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On Implementing the Push–Relabel Method for the
Maximum Flow Problem1

B. V. Cherkassky2 and A. V. Goldberg3

Abstract. We study efficient implementations of the push–relabel method for the maximum flow problem.
The resulting codes are faster than the previous codes, and much faster on some problem families. The speedup
is due to the combination of heuristics used in our implementations: we show that the highest-level selection
strategy gives better results when combined with both global and gap relabeling heuristics. We also exhibit a
family of problems for which the running time of all implementations we consider is quadratic.
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1. Introduction. The maximum flow problem is a classical combinatorial problem
that arises in a wide variety of applications. In this paper we study implementations of
thepush–relabel[15], [18] method for the problem.

The basic methods for the maximum flow problem include the network simplex
method of Dantzig [7], [8], the augmenting path method of Ford and Fulkerson [13],
the blocking flow method of Dinitz [11], and the push–relabel method of Goldberg and
Tarjan [15], [18]. (An earlier algorithm of Cherkassky [5] has many features of the push–
relabel method.) The best theoretical time bounds for the maximum flow problem, based
on the latter method, are as follows. An algorithm of Goldberg and Tarjan [18] runs in
O(nmlog(n2/m)) time, an algorithm of Kinget al. [22] runs inO(nm+ n2+ε) time
for any constantε > 0, algorithms of Cheriyanet al. [3] run in O(n3/logn) time and
O(nm+ (n logn)2) time with high probability, and an algorithm of Ahujaet al. [1] runs
in O(nmlog(n/(m

√
U )+ 2)) time.

Prior to the push–relabel method, several studies have shown that Dinitz’s algorithm
[11] is in practice superior to other methods, including the network simplex method
[7], [8], Ford–Fulkerson algorithm [12], [13], Karzanov’s algorithm [21], and Tarjan’s
algorithm [24]. See, e.g., [19]. Several recent studies (e.g., [2], [9], [10], and [23]) show
that the push–relabel method is superior to Dinitz’s method in practice.

In this paper we study implementations of the push–relabel method. We evaluate
several operation orderings and distance update heuristics. Unlike previous implementa-
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tions, we use both global relabeling and gap relabeling [5], [9] heuristics. As a result, one
of our implementations is faster—on some problem families, asymptotically faster—than
the previous implementations.4

We study two implementations of the highest-level (HL) selection strategy,H PRFand
M PRF; the only difference between these implementations is that the former uses both
global and gap relabelings, while the latter uses only global relabeling. We also study
two implementations of the first-in, first-out (FIFO) selection strategy,Q PRFandF PRF;
the former uses both global and gap relabelings and the latter uses only global relabeling.

Our results suggest that, under HL selection, gap relabeling is a very useful addition
to global relabeling: theH PRFcode is sometimes much faster than theM PRFcode and
never significantly slower. Under FIFO selection, gap relabeling does not seem very
useful:Q PRFandF PRFperform very closely on all problem families we consider. We
give an informal explanation of these experimental observations in Section 6.

The H PRF implementation is faster than the other codes on all problem classes we
studied. This is in contrast with the work of [2] and [23], where on some problem classes
the FIFO implementation is faster. In particular, the FIFO implementation of Anderson
and Setubal [2] takes 41.6 seconds on Washington-RLG-Wide problems with 65,538
nodes compared with 1,081.3 seconds for their HL implementation. Performance of our
implementations on such problems is as follows:F PRF, 24.66 seconds;Q PRF, 27.27
seconds;M PRF, 335.13 seconds;H PRF, 13.88 seconds. (See Section 5 for details.) This
is a good example of how much gap relabeling can help under the HL selection strategy.

We also exhibit a problem instance generator on which the running time of Dinitz’s
and push–relabel implementations grow quadratically. On DIMACS problem families
we used in the other tests, the growth rate is smaller.

This paper is organized as follows. In Section 2 we review the push–relabel method.
In Section 3 we introduce global relabeling and gap relabeling heuristics. We describe
the implementations we evaluated and the problem families used for the evaluation
in Section 4. The experimental results appear in Section 5. In Section 6 we discuss the
behavior of gap relabeling under HL and FIFO selection rules. We present our conclusions
in Section 7. The Appendix describes our hard problem generator.

2. The Push–Relabel Method. In this section we review some of the basic concepts
of the push–relabel method. We assume that the reader is familiar with [18]. (See also
[16].) We present the two-phase variant of the method [17], which is the one used in our
implementation.

A flow networkis a directed graphG = (V, E, s, t, u), whereV andE are node set
and arc set, respectively;s and t are the source and the sink, respectively; andu is a
nonnegative capacity function on the arcs. We definen = |V | andm= |E|, and assume
that, for each arc(v,w), the arc(w, v) is also present. A flow is a function on the arcs
that satisfies capacity constraints on all arcs and conservation constraints on all nodes
except the source and the sink. The conservation constraint at a nodev indicates that the
excess ef (v), defined as the difference between the incoming and the outgoing flows,

4 When we say that code A is asymptotically faster than code B on a certain problem family, we mean that the
ratio of the B to A running times increases with the problem size.
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push(v,w).
Applicability: v is activeand (v,w) is admissible.
Action: sendδ = min(ef (v), uf (v,w)) units of flow fromv tow.

relabel(v).
Applicability: v is activeand

push(v,w) does not apply for anyw.
Action: replaced(v) by min(v,w)∈Ef {d(w)} + 1,

or byn if 6 ∃(v,w) ∈ Ef .

