation occurs at

VD(sat)
�

VG 	 VFB 	 � B ��� 2

2 � 1 	 1 � 4� 2 (VG 	 VFB 	 VB)

� 

(14.8–8)

We can replace VD in equation (14.8–7) by VD(sat) to get an analytical expression for saturation current, but the
expression would be a lengthy and unhelpful mess.  It is sufficient to use (14.8–7) and (14.8–8) concurrently for
definition of drain behavior ID vs VDS.  Figure 14.8–2 shows a plot of the drain characteristics as defined by these
equations in comparison to equations (14.1.1) and (14.1.2), the parabolic model.  Both have the same VTH and K.
The plot shows that that the parabolic model will usually overestimate the current level unless we compensate it in
some other way.

It should be clear that transistors with different body effects will have considerably different drain characteristics.
A comparison of drain characteristics with the same VTH and same K, but different body effects, is shown by Figure
14.8–3.

Figure 14.8–3 shows that, in general, it is not correct for us to assume that two transistors have the same behavior if
they have the same threshold VTH and the same conduction coefficient K.  The body–effect makes a huge differ-
ence.  In defense of the past use of this assumption, however, it is very likely that two transistors with the same VTH
and K will be fabricated on the same substrate, and therefore will have the same body effect, and consequently
approximately the same drain characteristics.

Figure 14.8–2  Comparison of drain characteristics for the two models, Shichman–Hodges and Meyer,
with the same K and VTH.  In this case, we have assumed that � � 1 V

�
,
�

B

�
1V and VFB

� 	 1V.
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Figure 14.8–3  Comparison of drain characteristics for two transistors with the same K and VTH, but differ-
ent body effects.  In this case we have assumed that � 1 � 1 V

�
, � B1 � 1V  and VFB1 ��� 1V,  and

�
2 � 2 V

�
, � B2 � 1V,  and VFB2 ��� 2V.

14.9  THE INVERSION CONDITION

This section qualifies some of the statements that we made in sections 14.2 and 14.3, where we “interpreted” our
conditions for inversion on the basis of the behavior of the electron gas, and identified that inversion can be tagged
in terms of a particular value of the surface potential � s = � B.  If we look at the interaction between E–fields and
carrier levels in terms of the basic Boltzmann statisitics, then this condition for inversion can be identified.

For an extransic semiconductor, the levels of n–type and p–type charge carriers are related to the energy levels by :

n � nie
(EF � Ei) � kT � e �	� F � VT

(14.9–1)

(14.9–2)

p � nie
(Ei � EF) � kT � e � F � VT

where ni is the intrinsic carrier density.  If an E–field is applied to the semiconductor, as represented by figure
14.9–1, then the energy changes with respect to distance due to the E–field, and the potentials also change with
respect to position.  For example the intrinsic potential of the semiconductor � i  = qEi/kT will decrease with respect
to position

� i � � io � �

where φio is the potential in the semiconductor far from the influence of the E–field.  This added potential subtracts
from the difference between EF and Ei , as represented by figure 14.9–1, resulting in a change of carrier levels as a
function of postion.   For E–field polarity as shown, the reduction of charge–carrier levels corresponds to an uncov-
ering of the doping sites, which is why we sometimes say that the depletion region is also the ”uncovered” region.
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Figure 14.9–1  The nMOS junction under influence of the gate–field, Eox.  The band–bending is induced
by the effect  of the E–field on the semiconductor.

In the semiconductor, both genders of charge–carriers always exist.  The charges within the region influenced by
the E–field therefore includes the mobile charges as well as the charge centers uncovered by the E–field, i.e.

�
p(x) � p(x) � p0 (14.9–3a)

represents the depletion of the majority (+) charge carriers (within the p–type substrate), due to effect of the E–field
pushing them away from the surface.   This difference 

�
p(x) can be expressed in terms of potentials and Boltzmann

statistics by �
p(x) � p(x) � p0 (14.9–3b)� nie

(� F  � (x)) ! VT � nie
(� F ! VT

Where the potential difference q" F  represents the difference of energy between Ei and EF, as represented by figure
14.9–1, and " (x) represents the potential due to the ”band–bending”, (which is the effect of the E–field).

