
(C) 1996, 1997 Kyle Brown & Bruce Whitenack 1

Crossing Chasms

Objects

Relational Databases

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 2

Crossing Chasms

• Crossing the Chasm
from Objects to
Relational Databases

• A Presentation in Four
Acts

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 3

Patterns

• Crossing Chasms is a pattern language

• A pattern has four parts
– Context

– Problem

– Forces

– Solution

• We will show you how our patterns are applied to
a real problem.

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 4

Act 1: Architectural Aims

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 5

Pattern: Choosing a Database

• Context: You are
about to embark upon
a new project.

• Problem: You must
choose to use either a
relational or an object
database to provide
object persistence.

?

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 6

Choosing a Database (2)

• Forces
– Cost of Technology

– Existence of legacy systems and software

– Cost of Training

– Fundamental structure of the application to be built

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 7

Choosing a Database (3)

• Solution
– If you are heavily constrained by legacy code or data,

or have a significant investment in relational
technology, then choose an RDBMS for object
persistence.

– On the other hand, if these do not apply, or if the
structure of your application demands it, an ODBMS
will be better.

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 8

Pattern: Four Layer Architecture

• Context: You must
have a coherent
software architecture.

• Problem: What is the
appropriate
architecture for an OO
client-server system?

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 9

Four Layer Architecture (2)

• Forces:
– portability to new environments, libraries, and tool

vendors

– rational distribution of work among team members

– structure of existing tools and frameworks

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 10

Four Layer Architecture (3)

• Solution
– Employ a layered architecture with:

• a View Layer

• an Application Model layer

• a Domain layer

• an Infrastructure layer

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 11

The Four Layers

View Layer

Application Model Layer

Domain Model Layer

Infrastructure Layer

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 12

Layers and Tiers

• In many cases the four layers can map onto “tiers”

• A two-tier system (fat client) places all four layers
on a single client machine

• A three-tier system maps the domain and
infrastructure layer (and possibly part of the App
model layer) onto its own machine, leaving the
view layer on the client machines

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 13

End of Act 1

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 14

Act 2: Database Schemes and
Dreams

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 15

Review of Relational Databases

9/22/64

record 1008 Jane Smith Sales 2/14/69 302

1009 Joe Diner Clerk 4/18/68 884

1010 Ed

1012

1014

1013

1011 Tom Masse

WinterDonald

John

Julie Vahnne

Mgr

Clerk

Clerk

Clerk

302

223

42

55

Smith

4/5/47

6/11/72

3/12/70

5/13/69

992Smithers Sales

field

F
ir

st
 N

am
e

E
m

pl
oy

ee
 I

D

La
st

 N
am

e
T

itl
e

B
ir

th
 D

at
e

A
dd

re
ss

 I
D

Employee table

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 16

Pattern: Table Design Time

• Problem:

– When is the best time to design your relational database
schema during OO development?

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 17

Table Design Time Considerations

• Avoid data-centric design because it is usually more
difficult to maintain

• Performance is dependent on the design of the
database.

• Each OO design decision affects the database design.
The models must be considered together.

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 18

Table Design Time Solution

• Design the database schema based on your object

model.

• For best results the database should be considered
during the design of the object model, after an initial
object design iteration.

• Incorporate a relational - object database framework
soon as possible into your architectural prototype

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 19

Pattern: Representing objects as
tables

• Problem: How do you
map a set of objects into
a relational database
schema?RDBMS

Smalltalk

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 20

Relational to Object Considerations

Classes define objects Tables define records

Objects consist of attributes Records consist of fields

Records reference other
records using a foreign key

Objects reference other
objects using a pointer

Fields in a table are statically typed Dynamic binding

Easy to represent complex

relationships

Inheritance

Hard to represent complex relationships

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 21

Relational to Object Considerations

• Rows in Tables have keys

• Objects can be in
heterogeneous collections

• Objects do not have keys but
have object ids

• Data types do not match between a
relational database and Smalltalk

• Every row in a table
has the same attributes

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 22

Solution - Representing Objects in
Tables

1. Define a table for each persistent class
2. Define columns whose values map directly to the

values in the class’ instance variables -- i.e. base
data types. (String, Number, Date)

3. If the class has object relationships, define columns
whose values are foreign key references to the
tables that store the referenced objects.