Fig. 1.The update operations. Thepushingoperation updates the preflow, and therelabelingoperation updates
the distance labeling.

is equal to zero. Apreflowsatisfies the capacity constraints and the relaxed version of
conservation constraints that requires the excesses to be nonnegative.

An arc isresidual if the flow on it can be increased without violating the capacity
constraints, andsaturatedotherwise. The residual capacityuf (v,w) of an arc(v,w) is
the amount by which the arc flow can be increased. The residual graph is induced by the
residual arcs.

The distance labeling d: V → N satisfies the following conditions:d(t) = 0 and
for every residual arc(v,w), d(v) ≤ d(w) + 1. A residual arc(v,w) is admissibleif
d(v) = d(w)+ 1.

We say that a nodev is activeif v 6∈ {s, t}, d(v) < n, andef (v) > 0.
The push–relabel method maintains a preflowf and a distance labelingd. Initially

the preflow f is equal to zero on all arcs andef (v) is zero on all nodes excepts; ef (s) is
set to a number that exceeds the potential flow value (e.g., sum of capacities of all arcs
out of the source plus one). Initiallyd(v) is the smaller ofn and the distance fromv to t in
Gf . The method repeatedly performs theupdate operations, pushandrelabel, described
in Figure 1. When there are no active nodes, the first stage of the method terminates.
(The second stage of the method is discussed at the end of this section.)

The update operations modify the preflowf and the labelingd. A pushfrom v tow
increasesf (v,w) andef (w) by δ = min{ef (v), uf (v,w)}, and decreasesf (w, v) and
ef (v) by the same amount. Arelabelingof v sets the label ofv equal to the largest value
allowed by the valid labeling constraints.

The efficiency of the push–relabel method depends on the ordering of the update
operations. At the low level, these operations are combined as follows. We call an
unordered pair{v,w} such that(v,w) ∈ E anedgeof G. We associate the three values
u(v,w), u(w, v), and f (v,w) (= − f (w, v)) with each edge{v,w}. Each nodev has a
list of the incident edges{v,w}, in fixed but arbitrary order. Thus each edge{v,w}appears
in exactly two lists, the one forv and the one forw. Each nodev has acurrent edge{v,w},
which is the current candidate for a pushing operation fromv. Initially, the current edge
of v is the first edge on the edge list ofv. The main loop of the implementation consists
of repeating thedischargeoperation described in Figure 2 until there are no active nodes.
(We discuss the maintenance of active nodes later.) Thedischargeoperation is applicable
to an active nodev. This operation iteratively attempts to push the excess atv through
the current edge{v,w} of v if a pushing operation is applicable to this edge. If not, the
operation replaces{v,w} as the current edge ofv by the next edge on the edge list ofv;
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discharge(v).
Applicability: v is active.
Action: let {v,w} be the current edge ofv;

end-of-list← false;
repeat

if (v,w) is admissiblethen push(v,w)
else

if {v,w} is not the last edge on the edge list ofv then
replace{v,w} as the current edge ofv by the next edge on the list

else begin
make the first edge on the edge list ofv the current edge;
end-of-list← true;

end;
until ef (v) = 0 or end-of-list;
if end-of-listthen relabel(v);

Fig. 2.The discharge operation.

or, if {v,w} is the last edge on this list, it makes the first edge on the list the current one
and relabelsv. The operation stops when the excess atv is reduced to zero.

Note that when the first discharge operation is applied tos, all arcs out ofs become
saturated and the distance label ofs is set ton.

The remaining issue is the order in which active nodes are processed. Two natural
orders were suggested in [17] and [18]. One, theFIFO algorithm, is to maintain the set
of active nodes as a queue, always selecting for discharging the front node on the queue
and adding newly active nodes to the rear of the queue. The other, theHL algorithm,
is always to select for discharging a node with the highest label. In the worst case, the
FIFO algorithm runs inO(n3) time [17], [18] and the highest-label algorithm runs in
O(n2√m) time [4].

The HL algorithm implementation maintains an array of setsBi , 0≤ i ≤ n− 1, and
an indexb into the array. SetBi consists of all active nodes with labeli , represented as
a doubly linked list, so that insertion and deletion takeO(1) time. The indexb is the
largest label of an active node. During initializations is placed inB0, andb is set to 0. At
each iteration, the algorithm removes a node fromBb, processes it using thedischarge
operation, and updatesb. The algorithm terminates when there are no active nodes.

The WAVE implementation is “in-between” the FIFO and the HL implementations.
Like the HL implementation, WAVE maintains the array of setsBi , and makes passes
through the array as follows. The pass starts withb equal to the highesti such thatBi is
not empty. Nodes inBb are discharged untilBi is empty, and thenb is decreased. When
i becomes negative, the pass terminates. The WAVE implementation runs inO(n3) time
[5], [18].