Similarly, �
n(x) � n(x) � n0 � nie

(� (x)  � F) ! VT � nie
� F (14.9–4)

corresponds to the (–) charge carriers and represents the enhancement of the minority–carrier levels due to the E–
field.   The overall charge density at any point within the semiconductor field region is then

q# (x) � q(
�

p(x) � �
n(x)) (14.9–5)

Where, using equations (14.9–3b) and (14.9–4),

# (x) � ni

$&%
e(� F  � (x)) ! VT � e � F ' � %

e  (� F  � (x)) ! VT � e  � F ! VT '&(
� ni ) (e(uF  u) � euF) � (eu  uF � e  uF) * (14.9–6)

where, for simplification of the form, we have chosen to let uF  =  φF / VT, and u = φ (x) / VT

Gauss’ law requires that

dE
dx

� q# (x)+
s

(14.9–7)
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So that
dE
dx

��� 2qni�
s

���
e(uF � u) � euF � � (eu � uF � e � uF) 	 (14.9–8a)

The electric field can be expressed in terms of the parameter u, since  E = – dφ/dx = – VT du/dx.  We can also make
use of the “trick” of multiplying both sides by 2E = 2VT du/dx to set up this differential equation for easy solution.
Equation (14.9–8a)  then becomes

2E dE
dx

� d
dx

(E2) � 2qni�
s

�
(eu � uF � e � uF) � � e(uF � u) � euF � 	�
 VT

du
dx

(14.9–8b)

This allows us to find a solution of (14.9–8) in terms of φ.  Assuming that E = 0 deep within the substrate where φ =
0, and E = Es when φ = � S = surface potential, then

Es
� VT

LI
[e � uF(eus � us

� 1) 
 euF(e � us 
 us
� 1)]1 � 2 (14.9–9)

where LI is the intrinsic Debye length, given by

LI
� �

SVT

2qni

�

Since Es   =  Qs/εs , then equation (14.9–9) also gives us a means of evaluating the charge/area Qs as a function of uS.
The first parenthesis represents the contribution to the field due to the (–) carriers and the second parenthesis repre-
sents the contribution to the field due to the (+) carriers.  When the level of (–) “inversion” carriers becomes domi-
nant, then

eus � us
� 1 � e2uF(e � us 
 us

� 1) (14.9–10)

Neglecting terms which are vanishingly small, the boundary on φS will be when

eus � 2uF � us
� 1 (14.9–11)

is met.  This equation is transcendental in uS.  It can be solved iteratively.  If the result is plotted vs uF it is nearly
linear.  As an approximation[14.9–1],

us
� � B � VT

� 2.1uF 
 2.08 (14.9–12)

This is the condition for inversion (14.4.6).  A plot comparing uS, the iterated solution of (14.9–11), to uS as given by
equation (14.9–12), is shown by figure 14.9–2.  The two results overlap to the extent that they appear to be the same.

Figure 14.9–2  Comparison of inversion conditions vs Nsub
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Since Qs = εsEs, equation (14.9–9) is also appropriate for determination of the capacitance of the semiconductor,
Cs = ∂Qs/∂φS.  From equation (14.9–9)  we have

Qs
���

sEs
� VT

� � s
LI

[e � uF(eus � us
� 1) � euF(e � us � us

� 1)]1 � 2 (14.9–13)

This can also be expressed as 

Qs
� VT

� � s
LB

2
� 	

e � 2uF(eus � us
� 1) � (e � us � us

� 1) 
 1 � 2 (14.9–14)

If we use the relationship euF � NSUB � ni .  As was seen by section 14.2, this information is sufficient to determine
the capacitance of the MOS junction CMOS as a function of VG  by means of the parametric equations

Cox(uG
� us)

� � s
LB

	
e � 2uF(eus � us

� 1) � (e � us � us
� 1) 
 1 � 2 (14.9–15)

and

CS
� 1

VT

�
QS�
uS

(14.9–16)

where uG = VG/VT.  Since (14.9–15) is transcendental in uS, it is not possible to obtain an analytical form for uS in
terms of VG, or Cs in terms of VG.  They can be used parametrically to plot Cs vs VG (using uS as the parametric
variable).  The capacitance of the MOS junction plotted in figure 14.2.4 uses equations (14.9–15), (14.9–16) and
(14.2.3).

14.10  CAPACITANCES FOR THE MOS TRANSISTOR

The MOS transistor, by nature of its construction, is a capacitative structure.  The structure has four terminals, and
charge is controlled by these terminals.  In this respect, we have to recognize that we have a more than just a transis-
tor.  We also have a capacitance matrix, with components of the form

CJK
� dQJ

dVK

(14.10–1)

where J and K are the nodes of the transistor, G, S, D, B .

