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Introduction

Probabilistic reasoning goes a long way in many popular board games. Abbott
and Richey [1] and Ash and Bishop [2] identify the most profitable properties in
Monopoly and Tan [3] derives battle strategies for RISK. In RISK, the stochas-
tic progress of a battle between two players over any of the 42 countries can be
described using a Markov Chain. Theory for Markov Chains can be applied to
address questions about the probabilities of victory and expected losses in battle.

Tan addresses two interesting questions:

If you attack a territory with your armies, what is the probability that
you will capture this territory? If you engage in a war, how many armies
should you expect to lose depending on the number of armies your oppo-
nent has on that territory? [3, p.349]

A mistaken assumption of independence leads to the slight misspecification of the
transition probability matrix for the system which leads to incorrect answers to these
questions. Correct specification is accomplished here using enumerative techniques.
The answers to the questions are updated and recommended strategies are revised
and expanded. Results and findings are presented along with those from Tan’s
article for comparison.

The Markov Chain

The object for a player in RISK is to conquer the world by occupying all 42 countries,
thereby destroying all armies of the opponents. The rules to RISK are straightfor-
ward and many readers may need no review. Newcomers are referred to Tan’s article
where a clear and concise presentation can be found. Tan’s Table 1 is reproduced
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Table 1: An example of a battle

Roll # No. of armies No. of dice rolled Outcome of the dice No. of losses
attacker defender attacker defender attacker defender attacker defender

1 4 3 3 2 5,4,3 6,3 1 1
2 3 2 3 2 5,5,3 5,5 2 0
3 1 2 1 2 6 4,3 0 1
4 1 1 1 1 5 6 1 0
5 0 1

here for convenience. It shows the progress of a typical battle over a country, with
the defender prevailing after five rolls.

Following Tan’s notation, let A denote the number of attacking armies and D

the number of defending armies at the beginning of a battle. The state of the battle
at any time can be characterized by the number of attacking and defending armies
remaining. Let Xn = (an, dn) be the state of the battle after the nth roll of the dice:
where an and dn denote the number of attacking and defending armies remaining
respectively. The initial state is X0 = (A, D). The probability that the system goes
from one state at turn n to another state at turn n+1 given the history before turn
n depends only on (an, dn), so that {Xn : n = 0, 1, 2, . . .} forms a Markov chain:

Pr[Xn+1 = (an+1, dn+1)|xn, xn−1, . . . , x1, x0] = Pr[Xn+1 = (an+1, dn+1)|xn)]

The A ∗ D states where both a and d are positive are transient. The A + D states
where either a = 0 or d = 0 are absorbing. Let the A ∗D + (D + A) possible states
be ordered so that the A ∗ D transient states are followed by the D + A absorbing
states. Let the transient states be ordered

{(1, 1), (1, 2), . . . , (1, D), (2, 1), (2, 2), . . . , (2, D), . . . , (A, D)}
and the absorbing states

{(0, 1), (0, 2), . . . , (0, D), (1, 0), (2, 0), . . . , (A, 0)}.
Under this ordering, the transition probability matrix takes the simple form

P =

[
Q R

0 I

]

where the (A ∗ D) × (A ∗ D) matrix Q contains the probabilities of going from
one transient state to another and the (A ∗ D) × (D + A) matrix R contains the
probabilities of going from a transient state into an absorbing state.
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The Transition Probability Matrix, P

Let πijk denote the probability that the defender loses k armies when rolling j dice
against an attacker rolling i dice. P is made up of only 14 such distinct probabilities,
as given in Table 2. To obtain the πijk, the marginal and joint distributions of the
order statistics from rolling 2 or 3 six-sided dice are used. Let Y1, Y2, Y3 denote the
unordered outcome for an attacker when rolling three dice and let W1, W2 denote
the unordered outcome for an attacker when rolling two dice. Let Z1, Z2 denote the
unordered outcome for a defender rolling two dice. Let descending order statistics be
denoted using superscripts so that, for example Y (1) ≥ Y (2) ≥ Y (3). Then Y1, Y2, Y3

and W1, W2 and Z1, Z2 are random samples from the discrete uniform distribution
on the integers 1 through 6:

Pr(Yj = y) =

{
1
6 for y = 1, 2, 3, 4, 5, 6
0 else.

Joint and marginal distributions of the random vectors (Y (1), Y (2)) and (Z(1), Z(2))
can be obtained using straightforward techniques of enumeration. When rolling
three dice,

Pr(Y (1) = y(1), Y (2) = y(2)) =




3y(1)−2
216 for y(1) = y(2)

6y(2)−3
216 for y(1) > y(2)

0 else

and
Pr(Y (1) = y(1)) =

{
1−3y(1)+3(y(1))2

216 for y(1) = 1, 2, 3, 4, 5, 6.