At the end of the first stage, the excess at the sink is equal to the minimum cut value
and the set of nodes which can reach the sink inGf induces a minimum cut.

The second stage of the method convertsf into a flow. We experimented with several
ways of implementing the second stage.

Our earlier implementation [6] is based on flow decomposition (see e.g., [16]) and
works as follows. Define theflow graph Gf = (V, ef )whereE f = {a ∈ E : f (a) > 0}.
While there are nodes inV − {s, t} with a positive excess, we pick a nodev from this
set and search the reversal of the flow graph in a depth-first search manner starting from
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v. The search discovers either a cycle0 or a simple pathP from v to s. In the former
case we decrease flow on the reversal of0 by δ = min{ f (a)|a ∈ 0′}. In the latter case
we decrease flow on the reversal ofP and byδ = min{ f (a)|a ∈ P′}.

Although under this implementation the second stage usually takes significantly less
time than the first stage, on some problems (e.g., Washington-RLG-Long problems) the
second stage exhibits large variations in performance and sometimes takes several times
more than the first stage.

An alternative implementation of the second stage is to run the first stage “backward”
[14]. Again, under this implementation the second stage usually takes significantly less
time than the first stage, but on some problems (e.g., Acyclic-Dense), the second stage
takes several times more than the first stage.

Our current implementation of the second stage is similar to the flow-decomposition-
based implementation described above. We run a depth-first search in the reversal of the
flow graph from the set of nodes with positive excess other than the source and the sink.
If the depth-first search discovers a cycle, the flow on the cycle is reduced until one of the
cycle arcs has a zero flow, and the depth-first search is restarted. The depth-first search
produces a topological ordering of the nodes reachable from the nodes with positive
excess. (Note that because we eliminate flow cycles during the search, the flow graph
induced by these reachable nodes is acyclic.) We process these nodes in topological
order. When a node is processed, flow into it is reduced until the excess at the node
becomes zero.

Under this implementation, the second stage takes at most twice the time of the first
stage on all problem instances in our experiments. The second stage takes longer than
the first stage only on some problems in Washington-Line-Moderate family. On the vast
majority of instances we tried, the running time of the second stage is a small fraction
of the running time of the first stage.

3. Heuristics. The push–relabel method, as described above, has poor practical per-
formance. Intuitively, because relabel is a local operation, the method loses the global
picture of the distances.

Theglobal relabelingheuristic updates the distance function by computing shortest
path distances in the residual graph from all nodes to the sink. This can be done in linear
time by a backward breadth-first search, which is computationally expensive compared
with the push and relabel operations. Global relabelings are performed periodically (e.g.,
after everyn relabelings). This heuristic drastically improves the running time.

Another useful relabeling heuristic isgap relabeling, discovered independently by
Cherkassky [5] and by Derigs and Meier [9], and based on the following observation.
Let g be an integer and 0< g < n. Suppose at a certain stage of the algorithm there
are no nodes with distance labelg but there are nodesv with g < d(v) < n. Then the
sink is not reachable from any of these nodes. Therefore, the labels of such nodes may
be increased ton. (Note that these nodes will never be active.) If for everyi we maintain
linked lists of nodes with the distance labeli , the overhead of detecting the gap is small.

The overhead of maintaining the lists can be charged to relabel operations which
change the distance labels. Other work done by the gap relabeling heuristic is “useful”:
it involves processing the nodes determined to be disconnected from the sink. Therefore
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a code that uses gap relabeling cannot be much slower than the same code without gap
relabeling.

4. Experimental Setup

4.1. Computing Environment. Our experiments were conducted on SUN Sparc-10
workstation model 41 with a 40 MHZ processor running SUN Unix version 4.1.3. The
workstation had 160 Megabytes of memory. All codes used in our experiments were
written in C and compiled with thegcc compiler version 2.58 using the-O optimization
option.

We performed the machine calibration experiment designed by the organizers of the
First DIMACS International Algorithm Implementation Challenge [20]. Figure 3 shows
the average running times of the test programs compiled with and without optimization.

4.2. Problem Families. We used seven problem families in our experimental evalua-
tion. Six of these were used at the First DIMACS Challenge [20]. These families are
produced by three generators available from DIMACS. The first generator is RMFGEN
of Goldfarb and Grigoriadis [19], the second is WASHINGTON developed by Anderson
and students in his seminar, and the third is AC of Setubal (a C version of a generator of
Waissi). The seventh problem family is produced by our generator AK (described in the
Appendix). This generator produces problem instances that are hard for the push–relabel
and Dinitz’s methods.

The DIMACS generators use randomness to produce different instances for the same
parameter values (except for a pseudorandom generator seed, if available). Some of
these generators do not take a pseudorandom generator seed as a parameter but use a
system clock to obtain the seed. To make our experiments repeatable, we modified these
generators to take the seed argument. For each problem class and problem size, we test
five problem instances with different seeds and report the average running times.

