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Crossing Chasms

• Crossing the Chasm
from Objects to
Relational Databases

• A Presentation in Four
Acts
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Patterns

• Crossing Chasms is a pattern language

• A pattern has four parts
– Context

– Problem

– Forces

– Solution

• We will show you how our patterns are applied to
a real problem.
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Act 1: Architectural Aims
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Pattern: Choosing a Database

• Context: You are
about to embark upon
a new project.

• Problem:  You must
choose to use either a
relational or an object
database to provide
object persistence.

?
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Choosing a Database (2)

• Forces
– Cost of Technology

– Existence of legacy systems and software

– Cost of Training

– Fundamental structure of the application to be built
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Choosing a Database (3)

• Solution
– If you are heavily constrained by legacy code or data,

or have a significant investment in relational
technology,  then choose an RDBMS for object
persistence.

– On the other hand, if these do not apply, or if the
structure of your application demands it, an ODBMS
will be better.
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Pattern: Four Layer Architecture

• Context:  You must
have a coherent
software architecture.

• Problem: What is the
appropriate
architecture for an OO
client-server system?
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Four Layer Architecture (2)

• Forces:
– portability to new environments, libraries, and tool

vendors

– rational distribution of work among team members

– structure of existing tools and frameworks
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Four Layer Architecture (3)

• Solution
– Employ a layered architecture with:

• a View Layer

• an Application Model layer

• a Domain layer

• an Infrastructure layer
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The Four Layers

View Layer

Application Model Layer

Domain Model Layer

Infrastructure Layer
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Layers and Tiers

• In many cases the four layers can map onto “tiers”

• A two-tier system (fat client) places all four layers
on a single client machine

• A three-tier system maps the domain and
infrastructure layer (and possibly part of the App
model layer) onto its own machine, leaving the
view layer on the client machines
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End of Act 1
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Act 2: Database Schemes and
Dreams
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Review of Relational Databases
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Pattern: Table Design Time

• Problem:

– When is the best time to design your relational database
schema during OO development?
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Table Design Time Considerations

• Avoid data-centric design because it is usually more
difficult to maintain

• Performance is dependent on the design of the
database.

• Each OO design decision affects the database design.
The models must be considered together.
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Table Design Time Solution

• Design the database schema based on your object

model.

• For best results the database should be considered
during  the design of the object model, after an initial
object design iteration.

• Incorporate a relational - object database framework
soon as possible into your architectural prototype
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Pattern: Representing objects as
tables

• Problem: How do you
map a set of objects into
a relational database
schema?RDBMS

Smalltalk



(C) 1996, 1997 Kyle Brown & Bruce Whitenack 20

Relational to Object Considerations

Classes define objects Tables define records 

Objects consist of attributes Records consist of fields

Records reference other
records using a foreign key

Objects reference other
objects using a pointer

Fields in a table are statically typed Dynamic binding 

Easy to represent complex 

relationships

Inheritance

Hard to represent complex relationships
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Relational to Object Considerations

• Rows in Tables have keys

• Objects can be in
heterogeneous collections

• Objects do not have keys but
have object ids

• Data types do not match between a
relational database and Smalltalk

• Every row in a table
has the same attributes
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Solution - Representing Objects in
Tables

1. Define a table for each persistent class
2. Define columns whose values map directly to the

values in the class’ instance variables -- i.e. base
data types. (String, Number, Date)

3. If the class has object relationships, define columns
whose values are foreign key references to the
tables that store the referenced objects.
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Initial Table Design
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Pattern: Object Identity

Problem:
• How do you preserve an object’s identity in a

relational database?
• If two objects have the same set of attributes but are

really different objects how do you keep their
uniqueness in the relational database?

• How do you keep from creating multiple copies of
the same object each time you read it in?

345674
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Object Identity Considerations

• Each object’s uniqueness must be preserved in the
database

• There should be no unintended duplicates in the
application as a result of reading in the same object
twice.

firstName

anEmployee 

‘John’

  id  235

= =
firstName

anEmployee 

‘John’

  id  235
false
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Solution: Create an Object
Identifier

• Ensure each class stores a unique identifier -- i.e.
define an id instance variable to store unique id for
Employee

• Define the primary key field in the object’s table to
store the unique identifier.