The major circuit effects are associated with the active charge layer qI and its dynamics.  The total inversion charge
controlled by the gate is

QG
� W


 L

O

qIdy (14.10–2)

For the sake of simplicity we take the parabolic model assumption that the threshold VTH and the conductance coef-
ficient KP  are both constant.  Then

qI
� COX(VG

� VTH
� V) (14.10–3)

A link between current I and the inversion charge/area qI is given by equation (14.8.5), written in a more compact
form as

I � W� SqI

�
V�
y

(14.10–4)

Note that when equation (14.10–4) is integrated from VS to VD, we get the parabolic model equation

I � 1
2
� SCOX

W
L

	
(VGS
� VTH)2 � (VGD

� VTH)2 
 (14.10–5)



TERM FORM

CGG
� �

QG�
VG

CGS
� �

QG�
VS

CGD
� �

QG�
VD

2
3

CO
a2 � 4a � 1

(1 � a)2

2
3

CO
2a � 1

(1 � a)2

2
3

CO
a(a � 2)
(1 � a)2

a � 0saturation:

a � 1 triode:

for VDS  �   large, or as VGS �  VTH

as VDS �  0, or as VGS �  large
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We can apply (14.10–4) and (14.10–3) to equation (14.10–2) to get QG as a function of VS and VD.  This gives

QG � W2C2
OX

I

� VD

VS

(VG � VTH � V)2dV (14.10–6)

When this integration is carried out, and (14.10–5) is included, the form reduces to

QG � 2
3

WL COX

V3
GST � V3

GDT

V2
GST � V2

GDT

(14.10–7)

where we have defined  VGST  = VGS  – VTH   and  VGDT  =  VGD – VTH, to keep the form as uncomplicated as possible.
This result can be reduced by means of factoring to a relatively simple form:

QG � 2
3

C0

V2
GST � VGSTVGDT � V2

GDT

VGST � VGDT
(14.10–8)

For convenience, we have let CO = WLCox.  Capacitances can be obtained by derivatives of (14.10–8) with respect
to each of the voltages VG, VS, and VD.  These capacitances are called the static gate capacitances, since the deriva-
tion of (14.10–8) assumes steady–state current flow.  These capacitances are given by table 14.8.1.

  Table 14.10–1   STATIC MOSFET CAPACITANCES

where we have used  a = VGDT/VGST  to keep the forms simple.  Note that a defines the triode and saturation regimes
in the limits:

Table 14.10.1 is called the Meyer  model  for MOSFET capacitances.

In the case where we do not have steady–state current, and inasmuch as the MOSFET is subject to charge and dis-
charge of the inversion layer by the biases at the VG, VS and VD nodes, dQ/dt terms must be considered, for which
the continuity equation applies: �

I�
y � W

�
qI

�
t � 0 (14.10–9)

Continuity identifies the operation of the MOSFET when the current IS is not equal to ID.  It represents the condi-
tions that must be met under quasi–static conditions, where charge and discharge of the inversion layer occurs.
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This situation is represented by figure 14.10–1, which shows the MOSFET as a device with a “core” of free charge
that is supplied and/or drained by source and drain currents IS and ID.  Integration of (14.10–8) yields� V

VS

dI � W d
dt

� y

0

qI dy ��� 0

for which, assuming that  IS = I ( VS ), and I(V) given by (14.10–4),  gives

IS ��� WqI � V� y � W d
dt

� y

0

qIdy � (14.10–9)

IS is the current out of the source, and is independent of y.  When (14.10–9) is integrated with respect to y, for 0 < y <
L, we get

�
	 �
	�
� ��� ���
���� ������ � �� � ������� �

�

Figure 14.10–1.  Quasi–static charges and currents

IS ��� W
L

� VD

VS

qIdV � dQS

dt

The first term on the left–hand side represents the channel current and the second term represents the effect of the
current on the inversion charge.  QS is then a partition of the charge QG, of measure

QS � 1
L

� L

0

W

� y

0

qIdy � dy

This equation can be integrated by parts to yield

QS � W

� L

0 � 1  y
L ! qIdy (14.10–10)

If we make use of (14.10–4) to integrate from 0 to y while V goes from VS to V, then

y
L
� V2

GST
 V2

GT

V2
GST  V2

GDT

(14.10–11)

where we have let VG – VTH – V = VGT  for convenience.  If (14.10–11) and (14.10–4) are applied to (14.10–10) then
we will get QS in term of node voltages VS, VD, and VG, as follows:

QS � 2
15

Co " 3V5
GST

 5V3
GST

V2
GDT

� 2V5
GDT

(V2
GST  V2

GDT)
2 #



TERM FORM

CGG
� �

QG�
VG

CGS
� �

QG�
VS

CGD
� �

QG�
VD

2
3

CO
a2 � 4a � 1

(1 � a)2

2
3

CO
2a � 1

(1 � a)2

2
3

CO
a(a � 2
(1 � a)2

CSG
� �

QS�
VG

CSS
� �

QS�
VS

CSD
� �

QS�
VD

2
15

CO
2a3 � 14a2 � 11a � 3

(1 � a)3

2
15

CO
3a3 � 11a2 � 14a � 2

(1 � a)3

2
15

CO
8a2 � 9a � 3

(1 � a)3

2
15

CO
2a(a2 � 3a � 1)

(1 � a)3

CDG
� �

QD�
VG

CDS
� �

QD�
VS

CDD
� �

QD�
VD

2
15

CO
2(a2 � 3a � 1)

(1 � a)3

2
15

CO
a(3a2 � 9a � 8)

(1 � a)3
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This equation can be reduced by factoring to

QS � 2
15

Co

�
3V3

GST � 6V2
GST

VGDT � 4VGSTV2
GDT � 2V3

GDT

(VGST � VGDT)2 � (14.10–12)

where CO = WL Cox, as before.

In like manner, equation (14.10–8) can be integrated from y to L, corresponding to the channel voltage from V to
VD.  This analysis leads to definition of quasi–static channel charge associated with the drain end of the channel

QD � W � L

0

y
L

qIdy (14.10–13)

which, using equations (14.10–11) and (14.10–4), reduces to

QD � 2
15

Co

�
2V3

GST � 4V2
GST

VGDT � 6VGSTV2
GDT � 3V3

GDT

(VGST � VGDT)2 � .

Charges QS and QD given by (14.10–10) and (14.10–13), respectively, add up to (14.10–2), the channel charge QG.
In this respect, the channel charge is said to be partitioned in terms of a source partition QS and a drain partition QD.
This partitioning is also called the 60/40 partition since, in the saturation limit where VGDT  �  0, QS/QG  �  2/3 and 
QD/QG  �  1/3.

These charge partitions also define six more terms of the MOSFET capacitance matrix, as represented by table
14.8.2.

Table 14.10–2.  QUASI–STATIC MOSFET CAPACITANCES
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The quasi–static gate charge QG is the same, whether considering the static case, or the quasi–static case.  A plot of
each of these capacitances is shown by Figure 14.10–2.  Note that the capacitances are non–reciprocal, i.e. CSG is
not equal to CGS.

Figure 14.10–2.  MOSFET capacitances from Table 14.10–2.  Capacitance vs VDS is plotted for the case
where VGS = 5.0V and VTH = 0.8V.

Features of these capacitances that are of importance are their values in the limit as a �  0, corresponding to satura-
tion.  In this limit

CGG �  CGS �  CSG �  CSS �  2
3

 CO

CGD �  CSD �  CDD � 0

CDG �  CDS
�  4

15
  CO

If we are operating in the saturation regime, as is usually the case for linear circuits, then the only capacitance from
gate to drain is the overlap capacitance

COL
� W

�
CW (14.10–15)

where Cw is the overlap capacitance per cm along the gate edge.  This term must also be added to each of the other
terms where either the gate node VG or the gate charge QG is concerned.  SPICE uses CGSO for gate–source overlap
per meter, and CGDO for gate–drain overlap per meter.  In saturation, CGS �  W �  CGDO.
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14.11  HIGH–FIELD EFFECTS – VELOCITY SATURATION

At high E–fields, the linear relationship between voltage and current, Ohm’s law, begins to deteriorate.  Since, in
the analysis of current ID in the FET channel we relied upon Ohm’s law to define the current–voltage relationships,
we need to re–evaluate this analysis when we consider short–channel devices, where the driving fields are high
everywhere within the channel.

Turning to the basic definition of current, we find that it relates to the velocity v of the charge–carriers, as

J � qnv (14.11–1)

where, in this case, we have assumed n–type charge carriers.  In the nMOSFET, conduction current flows through
an thin inversion layer created by the gate field, of charge density nI.  Current within the channel will therefore be of
the form

where v is the velocity of carriers.  At low fields, velocity v is proportional to the E–field Ey, according to

v ��� Ey

which gives us our basic definition of mobility, and eventually leads to Ohm’s law, (J = σE).  When we have high
E–fields, this Ohm’s law equation is no longer applicable.