The AK generator produces a deterministic network for each value ofn.
The problem families are as follows:

• Genrmf-Long. A network with n = 2x nodes in this family is generated by the
genrmf.c program with parametersa= 2x/4 andb= 2x/2.
• Genrmf-Wide. A network with n = 2x nodes in this family is generated by the

genrmf.c program with parametersa= 22x/5 andb= 2x/5.

Test 1 Test 2
(average running time) (average running time)Optimization

level Real User System Real User System

w/o optm. 1.2 1.2 0.0 11.1 10.8 0.1
–O 0.9 0.8 0.0 8.3 7.8 0.2

Fig. 3.Average running times (in seconds) of the test programs in C.
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• Washington-RLG-Long. A network withn = 2x nodes in this family is generated
by thewashington.c program withfunction = 2, arg1= 64, arg2= 2x−6, and
arg3= 104.
• Washington-RLG-Wide. A network withn = 2x nodes in this family is generated

by thewashington.c program withfunction = 2, arg1= 2x−6, arg2= 64, and
arg3= 104.
• Washington-Line-Moderate.A network in this family withn = 2x nodes is gener-

ated by thewashington.c program withfunction = 6, arg1= 2x−2, arg2=4, and
arg3= 2(x/2)−2 = √n/4.
• Acyclic-Dense.A network in this family withn = 2x nodes is generated by theac.c

program with the options set to produce fully dense graphs and random capacities
with the maximum capacity set at 106.
• AK. A network in this family with 4k+ 6 nodes and 6k+ 7 arcs is generated by the

ak.c program which takes only one parameter,k.

4.3. Implementations Evaluated. We experimented with several variants of the push–
relabel method, but we report on only four codes,H PRF, M PRF, Q PRF, andF PRF. All
these codes use the global update heuristic, with a global update performed after every
n relabelings. The first two codes use HL selection with and without gap relabeling,
respectively. The last two codes use FIFO selection with and without gap relabeling,
respectively. Our implementations use the adjacency list representation of the input
graph.

We tried other operation selection strategies, including WAVE, highest excess selec-
tion, last-in, first-out selection, and various hybrid strategies. In particular, the WAVE
implementation showed reasonable performance similar to that of the FIFO implemen-
tation. Overall performance of these strategies was worse than that of theH PRFcode,
however, and we do not report the results. We also experimented with various global
relabeling frequencies. A simple strategy of performing a global relabeling aftercn re-
labelings for some constantc works quite well. The best choice ofc depends on the
problem family. For example, an implementation withc = 1 can be better than the same
implementation withc = 1.5 on one problem class but worse on another problem class.
The valuec = 1 used in our experiments seems like a good compromise.

To put performance of our codes in perspective, we compared them with a previous
implementation of the push–relabel method and with an implementation of Dinitz’s
algorithm [11].

The former implementation, developed by Anderson and Setubal [2] (ASF), imple-
ments the FIFO push–relabel algorithm using the global relabeling heuristic only; global
relabelings are performed after everym/2 relabelings. TheASF implements the same
algorithm as ourF PRF, except the global update frequency is different. We use this code
as a “sanity check” for our implementation and to facilitate the comparison of our data
to the data reported in [2]. (As observed in [23] and confirmed by our data, the global
update frequency used inASF is too low for dense graphs.)

We developed our own implementation of Dinitz’s algorithm (DF). This implementa-
tion is written in the same programming style as ourPRFimplementations. Our imple-
mentation of Dinitz’s algorithm seems to perform better than that of [2] on the basis of
indirect comparison. We also compared our implementation of Dinitz’s algorithm with
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that of Goldfarb and Grigoriadis [19] (compiled with thef77 compiler using the-O
optimization option). Our implementation was faster by a factor of 1.5 or more on a
subset of problem instances we tried.

When tabulating results of our experiments, we give the running times, the number
of relabelings, and the number of pushes. To obtain a data point for a code, we make five
runs of the code on problems produced with the same generator parameters but different
pseudorandom generator seeds.5 The data we tabulate is the average over the five runs.
The programs exceeding the CPU time limit of 2400 seconds (including i/o, which for
all problems we study is below 400 seconds) were terminated and the corresponding
table entries are left blank.

The running time is the user CPU time in seconds and excludes the input and output
times. The number of relabelings is in 100’s, rounded to the nearest integer. Similarly,
the number of pushes is in 100’s, rounded to the nearest integer.

We plot the data in addition to tabulating it. Our plots use logarithmic scales. To
improve the readability of the plots, we do not plotQ PRFdata because for all problem
families it is within 30% of theF PRFdata. We also do not plotM PRFdata for families
where it is within 30% of theH PRFdata.

5. Experimental Results. Our experiments show theH PRFcode to be the fastest on all
the problem instances we report on. The FIFO implementationsF PRFandQ PRFexhibit
similar performance and are the second and the third fastest overall. TheM PRF code
(which is the same asH PRFbut does not use gap relabeling) exhibits a wide variation in
performance: it is about as fast asH PRFon some problem families, somewhat slower on
others, and on some familiesM PRFis the slowest among all the codes we tested. These
results show that, for the problem families we study, gap relabeling is a useful addition
to global relabeling for the HL algorithm and a not very useful but relatively harmless
addition for the FIFO algorithm.