• Sequence number generation can  create unique ids
for each object…create a sequence table if necessary

• Use an identity map (cache) keyed on the identifier
which points to the instance of the object in the
image. Prevents unwarranted duplicates during reads.
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Being unique

Sequence Numbers maintain uniqueness among Employee objects

EMP_ID
7

8

BIRTH_DATE
9/11/70

F_NAME

9

L_NAME

Liz Taylor

Jeff Jones

Mary Peters 08/05/49

10/06/59

EMPLOYEE  TABLE (partial) 
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Pattern: Foreign Key Reference

• Problem: How do you represent
objects that reference other objects
that are not “base data types”?

For example,  an employee can have a
reference to an address object...
– Note: A base data type refers to a

database data type like CHAR This
maps to a standard class like String .
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Solution: Foreign Key Reference

• Assign each object a unique object identifier
(OID)

• Add a column for each instance variable that is not
a base datatype or a collection.

• In that column store the OID of the referenced
object

• Declare the column as a foreign key
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Foreign Key Column
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The Keys to Consider
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Pattern: Representing object
relationships

• Problem:  How do you represent object relationships
in a relational database?

• Context
–An object model is built with a number basic relationships:

• 1 to 1

• 1 to many

• many to many
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Representing object relationships -
Considerations

• In the object domain, the object always references it parts,
– …whereas in the relational domain, in cases such as 1 to

many relationship, each part references its owner
• each employee has a key back to the manager (owner)

• In source object point of view, there is no many to many
mapping, just 1 to many

• Example: each messnger has pick-ups (1 to many), and
a pick-up may have more than 1 messenger (1 to
many) -- many to many.
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Solution: Representing object
relationships

• Determine the types of relationships between objects
• Design table(s) corresponding to each domain object

using the following guidelines:
• 1 to 1 relationship uses foreign keys in the source

table

• 1 to many  relationship uses foreign keys from each of
the many in the target table to the one ‘parent’ record
in the source table.

• many to many relationship use a relationship table
with foreign keys that reference each of the related
records in both tables
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One-to-One Mappings

AddressEmployee
7

325
id

id
1:1

address

ADDRESS Table 

ADDRESS_ID

EMPLOYEE Table

EMP_ID ADDRESS_ID
7 325

325

...

22 478

645

CITY STATE

Cary NC

Dover DE
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One-to-Many Mapping

managedEmployees

Employee

Collection of 

Employees

EMP_ID
7

21

MANAGER_ID
21

F_NAME

21
7

33

L_NAME

Susan Taylor

Jeff Bridges

Mary Jones

33
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Mary

Jones

21

Jeff

Bridges

EMPLOYEE Table
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Many-to-Many Mappings

pick ups
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Package PickUps
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Jeff 
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Many to Many with Relationship
Table

LOCATION

PICKUP Table

CLINIC

LAW FIRM

EMP_PICK Table

EMP_ID
7
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MANAGER_ID
21

F_NAME

33

L_NAME

Susan Taylor

Jeff Bridges

Mary Jones 21

EMPLOYEE Table
PICK_ID
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1717
7

7
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1717

2503

EMP_ID PICK_ID
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Pattern: Representing Special
Collections

• Problem: How do you
represent special,
(i.e.heterogeneous,
ordered) collections in a
relational database?
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Representing Special Collections
(2)

• Forces
– 1NF rule

– Objects may be contained in many collections (M-N
relationships)

– Collections can be heterogenous - members can be of
different classes

– Collections can be ordered
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Representing Special Collections
(3)

• Solution
– Create a relationship table for each collection.  A

relationship table maps the primary keys of the
containing objects to the primary keys of the contained
objects

– The relationship stores other information

• class of contained object

• ordering information
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Heterogeneous Collection

contact numbers

Employee

Collection of 

Contacts

21
7

33

Susan

Taylor

phone
number

email address
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Heterogeneous Collection

7

21

..