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 23

Initial Table Design

•
AD

D
R

ES
S_

ID

•
M

A
N

A
G

E
R

_I
D

EMPLOYEE Table

Class Employee

Variable
Mappings

id
firstName

lastName
sex

manager
address

•
SE

X

•
L_

N
A

M
E

•
F_

N
AM

E

•
EM

P_
ID

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 24

Pattern: Object Identity

Problem:
• How do you preserve an object’s identity in a

relational database?
• If two objects have the same set of attributes but are

really different objects how do you keep their
uniqueness in the relational database?

• How do you keep from creating multiple copies of
the same object each time you read it in?

345674

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 25

Object Identity Considerations

• Each object’s uniqueness must be preserved in the
database

• There should be no unintended duplicates in the
application as a result of reading in the same object
twice.

firstName

anEmployee

‘John’

 id 235

= =
firstName

anEmployee

‘John’

 id 235
false

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 26

Solution: Create an Object
Identifier

• Ensure each class stores a unique identifier -- i.e.
define an id instance variable to store unique id for
Employee

• Define the primary key field in the object’s table to
store the unique identifier.

• Sequence number generation can create unique ids
for each object…create a sequence table if necessary

• Use an identity map (cache) keyed on the identifier
which points to the instance of the object in the
image. Prevents unwarranted duplicates during reads.

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 27

Being unique

Sequence Numbers maintain uniqueness among Employee objects

EMP_ID
7

8

BIRTH_DATE
9/11/70

F_NAME

9

L_NAME

Liz Taylor

Jeff Jones

Mary Peters 08/05/49

10/06/59

EMPLOYEE TABLE (partial)

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 28

Pattern: Foreign Key Reference

• Problem: How do you represent
objects that reference other objects
that are not “base data types”?

For example, an employee can have a
reference to an address object...
– Note: A base data type refers to a

database data type like CHAR This
maps to a standard class like String .

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 29

Solution: Foreign Key Reference

• Assign each object a unique object identifier
(OID)

• Add a column for each instance variable that is not
a base datatype or a collection.

• In that column store the OID of the referenced
object

• Declare the column as a foreign key

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 30

Foreign Key Column

•
A

D
D

R
ES

S_
ID

•
M

A
N

A
G

ER
_I

D

EMPLOYEE Table

Class Employee

Class - Table
Mappings

id
firstName
lastName

sex
manager
address

•
SE

X

•
L_

N
A

M
E

•
F_

N
AM

E

•
EM

P_
ID

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 31

The Keys to Consider

9 /2 2 /6 4

10 0 8 Ja ne S m ith S a le s 2 /1 4 /6 9 30 2

10 0 9 Jo e D in e r C le rk 4 /1 8 /6 8 88 4

10 1 0 E d

10 1 2

10 1 4

10 1 3

10 1 1 T o m M a ss e

W in te rD o n a ld

Jo hn

Ju l ie V a h n n e

M g r

C le rk

C le rk

C le rk

30 2

22 3

42

55

S m ith

4 /5 /4 7

6 /1 1 /7 2

3 /1 2 /7 0

5 /1 3 /6 9

99 2S a le sSm ith e rs

p r im a r y
k e ys

fo re ig n
k e ys

30 2

30 0

30 1

30 3

30 4

12 M o r r ise y D r iv e

R R # 2

P .O . B o x 10 0 7

11 B rea k w a te r S t re e t

11 M a in S t re e t

O t taw a O N

T o ro n to O N

O rl an d o F L

S o u r is P E I

K irb y N Y

E m p lo y e e T ab le

A dd r es s T a b le

E
m

p
lo

ye
e

 I
D

F
ir

s t
 N

a
m

e

L
a

s t
 N

a
m

e

T
it

l e

B
i r

th
 D

a
te

A
d

d
r e

s
s

ID

A
d

d
r e

s
s

ID

A
d

d
r e

s
s

C
it

y

P
r o

v i
n

c e

(Target)

(Source)

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 32

Pattern: Representing object
relationships

• Problem: How do you represent object relationships
in a relational database?