The theoretical motivation of the HL selection strategy is to reduce the number of
pushes. Operation counts forH PRFandQ PRFshow that the former code usually makes
significantly fewer pushes, and this often seems to be the main reason whyH PRF is
faster thanQ PRF.

The ASF code implements the same FIFO algorithm asF PRFbut applies global re-
labeling after everym/2 relabelings (versusn for F PRF). This and the low level imple-
mentation details account for the fact thatASF is slower thanF PRF. On sparse networks,
the relabeling frequency for the two codes is similar, and so is the code performance. On
such networksF PRFis somewhat faster. On dense networks,ASF makes too few global
relabelings and performs asymptotically worse thanF PRF.

Our implementationDF of Dinitz’s algorithm is the slowest overall, and often asymp-
totically slower than the other codes. However, it is faster thatM PRFon the Washington-
RLG-Wide family (by a wide margin) and on Acyclic-Dense family (by a small margin).
On the latter family,DF is faster thanASF (by a wide margin).

Indirect comparison shows thatH PRF is faster than the implementations of [23] on

5 Except for the AK generator, which is deterministic.
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all common problem classes, including Genrmf-Wide, Genrmf-Long, Washington-Line-
Moderate, and Acyclic-Dense.

Next we present experimental data for the problem families we studied and make
family-specific comments.

5.1. Genrmf-Wide Family. Figure 4 gives data for the Genrmf-Wide problem family.
On this family,M PRFandH PRFperformance is very close.

5.2. Genrmf-Long Family. Figure 5 gives data for the Genrmf-Long problem family.
On this familyH PRF is somewhat faster thanM PRF. DF is asymptotically slower than
the other codes.

5.3. Washington-RLG-Wide Family. Figure 6 gives data for the Washington-RLG-
Wide problem family. On this family,H PRF greatly benefits from gap relabeling: it
is faster thanM PRF by a wide margin.M PRF is asymptotically slower than the other
codes.

5.4. Washington-RLG-Long Family. Figure 7 gives data for the Washington-RLG-
Long problem family. HereH PRFperforms better thanM PRF. M PRFis slower than the
FIFO codes. On this family the HL codes have better asymptotic performance than the
FIFO codes.DF is asymptotically slower than the other codes.

5.5. Washington-Line-Moderate Family. Figure 8 gives data for the Washington-Line-
Moderate problem family. On this family, all our push–relabel codes have similar per-
formance. The other two codes are significantly slower;DF is the slowest code.

5.6. Acyclic-Dense Family. Figure 9 gives data for the Acyclic-Dense problem family.
On this family,H PRFis somewhat faster thanM PRF. DF performs about as well asF PRF

on this family.ASF is asymptotically slower than the other codes.

5.7. AK Family. Figure 10 gives data for the AK problem family. On this family all
codes exhibit a roughly quadratic growth rate. However, the fastest code,H PRF, is an or-
der of magnitude faster than the slowest code,DF. This problem family is designed so that
gap relabeling does not help.M PRFis almost as fast asH PRF. Our FIFO codes do the same
number of relabelings as our HL codes. The FIFO codes, however, do almost twice the
number of pushes the HL codes do, and as a result the FIFO codes are somewhat slower.

6. Discussion of Gap Relabeling. Our experimental results show that when added to
the HL algorithm with global relabeling, gap relabeling sometimes drastically improves
performance and never significantly decreases it. When added to the FIFO algorithm
with global relabeling, gap relabeling does not have much effect on performance, at
least on the problem classes we studied. Below we give an informal explanation of these
observations. Our explanation is not a formal proof, and one might be able to construct
graphs for which the behavior is different. However, the explanation seems to fit our
experimental results.
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Nodes Arcs DF ASF F PRF Q PRF M PRF H PRF

3,920 18,256 3.19 1.90 0.99 0.97 0.81 0.81
482 465 437 437

1,179 1,151 903 903
8,214 38,813 12.48 6.62 3.58 3.98 2.35 2.39

1,373 1,344 1,137 1,127
3,461 3,393 2,349 2,329

16,807 80,262 48.06 21.31 10.53 11.09 7.09 7.03
3,353 3,293 2,987 2,987
8,257 8,146 6,281 6,281

32,768 157,696 157.86 61.18 29.52 32.01 18.96 18.35
8,133 7,978 6,497 6,432

19,059 18,812 12,124 11,993
65,025 314,840 511.72 175.63 82.79 87.51 50.67 49.50

20,817 20,691 17,071 16,943
50,700 41,595 33,955 33,716

123,210 599,289 1,310.17 464.10 214.83 243.65 129.53 128.12
47,930 47,857 39,957 39,957

110,755 110,642 73,878 73,878
259,308 1,267,875 1,406.00 558.10 617.96 353.69 349.76

123,754 124,076 109,633 109,633
289,760 290,711 196,742 196,742

Fig. 4.Genrmf-Wide family data.
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Nodes Arcs DF ASF F PRF Q PRF M PRF H PRF