..
F_NAME

33

L_NAME
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EMP_ID

EMPLOYEE Table
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op.com
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Pattern: Representing Inheritance

• Problem: How do you represent
a set of classes in an inheritance
hierarchy in a relational
database?
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Representing Inheritance

• Forces
– Relational databases don’t provide support for inherited

attributes

– Object designs are rife with inheritance...
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Representing Inheritance

• Solution
– Create a table for each class in a hierarchy

– Add a column in the subclass tables for the (common)
key

– Create concrete subclass instances by JOINing the
tables

– If performance becomes an issue, create a table for each
subclass that contains all the inherited attributes.
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Inheritance

Employee

MessengerOfficeWorker
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Inheritance

MESSENGER Table

EMPLOYEE Table

EMP_ID
7

21

EMPLOY_TYPE
Messenger

F_NAME

33

L_NAME

Susan Taylor

Jeff Bridges

Mary Jones Office

Messenger

EMP_ID
7

21

BEEPER
345-555

ROUTE

44

VEHICLE

Downtown B978

Uptown J234

Midtown R690 345-887

345-698
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End of Act 2



(C) 1996, 1997 Kyle Brown & Bruce Whitenack 50

Act 3: Brokering objects
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Possible persistence architectures

• All-In-One

• Persistent Subclasses

• ?
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All-in-one architecture

• One potential solution is to include database code
directly in domain classes.

• This does not separate concerns and becomes
unmaintainable.

• This is unfortunately what many vendors
unwittingly promote.
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Persistent Subclasses

• Another solution is to
make persistent subclasses
of domain classes.

• This results in an
explosion of subclasses.

BaseClass

DomainClassA DomainClassB

Persistent
SubclassA

Persistent
SubclassB
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Pattern: Broker

• Problem: How do you
separate the domain-
specific parts of an
application from the
database-specific parts?
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Broker (2)

• Forces:
– Architecture should be simple, but powerful and

extensible

– Persistence should be orthogonal to class

– Must preserve encapsulation and separation of concerns

– Solution should avoid class explosion



(C) 1996, 1997 Kyle Brown & Bruce Whitenack 56

Broker (3)

• Solution
–  Connect the database-specific classes and the domain-

specific classes with an intermediate layer of Broker
objects.

– Brokers mediate between database objects and domain
objects and are ultimately responsible for reading from
and writing to the database.
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Generic Broker architecture

• Brokers collaborate with
both domain objects and
database objects.

• This allows domain
objects to be ignorant of
database issues.

DomainObject

saves to, restores with

DatabaseBroker

writes to, reads from

DatabaseSession
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Object Passivation

• A broker is responsible for writing out
(passivating) objects

• View the object as a directed graph.
– Do a post-order traversal that writes out the leaves

before it writes out the intermediate nodes.

– Use the OID’s generated at the leaves to form foreign-
key columns.
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Object Activation

• A broker is also responsible for reading in objects
from tables
– At a minimum, load in the basic attributes of an object

and its foreign-key OID’s.

– As performance needs dictate, instantiate subordinate
objects either immediately, or later using Proxies or
deferred instantiation.
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Pattern: Mapping Metadata

• Problem
– How do you define the mapping

between an object class and the
corresponding parts of a relational
schema?
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Mapping tuples (2)

• Forces:
– You want to avoid duplicated code

– You would like to handle common situations in the
same way
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Mapping tuples (3)

• Solution:
– Reify the mapping into a set of Map classes that (at the

least) map column names in a table to instance variable
selectors.

– More complex maps can map common relationships (1-
1, 1-N, M-N) between objects into relational
equivalents.
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Maps example (Smalltalk)

SomeDomainObject>>maps

^ RowMap new
add: ( ColumnMap keyName: ‘user_id’ 

forAspect: #userId) ;
add: (ColumnMap columnName: ‘full_name’ 

forAspect:  #fullName);
add: (ColumnMap foreignKey: ‘address_id’ 

forAspect: #address);
add: ( DateColumnMap columnName: ‘renewal-date’ 

forAspect: #renewalDate);
yourself). 
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Maps example (Java)

 public RowMap toMapping()
    {
        RowMap newMapping = new RowMap();
        newMapping.baseObject = this;
        newMapping.tableName = "CustomerTable";
        newMapping.addStringOID("TelephoneNumber", telephone);
        newMapping.addMapForString("Name", name);
        newMapping.addMapForObject("Address", address);
        return newMapping;
    }
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Pattern: Proxy

• Problem: How do you instantiate large, complex
objects without severe performance hits and
memory problems?
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Proxy (2)

• Forces
– Many objects are too big to instantiate in their entirety.

– Applications still need to navigate over part of an
object.
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Proxy (3)

• Solution
– Use a proxy object in place of a full component for

newly instantiated objects.