• Context
–An object model is built with a number basic relationships:

• 1 to 1

• 1 to many

• many to many

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 33

Representing object relationships -
Considerations

• In the object domain, the object always references it parts,
– …whereas in the relational domain, in cases such as 1 to

many relationship, each part references its owner
• each employee has a key back to the manager (owner)

• In source object point of view, there is no many to many
mapping, just 1 to many

• Example: each messnger has pick-ups (1 to many), and
a pick-up may have more than 1 messenger (1 to
many) -- many to many.

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 34

Solution: Representing object
relationships

• Determine the types of relationships between objects
• Design table(s) corresponding to each domain object

using the following guidelines:
• 1 to 1 relationship uses foreign keys in the source

table

• 1 to many relationship uses foreign keys from each of
the many in the target table to the one ‘parent’ record
in the source table.

• many to many relationship use a relationship table
with foreign keys that reference each of the related
records in both tables

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 35

One-to-One Mappings

AddressEmployee
7

325
id

id
1:1

address

ADDRESS Table

ADDRESS_ID

EMPLOYEE Table

EMP_ID ADDRESS_ID
7 325

325

...

22 478

645

CITY STATE

Cary NC

Dover DE

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 36

One-to-Many Mapping

managedEmployees

Employee

Collection of

Employees

EMP_ID
7

21

MANAGER_ID
21

F_NAME

21
7

33

L_NAME

Susan Taylor

Jeff Bridges

Mary Jones

33

Susan

Taylor

Mary

Jones

21

Jeff

Bridges

EMPLOYEE Table

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 37

Many-to-Many Mappings

pick ups

Employee

Collection of

Package PickUps

33
2503

1717

Mary

Jones

Aug 21

CLINIC

Aug 20

Law firm

7 Collection of

Package PickUps

employees

PickUps

Jeff

Bridges

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 38

Many to Many with Relationship
Table

LOCATION

PICKUP Table

CLINIC

LAW FIRM

EMP_PICK Table

EMP_ID
7

21

MANAGER_ID
21

F_NAME

33

L_NAME

Susan Taylor

Jeff Bridges

Mary Jones 21

EMPLOYEE Table
PICK_ID

2503

1717
7

7

33

2503

1717

2503

EMP_ID PICK_ID

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 39

Pattern: Representing Special
Collections

• Problem: How do you
represent special,
(i.e.heterogeneous,
ordered) collections in a
relational database?

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 40

Representing Special Collections
(2)

• Forces
– 1NF rule

– Objects may be contained in many collections (M-N
relationships)

– Collections can be heterogenous - members can be of
different classes

– Collections can be ordered

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 41

Representing Special Collections
(3)

• Solution
– Create a relationship table for each collection. A

relationship table maps the primary keys of the
containing objects to the primary keys of the contained
objects

– The relationship stores other information

• class of contained object

• ordering information

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 42

Heterogeneous Collection

contact numbers

Employee

Collection of

Contacts

21
7

33

Susan

Taylor

phone
number

email address

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 43

Heterogeneous Collection

7

21

..

..
F_NAME

33

L_NAME

Susan Taylor

Jeff Bridges

Mary Jones ..

EMP_ID

EMPLOYEE Table

EMP_ID

21

21

CONT_ID CON_TYPE

17 EMAIL

69 PHONE

217 PHONE

ID

17

29

USER DOMAIN

staylor

ID

21

69

AREA_CODE NUMBER

919 345-5678

212 567-7896

EMAIL

bwhiten

jewels.com

op.com

PHONE

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 44

Pattern: Representing Inheritance

• Problem: How do you represent
a set of classes in an inheritance
hierarchy in a relational
database?

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 45

Representing Inheritance

• Forces
– Relational databases don’t provide support for inherited

attributes

– Object designs are rife with inheritance...

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 46

Representing Inheritance

• Solution
– Create a table for each class in a hierarchy

– Add a column in the subclass tables for the (common)
key

– Create concrete subclass instances by JOINing the
tables

– If performance becomes an issue, create a table for each
subclass that contains all the inherited attributes.