4,096 18,368 2.47 0.66 0.36 0.34 0.36 0.19
172 161 240 106
476 458 394 204

7,371 33,498 9.54 1.67 0.97 0.94 0.87 0.39
376 356 551 209

1,103 1,072 894 395
15,448 71,687 40.20 5.18 3.02 3.09 2.04 1.24

997 994 1,134 607
3,022 3,013 1,893 1,062

30,589 143,364 129.83 13.41 8.50 8.79 4.43 2.67
2,400 2,278 2,314 1,229
7,507 7,329 3,723 2,108

65,536 311,040 422.86 38.28 21.26 22.76 12.18 5.17
5,218 4,986 6,303 2,201

17,694 17,234 9,391 3,863
130,682 625,537 1,360.41 104.74 56.08 61.93 28.61 18.68

12,831 12,375 14,975 9,315
41,661 41,022 21,294 13,512

270,848 1,306,607 258.01 165.92 173.30 82.80 57.62
34,076 33,420 42,838 29,107

118,067 116,994 61,021 40,787

Fig. 5.Genrmf-Long family data.
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Nodes Arcs DF ASF F PRF Q PRF M PRF H PRF

4,098 12,224 0.92 0.54 0.27 0.26 1.26 0.17
140 121 1,185 92
572 537 1,972 347

8,194 24,418 2.80 1.43 0.92 0.73 4.69 0.46
342 310 4,197 238

1,317 1,261 6,442 830
16,386 48,896 11.88 4.16 2.62 2.82 20.33 1.33

943 883 15,708 665
3,348 3,231 23,752 2,138

32,770 97,772 32.77 10.97 8.11 8.68 81.78 3.99
2,400 2,278 2,314 1,229
7,507 7,329 3,723 2,108

65,538 195,584 101.38 31.86 24.66 27.27 335.13 13.88
5,900 5,769 239,246 5,962

18,920 18,708 344,717 16,089
131,074 391,168 306.73 75.33 61.45 67.04 1,185.51 32.61

12,584 12,027 762,145 10,619
40,716 39,501 1,068,044 29,560

262,146 782,336 916.51 205.23 158.55 176.96 101.82
29,188 29,316 31,121
91,972 92,289 81,046

Fig. 6.Washington-RLG-Wide family data.
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Nodes Arcs DF ASF F PRF Q PRF M PRF H PRF

4,098 12,224 0.99 0.55 0.26 0.27 1.31 0.17
140 121 1,185 92
572 537 1,972 347

8,194 24,512 3.66 1.54 0.87 0.74 3.14 0.46
312 285 2,697 256

1,348 1,305 4,363 847
16,386 49,088 17.40 3.24 1.80 1.85 6.44 0.81

568 474 5,085 375
2,844 2,669 8,126 1,342

32,770 98,240 82.52 8.97 5.47 5.91 13.84 1.96
1,454 1,301 10,443 830
7,605 7,329 17,248 3,005

65,538 196,544 330.62 18.92 11.68 12.69 28.84 2.94
2,446 2,236 21,543 1,121

15,912 15,564 33,419 4,355
131,074 391,168 1,562.85 52.80 34.59 38.37 78.54 6.21

6,312 5,970 57,764 2,451
42,584 41,942 90,098 9,139

262,146 786,368 134.30 84.95 93.19 139.25 10.67
12,373 11,428 101,468 3,640
98,419 96,698 159,696 15,250

Fig. 7.Washington-RLG-Long family data.
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Nodes Arcs DF ASF F PRF Q PRF M PRF H PRF

2,050 22,300 0.27 0.22 0.08 0.06 0.04 0.05
11 9 7 5
66 53 48 44

4,098 65,000 1.26 0.80 0.25 0.24 0.22 0.20
26 16 20 7

142 130 109 90
8,194 187,400 3.84 1.90 0.62 0.59 0.52 0.47

38 27 24 10
285 244 181 163

16,386 522,200 11.91 10.63 1.81 1.66 1.60 1.40
97 52 76 18

557 501 404 325

Fig. 8. Washington-Line-Moderate family data. The number of arcs is approximate, since the exact number
depends on the seed.
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Nodes Arcs DF ASF F PRF Q PRF M PRF H PRF

128 8,128 0.05 0.33 0.04 0.04 0.05 0.03
4 3 6 2
9 9 13 8

256 32,640 0.31 3.83 0.31 0.24 0.38 0.21
9 8 24 7

27 26 36 21
512 130,816 1.60 53.71 1.61 1.52 3.61 1.32

19 17 47 17
60 56 119 49

1,024 523,776 8.95 258.79 8.65 8.31 17.24 5.60
44 41 95 33

139 134 271 102
2,048 2,096,128 86.13 58.04 53.83 108.61 32.06

140 129 412 88
386 370 723 261

Fig. 9.Acyclic-Dense family data.
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Nodes Arcs DF ASF F PRF Q PRF M PRF H PRF