– The Proxy provides sufficient identification
information to instantiate itself when it receives a
message meant for the actual object.

– See [Gamma] for Smalltalk, C++ implementations
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Proxy (Java example)

• Create interfaces that your domain object and its
proxy will implement

doThis() {
if (realObject == null)
realObject = getReal();
return realObject.doThis();
}DOProxy

DomainObjectInterface

doThis( )

DomainObject

doThis( )doThis( )

realObject
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Pattern: Query Objects

• Problem:
– How do you handle the generation and execution of SQL

statements in an OO way?
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Query Objects (2)

• Forces:
– Want to minimize the exposure of the system to SQL

– Want to maximize shared code
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Query Objects (3)

• Solution:
– Write a set of classes that generate SQL code from

other objects.

– Query objects collaborate with Map Objects to generate
SQL.
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Query object hierarchy

SQLStatement

SQLInsert SQLSelect SQLUpdateSQLDelete
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SQL Statements (Smalltalk)

updateStatement := SQLUpdate new.
updateStatement columnMaps: aDO maps;

tableName: aDO table;
forObject: aDO.

updateStatement execute.
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SQL Statements (Java)

 
SQLStatement statement;
Hashtable allKeyValuePairs;
allKeyValuePairs = map.baseTypesAndForeignKeys();
statement = new SQLUpdateStatement();
statement.generateSQLFrom(allKeyValuePairs,

map.oidUpdateClause(), map.tableName);
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Pattern: Transaction objects

• Problem
–  How do you represent the

concept of a database transaction
in an OO language?
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Transactions (2)

• Forces
– SQL depends upon transactions to maintain database

consistency

– OO languages do not (directly) support this concept.
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Transactions (3)

• Solution
– Build a Transaction class that represents a Logical

Units of Work

– Use exception handlers around a block of code that
executes SQL code that may fail.

– The exception handler will execute a ROLLBACK if an
exception is raised, or a COMMIT if none occur.
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Transactions (Smalltalk)

SQLTransaction>>doTransaction:

doTransaction: aBlock

"execute aBlock within the context of a transaction"

self class errorSignal
handle: [:ex | 

self execute: ’ROLLBACK’]
do: [ aBlock value.

self execute: ’COMMIT’].
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Transactions (Java)

 try {
...try executing SQL Statements here…
currentConnection.commit();

} catch (SQLException se) {
            try {
                currentConnection.rollback();
            } catch (SQLException nse) {
                ...handle truly fatal errors here...
            }
        }
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Object Relationships

RowMap

SQL
Statement

Column
Map

formulates

maps information with

retrieves information from

DomainObject

saves to, retrieves from

DatabaseBroker

writes to, reads from

DatabaseSession

is comprised of
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End of Act 3
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Act 4: Client-Server Concerns
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Pattern: Cache Management

• Problem
– How do you best manage the

lifetime of persistent objects
stored in an RDBMS and used on
the client?
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Cache Management (2)

• Forces
– Caches increase client performance, but increase client

memory size

– Caches can become out of date

– Caching increases application complexity
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Cache Management (3)

• Solution
– Use a Session object that has a bounded lifetime and is

responsible for identity cache management of a limited
set of objects.

– Balance speed vs. space by flushing the cache as
appropriate

– Use a query before write (timestamp) technique to keep
cache accurate
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Pattern: Distribution of Behavior

• Problem
– How do you distribute behavior

meaningfully between an OO client
and a Relational server?
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Distribution of Behavior (2)

• Forces
– RDBMS's will perform some functions (like sorting)

much faster than a Smalltalk client.

– Triggers in the RDBMS can provide behavior when
changes occur

– When business rules are implemented in a database it
hurts portability and reuse. It aslo requires additional
code management
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Solution: Distribution of
Behavior

• Take a minimalist approach of “guilty until proven
innocent”.

• Sorts, major queries (stored procedures), and
aggregate functions are best done in the database.

• Triggers and other behavior are more worrisome.
Be careful.
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Crossing Chasms

• To obtain a copy of the Crossing Chasms pattern
language
– try our web site host96.ksccary.com

– or, send email to either

• bruce@objectpeople.com

• kbrown@ksccary.com

– We have RTF, PDF and Postscript -- let us know which
you prefer