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 47

Inheritance

Employee

MessengerOfficeWorker

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 48

Inheritance

MESSENGER Table

EMPLOYEE Table

EMP_ID
7

21

EMPLOY_TYPE
Messenger

F_NAME

33

L_NAME

Susan Taylor

Jeff Bridges

Mary Jones Office

Messenger

EMP_ID
7

21

BEEPER
345-555

ROUTE

44

VEHICLE

Downtown B978

Uptown J234

Midtown R690 345-887

345-698

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 49

End of Act 2

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 50

Act 3: Brokering objects

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 51

Possible persistence architectures

• All-In-One

• Persistent Subclasses

• ?

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 52

All-in-one architecture

• One potential solution is to include database code
directly in domain classes.

• This does not separate concerns and becomes
unmaintainable.

• This is unfortunately what many vendors
unwittingly promote.

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 53

Persistent Subclasses

• Another solution is to
make persistent subclasses
of domain classes.

• This results in an
explosion of subclasses.

BaseClass

DomainClassA DomainClassB

Persistent
SubclassA

Persistent
SubclassB

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 54

Pattern: Broker

• Problem: How do you
separate the domain-
specific parts of an
application from the
database-specific parts?

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 55

Broker (2)

• Forces:
– Architecture should be simple, but powerful and

extensible

– Persistence should be orthogonal to class

– Must preserve encapsulation and separation of concerns

– Solution should avoid class explosion

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 56

Broker (3)

• Solution
– Connect the database-specific classes and the domain-

specific classes with an intermediate layer of Broker
objects.

– Brokers mediate between database objects and domain
objects and are ultimately responsible for reading from
and writing to the database.

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 57

Generic Broker architecture

• Brokers collaborate with
both domain objects and
database objects.

• This allows domain
objects to be ignorant of
database issues.

DomainObject

saves to, restores with

DatabaseBroker

writes to, reads from

DatabaseSession

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 58

Object Passivation

• A broker is responsible for writing out
(passivating) objects

• View the object as a directed graph.
– Do a post-order traversal that writes out the leaves

before it writes out the intermediate nodes.

– Use the OID’s generated at the leaves to form foreign-
key columns.

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 59

Object Activation

• A broker is also responsible for reading in objects
from tables
– At a minimum, load in the basic attributes of an object

and its foreign-key OID’s.

– As performance needs dictate, instantiate subordinate
objects either immediately, or later using Proxies or
deferred instantiation.

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 60

Pattern: Mapping Metadata

• Problem
– How do you define the mapping

between an object class and the
corresponding parts of a relational
schema?

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 61

Mapping tuples (2)

• Forces:
– You want to avoid duplicated code

– You would like to handle common situations in the
same way

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 62

Mapping tuples (3)

• Solution:
– Reify the mapping into a set of Map classes that (at the

least) map column names in a table to instance variable
selectors.

– More complex maps can map common relationships (1-
1, 1-N, M-N) between objects into relational
equivalents.

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 63

Maps example (Smalltalk)

SomeDomainObject>>maps

^ RowMap new
add: (ColumnMap keyName: ‘user_id’

forAspect: #userId) ;
add: (ColumnMap columnName: ‘full_name’

forAspect: #fullName);
add: (ColumnMap foreignKey: ‘address_id’

forAspect: #address);
add: (DateColumnMap columnName: ‘renewal-date’

forAspect: #renewalDate);
yourself).

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 64

Maps example (Java)

 public RowMap toMapping()
 {
 RowMap newMapping = new RowMap();
 newMapping.baseObject = this;
 newMapping.tableName = "CustomerTable";
 newMapping.addStringOID("TelephoneNumber", telephone);
 newMapping.addMapForString("Name", name);
 newMapping.addMapForObject("Address", address);
 return newMapping;
 }

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 65

Pattern: Proxy

• Problem: How do you instantiate large, complex
objects without severe performance hits and
memory problems?

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 66

Proxy (2)

• Forces
– Many objects are too big to instantiate in their entirety.

– Applications still need to navigate over part of an
object.

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 67

Proxy (3)

• Solution
– Use a proxy object in place of a full component for

newly instantiated objects.

– The Proxy provides sufficient identification
information to instantiate itself when it receives a
message meant for the actual object.