4,102 6,151 13.90 7.97 2.72 2.77 1.85 1.80
657 657 657 657

11,838 11,838 6,585 6,585
8,198 12,265 71.00 34.50 10.70 10.73 6.68 6.70

1,947 1,947 1,947 1,947
45,919 45,919 24,926 24,926

16,390 24,583 281.98 172.15 43.47 42.62 29.03 27.88
5,385 5,385 5,385 5,385

178,710 178,710 94,783 94,783
32,774 49,159 1,651.90 753.52 165.87 164.87 122.70 115.35

15,098 15,098 15,098 15,098
701,606 701,606 365,979 365,979

65,542 98,311 740.08 758.78 558.48 555.77
43,965 43,965 43,965 43,965

2,772,947 2,772,947 1,430,605 1,430,605

Fig. 10.AK family data.
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Suppose a gap arises during an execution of theM PRFimplementation (which does
not use gap relabeling). Then the implementation wastes time processing active nodes
which would have been discarded by the gap heuristic until distance labels of these nodes
increase ton or a global relabeling is performed. As a result, under HL selection, nodes
on the source side of a gap are more likely to be processed than the other nodes.

Thus gap relabeling can save a lot of work when combined with HL selection and
global relabeling. Because of its small overhead (see Section 3), gap relabeling does not
waste much work.

Now suppose a gap arises during an execution of theF PRF implementation (which
does not use gap relabeling). Compared with theQ PRF implementation, the “wasted”
work is in processing nodes with distance labels above the gap. We say that an interval
between global updates isbad if at least a quarter of the work during this time interval is
“wasted” andgoodotherwise. Therefore the total time of the good intervals is likely to
be at most four-thirds of the total time of theF PRFimplementation. After a bad interval,
it is likely that a constant fraction of the remaining nodes will be discarded by the global
update at the end of the interval, because active nodes are processed uniformly and the
fraction of active nodes behind the gap is likely to be proportional to the fraction of
the total number of nondiscarded nodes behind the gap. Thus the number of bad time
intervals is likely to beO(logn). Since the total work done during an interval between
global updates (which occur after everyn relabelings) is likely to beO(m), the total
time of bad intervals isO(m logn). If the running time ofQ PRFisω(m logn), which is
usually the case, then the running time ofF PRFis unlikely to exceed the running time
of Q PRFby a factor much more than43.

Thus gap relabeling is unlikely to save much work when combined with FIFO selection
and global relabeling. On the other hand, since the extra overhead of gap relabeling in
this case is small, gap relabeling does not waste much work.

7. Concluding Remarks. Our best implementation of the push–relabel method,H PRF,
was always faster than our implementation of Dinitz’s algorithmDF; on many problem
familiesH PRFwas asymptotically faster and on large problems the speedup was some-
times one or two orders of magnitude. Our experimental results suggest that the HL
variant of the push–relabel method with global and gap relabeling heuristics is the best
currently available method for solving maximum flow problems.

Problem families that are bad for theH PRFcode and not as bad for theF PRFcode can
be designed. This fact, combined with the reasonable performance of theF PRFcode in
our study, makes the code a natural candidate to consider whenH PRFdoes not perform
well. F PRF is also better suited for parallel and distributed implementation, and it is
simpler thanH PRF.

M PRF is much less robust thanH PRFand never performs significantly better. Thus
gap relabeling should be used in implementations for the HL algorithm.

Q PRFperformance is similar to (but overall slightly worse than)F PRFperformance,
and in this case gap relabeling does not seem to be worth implementing.

With the appropriate heuristics added, the push–relabel method is superior to Dinitz’s
method in practice, often by a wide margin when the global and gap relabeling heuristics
are used. However, experiments with the AK problem family show that even with the
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heuristics, push–relabel implementations can take quadratic time on certain problems.
On the positive side, the growth rate was significantly smaller for the other six problem
families.

Acknowledgments. We would like to thank Robert Kennedy for his help in the prepa-
ration of this paper, and Richard Anderson for providing his maximum flow code.

Appendix. The literature contains several problem families which are hard for push–
relabel algorithms [2], [4] in the sense that the algorithms’ running time is close to their
worst-case bounds. These families, however, are not hard if the global update heuristic
is used. Below we describe the problem family generated by our generator AK. For this
family, m = O(n). The FIFO, HL, and WAVE versions of the push–relabel method
takeÄ(n2) time on problems in this family even if global and gap relabeling operations
are used, under the assumption that the initial distance labeling gives exact distances to
the sink. This assumption holds for most implementations of the push–relabel method.
Although for the push–relabel algorithms without update heuristics the AK networks are
not as hard as those described in [2] and [4], the AK networks are harder if the update
heuristics are used. Dinitz’s algorithm also takesÄ(n2) time on AK networks.

The AK(k) network consists of two subnetworks,N1(k) and N2(k), connected in
parallel.N1(k) is hard for the HL and the FIFO implementations andN2(k) is hard for
the WAVE implementation. BothN1(k) andN2(k) are hard for Dinitz’s algorithm.

