
Brakefield Research: Optimal Design 01/13/04
13423 Blanco Road #144, San Antonio, TX 78216

Pg. 1 / 16

Alternate Digital Design Languages

By

Jim Brakefield

Brakefield Research

Presentation to

Austin IEEE Consultants Network

January 8, 2004

Brakefield Research: Optimal Design 01/13/04
13423 Blanco Road #144, San Antonio, TX 78216

Pg. 2 / 16

Glossary

SOC System On a Chip: typically one or more uP (microprocessor), analog &
digital circuitry

ASIC Application Specific Integrated Circuit
FPGA Field Programmable Gate Array
Structured ASIC or Modular Array ASIC, base device pre-designed with gates & RAM

User specifies only part of the wiring (only one or two design specific
fabrication masks)

Gate Array Chip with gates and memory specified, user specifies all wiring.

EDA Electronic Design Automation
CAD Computer Aided Design
RTL Register Transfer Logic, designer specs registers and logic between regs
RTOS Real-Time Operating System

Brakefield Research: Optimal Design 01/13/04
13423 Blanco Road #144, San Antonio, TX 78216

Pg. 3 / 16

Glossary cont’d
Matlab www.mathworks.com Supports Matlab to VHDL/Verilog/C/DSP asm.

“language of technical computing” Used for signal processing algorithm devel.
Confluence www.launchbird.com The language has ability to generate VHDL,

Verilog, XML, C/C++, Java, Python, & Promela (SPIN model checker) models
Targets both digital hardware design and embedded systems.
Is the two year’s work of a single individual: Tom Hawkins. First license is free.

VHDL VHSIC Hardware Description Language
IEEE Standard 1076: VHDL-85, VHDL-93, VHDL-2001
Analog extension: VHDL-AMS
Attributes may be assigned to any name

Verilog Started as a simulation language in 1984 by Gateway Design Automation
IEEE-1364: Verilog-1995, Verilog-2001
Attributes in Verilog-1995 using textual proximity

http://www.mathworks.com/
http://www.launchbird.com/

Brakefield Research: Optimal Design 01/13/04
13423 Blanco Road #144, San Antonio, TX 78216

Pg. 4 / 16

Glossary cont’d

SystemVerilog Additions to Verilog-2001 for “large gate count, IP-based, bus-intensive
chips”, “powerful links to the system level design flow” , vendor
(Cadence, Synopsys, Mentor) support in 2004

SystemC www.systemc.org Design models via C++ library of hardware primitives
Handel-Cwww.colexica.com Superset of C, C to VHDL/Verilog converter
EDIF Electronic Design Interchange Format
VCD Value Change Dump format: Simulation log file
VHSIC Very High Speed Integrated Circuits

VHDL/Verilog Web Sites:
www.deeps.org/verilog Lots of folksy info on Verilog
www.accellera.org Unified VHDL/Verilog standards group

vhdl.org, verilog.org, eda.org & systemverilog.org all link to accellera.org
Has a list of IEEE-1076 and IEEE-1364 activities

http://www.systemc.org/
http://www.colexica.com/
http://www.deeps.org/verilog
http://www.accellera.org/

Brakefield Research: Optimal Design 01/13/04
13423 Blanco Road #144, San Antonio, TX 78216

Pg. 5 / 16

Confluence 101

www.launchbird.com Is the Web Site
Offers Confluence Training and Design Services

Web site has edit & see compiler

Eight Sample Designs at www.opencores.org:
FIR Filter, Memory Interleaver, Floating-Point Multiplier, FFT, State Space
Processor, LDPC Decoder, Reconfigurable Computing Array

Compiler versions for Linux x86, Windows via Cygwin, SPARC/Solaris, Ocaml
on Unix, Mac and Windows

Is a Work in Progress:
Keywords change, new data types get introduced
Model generators for more languages get added (latest is XML)

http://www.launchbird.com/
http://www.opencores.org:/

Brakefield Research: Optimal Design 01/13/04
13423 Blanco Road #144, San Antonio, TX 78216

Pg. 6 / 16

Confluence 101 cont’d

Articles on Confluence:

“New language makes waves”:
http://www.eedesign.com/columns/max_bytes/OEG20030529S0070

“Declarative programming language simplifies hardware design”:
http://www.eedesign.com/features/exclusive/OEG20030918S0045

“Engineer creates HDL generation language”:
http://www.eedesign.com/news/OEG20030919S0013