The effect of increasing the E–field is represented by figure 14.11–1. There is a natural physical limit to the velocity
of the charge carriers, and as the E–field is increased, the limit is approached asymptotically.  This terminal velocity
is approximately the thermal velocity of the “gas” of charge carriers within the semiconductor, on the order of 
107 cm/s.

�

���

�
���

	�

������� ������� �

Figure 14.11–1  Velocity limiting of charge–carriers.

The velocity–limiting feature occurs within all FET transistors. When the transistor reaches its saturation condi-
tion, and I = IDSAT, then qI –> 0 somewhere near the drain node.  As qI –> 0, v must increase.  Ey which, at low fields,
is �  v/µ, therefore will also increase in the vicinity of this “pinch–off”, eventually reaching its own limit according
to the value of v.

The outcome of this “velocity–saturation limit” to the current is that at or near the drain node, a high–field region
and a channel charge limit are approached:

qI � qc
� IDST

vcW
(14.11–2)
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Provided that this limit is localized to the drain region, equation (14.11–2) implies that we merely will see a small
correction term to VG as used in equation (14.8.8) for the definition of VDSAT.  The correction is ∆VG = – qC/Cox .

We also can assume that the mobility, which is the slope of the curve represented by Figure 14.11–1, asymptotically
goes to zero.  A simple interpretation of this behavior is given by

�
S � �

0

1 � aEy
� �

0

1 � adV � dy
(14.11–3)

where a �  �  1/Ec , the sign being negative if the charge–carriers are negative.  Ec represents a value of Ey at which
the velocity limiting effects become dominant.  When this expression for µS is used in equation (14.8.5) we get

I

�
1 � 1

EC � V� y 	 � W�
0qI � V� y (14.11–4)

Since (14.11–4) is a linear differential equation, it can readily be integrated, which gives the result

ID � WL

�
0COX

1 � VDS � (ECL) 
 (VGS � VBIN)VDS � 1
2

V2
DS � 2

3 � [(� B � VDB)3 
 2 � (� B � VSB)3 
 2] �
The important distinction between equations (14.8.6) and (14.11–5) is that the mobility is voltage–dependent, as
may be approximately represented by �

S � �
0

1 � VDS � (ECL)
The effect is stronger for smaller channel lengths L.

However, if the this charge–limiting effect extends over a large portion of the channel, which is more likely for
short–channel devices, then it is necessary to define IDSAT in terms of (14.11–2), and even equation (14.8.7) is inad-
equate.  This implies that the level of charge qI itself is the defining quantity for current.

Therefore when IDSAT is defined by the “velocity–saturation” effect, it will be approximately linear in VGS – VTH,
rather than quadratic behavior indicated by equation (14.1.2).

This comparison is represented by figure 14.11–2.
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Figure 14.11–2a  Long–channel device.  IDSAT  determined by charge–control analysis.

Figure 14.11–2b  Short–channel device.  IDSAT determined by velocity limiting of charge–carriers.

14.12  A PARABOLIC APPROXIMATION – THE BSIM MODEL

The Schichman–Hodges model, given by equations (14.1–1) and (14.1–2), is sufficiently appealing in its simplic-
ity and numerical speed so that quadratic modifications to the physically accurate charge–control model are often
used.  One of the more comprehensive expansions of this form, BSIM, is developed after a parabolic  model, CSIM
(Compact, Short–channel IGFET Model) developed at Bell Labs.  The CSIM model was expanded and implement-
ed as a table–structured model by a research group at UC Berkeley[14.12–1] and renamed BSIM.  It has 54 parame-
ters, many of which are statistical expansions in 1/L and 1/W, which is a means of including a wide range of short–
channel effects.  This approach to a comprehensive model of the MOSFET is sometimes called the “statistical”
model.
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The CSIM model is developed by expansion of the body–effect part of the Meyer model, equation (14.8.7).  The
body–effect part of equation (14.8.7) is given by

xB
� 2

3
� [(� B � VDB)3 � 2 � (� B � VSB)3 � 2] (14.12.–1)

If we direct our attention to the first term of the body effect, we can make the expansion

(� B � VDB)3 � 2 � (� B � VDS � VSB)3 � 2 � (� B � VSB)3 � 2 � 1 � 3
2

VDS

(� B � VSB) � 3
8

V2
DS

(� B � VSB)2 �
We might feel a little unsure about this expansion since the higher–order terms in VDS