Let k be the parameter that determines the network size.N1(k) consists of two paths,
upper and lower, containingk nodes each. (See Figure 11.) Letu1, . . . ,uk and`1, . . . , `k

be the upper and the lower path nodes, respectively. All arcs of the lower path have a
capacity ofk + 1. Capacities of the upper path arcs start atk and decrease by one at
every step; thus the capacity of(ui , ui+1) is k− i +1. Also, each node of the upper path
is connected to the first nodè1 of the lower path by a unit capacity arc. There are two
more nodes,s1 andt1, in addition to the path nodes, which we call the source and the
sink of N1(k). There are arcs(s1, u1) of capacityk + 1, (s1, `1) of capacity 1,(uk, t1)
of capacity 1, and(`k, t1) of capacityk+ 1.

N2(k) consists of a path with 2k+2 nodes,x0, x1, . . . , x2k+1. (See Figure 12.) As one
goes along the path, the capacities of the arcs first decrease by one at every step, reaching

Fig. 11.SubnetworkN1(k).
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Fig. 12.SubnetworkN2(k).

one at the middle arc(xk, xk+1), and then increase by one at every step. (Arcs(x0, x1)

and(x2k, x2k+1) have a capacity ofk+2.) In addition, for eachi = 1, 2, . . . , k+1, there
is an arc(xi , x2k+1−i ) with unit capacity. We call the first and the last node of the path
the source and the sink ofN2(k), respectively.

AK(k) contains the source and the sink in addition to the two subnetworks. The
source node is connected to the source ofN1(k) and N2(k) by arcs with very large
capacities. The sinks ofN1(k) andN2(k) are connected to the sink node by arcs with
very large capacities.

Consider an execution of the HL algorithm on the first subnetwork. Recall that we
assume that the initial distance labeling gives exact distances to the sink. Aphase iis
the period from the time the arc(ui , ui+1) is saturated for the first time to the time the
arc(ui+1, ui+2) is first saturated. (Note that the upper path arcs are first saturated in the
order determined by the path.) We show that the number of push operations during phase
i is at leasti + 1, even with global and gap relabelings. This implies that the total work
isÄ(k2).

It can be shown by induction oni that the following sequence of events takes place.
Just before the beginning of phasei , ui hask− i + 1 units of excess. Distance labels of
nodesu1, . . . ,ui−1 are equal tod(`1)+1= k+1 and distance labels of other nodes are
unchanged. The nodeui is discharged, saturating the arc(ui , ui+1) of capacityk− i +1
and starting the phase. The discharge also increasesd(ui ) to d(`1) + 1 and pushes a
unit of flow to`1. This flow unit must move tòi+1 before the next phase can start. The
number of pushes required to move the unit of excess fromui to `i+1 is at leasti + 1.
Note that until the arc(`1, `2) is saturated, distance labels of nodes inN2(k) are exact.
Thus the HL algorithm takesÄ(k2) time with or without global and gap relabelings.

Next consider an execution of the FIFO algorithm onN1(k) (starting from the time
s1 is first discharged). We consider the case whens1 pushes first tou1 and then tò 1; the
other case is similar. It can be shown by induction onp that after 2p passes, distance
labels of nodesu1, . . . ,u2p are equal tod(`1)+ 1= k+ 1 and distance labels of other
nodes ofN1(k) are unchanged. There arek − 2p+ 1 units of excess atu2p+1, 1 unit
of excess at̀ 1, 2 units of excess at̀3, `5, . . . , `2p+1, andu2p+1 appears on the queue
before`1. The number of active nodes at passp for 1 ≤ p ≤ k isÄ(p) and therefore
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the algorithm takesÄ(k2) time for these passes only. The arc(`1, `2) becomes saturated
only at passk, and until that the distance labels of nodes in the lower path are exact.
Thus the FIFO algorithm onN1(k) takesÄ(k2) time with or without global and gap
relabelings.

Dinitz’s algorithm onN1(k) goes throughk + 1 blocking flow phases. Phase zero
saturates arcs(s1, `1) and(uk, t1). For 1≤ i ≤ k, phasei saturates the arc(ui , `1). Thus
Dinitz’s algorithm also takesÄ(k2) time. The WAVE algorithm, however, runs in linear
time onN1(k). We show that it takesÄ(k2) time onN2(k).

Consider an execution of the WAVE algorithm onN2(k). At the first pass, the algo-
rithm first dischargesx0, pushingk + 2 flow units toxi , then dischargesx1, saturating
the arc(x1, x2k), relabelingx1, and saturating(x1, x2). The rest of the pass moves the
unit of flow fromx2k to the sink ofN2(k). For i = 2, . . . , k, thei th pass first discharges
x2i−1, saturating(x2i−1, x2(k−i )+2), relabelsx2i−1, and pushes the remaining excess tox2i ,
saturating(x2i−1, x2i ). The rest of the pass moves the unit of flow just pushed tox2(k−i )+2

to the sink ofN2(k). Note that distance labels of all nodes with excess considered during
the execution are exact, so global and gap relabelings do not help. It is easy to see that
passi takesÄ(i ) time, so the total time isÄ(k2).

The above results imply that the HL, FIFO, and WAVE algorithms takeÄ(k2) time on
the AK(k) network with or without global and gap relabelings, and Dinitz’s algorithm
also takesÄ(k2) time.
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