– See [Gamma] for Smalltalk, C++ implementations

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 68

Proxy (Java example)

• Create interfaces that your domain object and its
proxy will implement

doThis() {
if (realObject == null)
realObject = getReal();
return realObject.doThis();
}DOProxy

DomainObjectInterface

doThis()

DomainObject

doThis()doThis()

realObject

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 69

Pattern: Query Objects

• Problem:
– How do you handle the generation and execution of SQL

statements in an OO way?

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 70

Query Objects (2)

• Forces:
– Want to minimize the exposure of the system to SQL

– Want to maximize shared code

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 71

Query Objects (3)

• Solution:
– Write a set of classes that generate SQL code from

other objects.

– Query objects collaborate with Map Objects to generate
SQL.

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 72

Query object hierarchy

SQLStatement

SQLInsert SQLSelect SQLUpdateSQLDelete

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 73

SQL Statements (Smalltalk)

updateStatement := SQLUpdate new.
updateStatement columnMaps: aDO maps;

tableName: aDO table;
forObject: aDO.

updateStatement execute.

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 74

SQL Statements (Java)

SQLStatement statement;
Hashtable allKeyValuePairs;
allKeyValuePairs = map.baseTypesAndForeignKeys();
statement = new SQLUpdateStatement();
statement.generateSQLFrom(allKeyValuePairs,

map.oidUpdateClause(), map.tableName);

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 75

Pattern: Transaction objects

• Problem
– How do you represent the

concept of a database transaction
in an OO language?

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 76

Transactions (2)

• Forces
– SQL depends upon transactions to maintain database

consistency

– OO languages do not (directly) support this concept.

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 77

Transactions (3)

• Solution
– Build a Transaction class that represents a Logical

Units of Work

– Use exception handlers around a block of code that
executes SQL code that may fail.

– The exception handler will execute a ROLLBACK if an
exception is raised, or a COMMIT if none occur.

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 78

Transactions (Smalltalk)

SQLTransaction>>doTransaction:

doTransaction: aBlock

"execute aBlock within the context of a transaction"

self class errorSignal
handle: [:ex |

self execute: ’ROLLBACK’]
do: [aBlock value.

self execute: ’COMMIT’].

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 79

Transactions (Java)

 try {
...try executing SQL Statements here…
currentConnection.commit();

} catch (SQLException se) {
 try {
 currentConnection.rollback();
 } catch (SQLException nse) {
 ...handle truly fatal errors here...
 }
 }

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 80

Object Relationships

RowMap

SQL
Statement

Column
Map

formulates

maps information with

retrieves information from

DomainObject

saves to, retrieves from

DatabaseBroker

writes to, reads from

DatabaseSession

is comprised of

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 81

End of Act 3

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 82

Act 4: Client-Server Concerns

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 83

Pattern: Cache Management

• Problem
– How do you best manage the

lifetime of persistent objects
stored in an RDBMS and used on
the client?

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 84

Cache Management (2)

• Forces
– Caches increase client performance, but increase client

memory size

– Caches can become out of date

– Caching increases application complexity

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 85

Cache Management (3)

• Solution
– Use a Session object that has a bounded lifetime and is

responsible for identity cache management of a limited
set of objects.

– Balance speed vs. space by flushing the cache as
appropriate

– Use a query before write (timestamp) technique to keep
cache accurate

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 86

Pattern: Distribution of Behavior

• Problem
– How do you distribute behavior

meaningfully between an OO client
and a Relational server?

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 87

Distribution of Behavior (2)

• Forces
– RDBMS's will perform some functions (like sorting)

much faster than a Smalltalk client.

– Triggers in the RDBMS can provide behavior when
changes occur

– When business rules are implemented in a database it
hurts portability and reuse. It aslo requires additional
code management

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 88

Solution: Distribution of
Behavior

• Take a minimalist approach of “guilty until proven
innocent”.

• Sorts, major queries (stored procedures), and
aggregate functions are best done in the database.

• Triggers and other behavior are more worrisome.
Be careful.

(C) 1996, 1997 Kyle Brown & Bruce Whitenack 89

Crossing Chasms

• To obtain a copy of the Crossing Chasms pattern
language
– try our web site host96.ksccary.com

– or, send email to either

• bruce@objectpeople.com

• kbrown@ksccary.com

– We have RTF, PDF and Postscript -- let us know which
you prefer