When rolling two dice,

Pr(Z(1) = z(1), Z(2) = z(2)) =




1
36 for z(1) = z(2)

2
36 for z(1) > z(2)

0 else

and
Pr(Z(1) = z(1)) =

{
2z(1)−1

36 for z(1) = 1, 2, 3, 4, 5, 6.

All of the probabilities are 0 for arguments that are not positive integers less than
or equal to 6. The joint distribution of W (1) and W (2) is the same as that for Z(1)

and Z(2).

The marginal distributions given in Tan’s article can be obtained directly from
these joint distributions. However, the marginal distributions alone are not suffi-
cient to correctly specify the probabilities of all 14 possible outcomes. In obtaining
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probabilities such as π322 and π320, Tan’s mistake is in assuming that events such
as Y (1) > Z(1) and Y (2) > Z(2) are independent. Consider π322. Tan’s calculation
proceeds below:

π322 = Pr(Y (1) > Z(1) ∩ Y (2) > Z(2))

= Pr(Y (1) > Z(1)) Pr(Y (2) > Z(2))

= (0.471)(0.551)

= 0.259

The correct probability can be written in terms of the joint distributions for ordered
outcomes from one, two, or three dice. For example,

π322 = Pr(Y (1) > Z(1), Y (2) > Z(2))

=
5∑

z1=1

z1∑
z2=1

Pr(Y (1) > z1, Y
(2) > z2) Pr(Z(1) = z1, Z

(2) = z2)

=
5∑

z1=1

z1∑
z2=1

6∑
y1=z1+1

y1∑
y2=z2+1

Pr(Y (1) = y1, Y
(2) = y2) Pr(Z(1) = z1, Z

(2) = z2)

=
2890
7776

= 0.372.

Note that those events in this quadruple sum for which an argument with a subscript
of 2 exceeds an argument with the same letter and subscript 1 have probability zero.

The probabilities πijk that make up the transition probability matrix P can be
obtained similarly using the joint distributions for Y (1), Y (2), for Z(1), Z(2) and for
W (1), W (2). The probabilities themselves, rounded to the nearest 0.001, are listed
in Table 2.

The Probability of Winning a Battle

For a transient state i let f
(n)
ij denote the probability that the first (and last) visit

to absorbing state j is in n turns:

f
(n)
ij = Pr(Xn = j, Xk 6= j for k = 1, . . . , n− 1|X0 = i)

Let the AD× (D + A) matrix of these “first transition” probabilities be denoted by
F (n). In order for the chain to begin at state i and enter state j at the nth turn, the
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Table 2: Probabilities making up the transition probability matrix
i j Event Symbol Probability Tan’s value

1 1 Defender loses 1 π111 15/36=0.417 0.417
1 1 Attacker loses 1 π110 21/36=0.583 0.583
1 2 Defender loses 1 π121 55/216=0.255 0.254
1 2 Attacker loses 1 π120 161/216=0.745 0.746
2 1 Defender loses 1 π211 125/216=0.579 0.578
2 1 Attacker loses 1 π210 91/216=0.421 0.422
2 2 Defender loses 2 π222 295/1296=0.228 0.152
2 2 Each lose 1 π221 420/1296=0.324 0.475
2 2 Attacker loses 2 π220 581/1296=0.448 0.373
3 1 Defender loses 1 π311 855/1296=0.660 0.659
3 1 Attacker loses 1 π310 441/1296=0.340 0.341
3 2 Defender loses 2 π322 2890/7776=0.372 0.259
3 2 Each lose 1 π321 2611/7776=0.336 0.504
3 2 Attacker loses 2 π320 2275/7776=0.293 0.237

first n− 1 transitions must be among the transient states and the nth must be from
a transient state to an absorbing state so that F (n) = Qn−1R. The system proceeds
for as many turns as are necessary to reach an absorbing state. The probability
that the system goes from transient state i to absorbing state j is just the sum
fij =

∑∞
n=1 f

(n)
ij . The AD × (D + A) matrix of probabilities for all of these D + A

absorbing states can be obtained from

F =
∞∑

n=1

F (n) =
∞∑

n=1

Qn−1R = (I −Q)−1R.