3, ..etc. are not necessarily
negligible as we increase VDS.   But assuming that corrective terms can be applied through judicious choice of
coefficients, this expansion at least gives a form to equation (14.12–1) which is second–order in VDS:

xB
� 2

3
�
	 (� B � VDB)3 � 2 ��� ��
 VDS � B � VBS

� � V2
DS

4 � B � VSB

� � (14.12–2)

Where we have subtracted away the common terms in � B � VSB

�
.  This equation can be combined with the first

part of equation (14.8.7) to give a parabolic equation form:

ID
� Kp

W
L � (VGS

� VBI)VDS
� 1

2
V2

DS
� � 
 VDS � B � VBS

� � V2
DS

4 � B � VSB

� ���
� Kp

W
L � VGS

� VFB
� � B

� � � B � VBS)
�

VDS
� 1

2
aV2

DS �
� Kp

W
L � (VGS

� VTH)VDS
� 1

2
aV2

DS � (14.12–3)

where the conductance–degradation coefficient a includes the quadratic ( coefficient to V2
DS ) component of the

body–effect expansion of equation (14.12–2),

a � 1 � g�
2 � B � VSB

� (14.12–4)

Note that this equation also includes the factor g, which is a numerical expansion coefficient which is included to
accommodate the non–negligible terms neglected by the expansion (14.12–2).  g is given by

g � 1 � 1
1.744 � 0.8364(� B � VSB)

. (14.12–5)

Although it is well thought–out, this term is also known as a “fudge–factor”, and therefore the BSIM model is not
without critics.

The advantage of the model is that it is of the simple form

ID
��� � (VGS

� VTH)VDS
� 1

2
aV2

DS � (14.12–6)
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where VTH
� VFB

���
B
�����

B
�

VBS

�
 is the same as the charge–control form of VTH given by equation

(14.4.13), and where β  is the conduction coefficient.

Actually, VTH, as used by BSIM, is not strictly like equation (14.4.13).  It adds correction terms to the charge–con-
trol VTH for short–channel and narrow–channel effects.  It even includes a drain–induced barrier–lowering effect
due to VDS.

The BSIM model also lends itself to a parabolic form for the saturation current, IDSAT,  much like equation (14.1.2).
This is achieved by defining

VDSAT
� VGS � VTH

a (14.12–7)

When applied to (14.12–6) this choice for VDSAT gives saturation current

IDSAT
�
	

2a
(VGS � VTH)2

(14.12–8)

Since these equations are relatively simple they may be modified to include velocity–saturation effects by return-
ing to the velocity–saturation limit on charge, qI –> qC.  Since qC is a limit on IDSAT  imposed by the thermal limit of
carrier velocity, vc, it can be restated, for VTH �  const, as:

qc � IDSAT

Wvc

� COX(VGS � VTH � aVDSAT) (14.12–9)

This equation therefore gives us a link between VDSAT and IDSAT which we can exploit using equation (14.12.6), as
follows:

IDSAT
� 	 � (VGS � VTH � rIDSAT)VDSAT � 1

2
aV2

DSAT 

� 	

2a
(VGS � VTH � rIDSAT)

2

(14.12–10)

where  r  = 1/( vcWCox )  .

By means of a trick, wherein we assume that IDSAT is of the form:

IDSAT
� 	

2aK
(VGS � VTH)2 (14.12–11)

we can then apply this definition of IDSAT to equation (14.12–10), which gives us a quadratic equation in terms of
the factor, K,

K2 � K � 1 � r	
a (VGS � VTH) � � � r	

2a
� 2

(VGS � VTH)2

This equation has solution

K � 1
2

(1
�

p
�

1
�

2p)
�

(14.12–12)

Parameter p relates to VGS – VTH and the effect of velocity–limited saturation by

p � r	
a (VGS � VTH) � 	

aWvcCOX
(VGS � VTH) ��� S

avcL
(VGS � VTH) (14.12–13)
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Admittedly, this process is somewhat manipulative, since it is hiding some of the voltage dependence of IDsat under
parameter K.  It means that (14.12–11) should not to be interpreted as a simple quadratic function, because parame-
ter K relates to p, which is linear in VGS – VTH.

If  p << 1,  corresponding to  L –> large,  then

K � 1
�

p � 1
��� S

vcL
VGS � VTH

a

and IDSAT is approximately quadratic in VGS – VTH, which is consistent with long–channel behavior.

If p >> 1, corresponding to L –> small, then

K �
p
2
� � S

vcL
VGS � VTH

2a

then IDSAT   is approximately linear in VGS – VTH, which is consistent with short–channel behavior.
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