If the system ends in one of the last A absorbing states then the attacker wins; if
it ends in one of the first D absorbing states, the defender wins. Since the initial
state of a battle is the i = (A · D)th state using the order established previously,
the probability that the attacker wins is just the sum of the entries in the last (or
(A ·D)th) row of the submatrix of the last A columns of F :

Pr(Attacker wins|X0 = (A, D)) =
D+A∑

j=D+1

fAD,j

and

Pr(Defender wins|X0 = (A, D)) =
D∑

j=1

fAD,j .
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Table 3: Probability that the attacker wins
AÂD 1 2 3 4 5 6 7 8 9 10

1 0.417 0.106 0.027 0.007 0.002 0.000 0.000 0.000 0.000 0.000
2 0.754 0.363 0.206 0.091 0.049 0.021 0.011 0.005 0.003 0.001
3 0.916 0.656 0.470 0.315 0.206 0.134 0.084 0.054 0.033 0.021
4 0.972 0.785 0.642 0.477 0.359 0.253 0.181 0.123 0.086 0.057
5 0.990 0.890 0.769 0.638 0.506 0.397 0.297 0.224 0.162 0.118
6 0.997 0.934 0.857 0.745 0.638 0.521 0.423 0.329 0.258 0.193
7 0.999 0.967 0.910 0.834 0.736 0.640 0.536 0.446 0.357 0.287
8 1.000 0.980 0.947 0.888 0.818 0.730 0.643 0.547 0.464 0.380
9 1.000 0.990 0.967 0.930 0.873 0.808 0.726 0.646 0.558 0.480
10 1.000 0.994 0.981 0.954 0.916 0.861 0.800 0.724 0.650 0.568

The row sums of F are unity. Given an initial state, the system has to end in one
of the D + A absorbing states.

The F matrix is used to obtain Table 3, a matrix of victory probabilities for a
battle between an attacker with i armies and a defender with j armies for values of i

and j not greater than 10. F is also used to compute expected values and variances
for losses the attacker and defender will suffer in a given battle.

Expected Losses

Let LA and LD denote the respective losses an attacker and defender will suffer
during a given battle given the initial state X0 = (A, D). Let RD = D − LD and
RA = A−LR denote the number of armies remaining for the attacker and defender
respectively. The probability distributions for RD and RA can be obtained from the
last row of F :

Pr(RD = k) =

{
fAD,k for k = 1, . . . , D

0 else

and

Pr(RA = k) =

{
fAD,D+k for k = 1, . . . , A

0 else.
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Figure 1: Attacker’s winning probabilities at various strengths
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For example, suppose A = D = 5. In this case, the 25th row of the 25 × 10 matrix
F gives the probabilities for the D + A = 10 absorbing states:

F25,· = (0.068, 0.134, 0.124, 0.104, 0.064, 0.049, 0.096, 0.147, 0.124, 0.091).

The mean and standard deviation for the defender’s loss in the A = D = 5 case are
E(LD) = 3.56 and SD(LD) = 1.70. For the attacker, they are E(LA) = 3.37 and
SD(LA) = 1.83. Plots of expected losses for values of A and D between 5 and 20 are
given in Figure 2. From this plots it can be seen that the attacker has an advantage
in the sense that expected losses are lower than for the defender, provided the initial
number of attacking armies is not too small.

Conclusion and Recommendations

The chances of winning a battle are considerably more favorable for the attacker than
was originally suspected. The logical recommendation is then for the attacker to be
more aggressive. Inspection of Figure 1 shows that when the number of attacking
and defending armies is equal (A = D), the probability that the attacker ends up
winning the territory exceeds 50%, provided the initial stakes are high enough (at
least 5 armies each, initially.) This is contrary to Tan’s assertion that that this
probability is less than 50% because “in the case of a draw, the defender wins” in
a given roll of the dice. When A = D Figure 2 indicates that the attacker also
suffers fewer losses on average than the defender, provided A is not small. With
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Figure 2: Expected losses for attacker and for defender
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the innovation of several new versions of RISK further probabilistic challenges have
arisen. RISK II enables players to attack simultaneously rather than having to
wait for their turn and involves single rolls of non-uniformly distributed dice. The
distribution of the die rolled by an attacker or defender depends on the number of
armies the player has stationed in an embattled country. The Markovian property
of a given battle still holds, but the entries comprising the transition probability
matrix P are different. Further, decisions about whether or not to attack should be
made with the knowledge that attacks cannot be called off as in the original RISK.

Acknowledgment. The author thanks Jerry Veeh and Dean Hoffman and two referees

for comments and confirmations.

References

[1] Steve Abbott and Matt Richey, Take a Walk on the Boardwalk, College Math.
J. 28 (1997), 162-171.

[2] Robert Ash and Richard Bishop, Monopoly as a Markov Process, this Maga-

zine 45 (1972), 26-29.

[3] Baris Tan, Markov Chains and the RISK Board Game, this Magazine 70
(1997), 349–357.