“Design language links to open-source model checker”:
http://www.eedesign.com/news/OEG20031016S0068

http://www.eedesign.com/columns/max_bytes/OEG20030529S0070
http://www.eedesign.com/features/exclusive/OEG20030918S0045
http://www.eedesign.com/news/OEG20030919S0013
http://www.eedesign.com/news/OEG20031016S0068

Brakefield Research: Optimal Design 01/13/04
13423 Blanco Road #144, San Antonio, TX 78216

Pg. 7 / 16

Confluence 101 cont’d
Statements:

Connection A <- B X <- Y -> Z
Instantiation { Component_name Port1_name Port2_name … Portn_name }
Local Namespace local NameA NameB is statements end
Conditional if-else if PredicateA statemts ef PredicateB statemts else statemts end
Component Definition component Add +A +B –X is X <- A + B end

Data Types:
Boolean
Arbitrary precision integer, uses the C operator set
Double precision float
Record with named fields, fields accessed via “.name” or “.index”
List: now an extension of record, uses square brackets
String: implemented as a list of ASCII coded integers
Vector: VHDL & Verilog “signals”
Component: “subroutine” definitions
System: component invocations use curly brackets

Brakefield Research: Optimal Design 01/13/04
13423 Blanco Road #144, San Antonio, TX 78216

Pg. 8 / 16

Confluence Data Types cont’d

Vector:
Used to represent “signals”
Translate into fixed precision integers, e.g. a bit string
Only have values in the VHDL/Verilog/C/Python simulation

In Confluence vector is a type with no “value”

Component: Component name and a list of named ports (e.g. parameters)
Component definition “equivalent” to subroutine definition
Prefix names (now optional, treated as comments)

Inputs: “+” Outputs: “-“ Bidirectionals: “*”
“$” can be used as a place holder

To select a result from a component instantiation
To route a symbol to a component port

Brakefield Research: Optimal Design 01/13/04
13423 Blanco Road #144, San Antonio, TX 78216

Pg. 9 / 16

Confluence Data Types cont’d

System: Is the result of a component instantiation
Result can be of any type:
Component instantiation can return a component definition

Is a standard feature of functional programming languages
Can use “_” as a port place holder

System Components
{IsSystem +Val –Bool}
{SystemToString +Sys –Str}
{Clock +ClockName +Sys}
{Reset +ResetVector +Sys}
{Enable +EnableVector +Sys}

Brakefield Research: Optimal Design 01/13/04
13423 Blanco Road #144, San Antonio, TX 78216

Pg. 10 / 16

Confluence 101 cont’d

Integers and Floats have the usual “C” operators

Vector Operators similar to those of VHDL/Verilog
And are enclosed in single quotes

Examples: A ‘+’ B, A ‘<<’ Int, A ‘then’ B ‘else’ C

Confluence Semantics & Syntax
Single Assignment semantics

All symbols are “defined” just once

Evaluation order of single assignments determined by operand availability
No looping constructs, must use recursion
Unification used to connect names and values

Brakefield Research: Optimal Design 01/13/04
13423 Blanco Road #144, San Antonio, TX 78216

Pg. 11 / 16

Confluence Advantages

Generates both C/Python and VHDL/Verilog models
A single “golden” reference design that creates both simulation and
implementation versions
Generates test bench templates

Compact: 3X less code than Verilog
For each clock domain, clock name, reset and enable applied to all registers
Components for Registers, RAM, ROM & System ports
Functional programming offers higher levels of abstraction and usage

Much more than a macro template generator
Lots of freedom in design layout and organization

Easy to learn: Typically productive in first day
Low Cost: $240/month for additional licenses

Brakefield Research: Optimal Design 01/13/04
13423 Blanco Road #144, San Antonio, TX 78216

Pg. 12 / 16

A Vision for Embedded Systems
(IMHO)

A real-time routine is just a VHDL/Verilog design component with a relatively
long clock period constraint.

Interrupt handlers are dedicated hardware or software running in a dedicated
controller.

A RTOS is unnecessary (for interrupt dispatch, message forwarding) !!!

Inter-processor communication via hardware or software FIFOs

Brakefield Research: Optimal Design 01/13/04
13423 Blanco Road #144, San Antonio, TX 78216

Pg. 13 / 16

On The Embedded Horizon

Real-time Validation via Simulation/Formal-Verification and Timing Analysis
From months to hours !!!

Implementation of this vision is via modified ASIC/FPGA tool flow.

Automatic code movement between hardware and software possible.

Confluence is one vehicle to achieve this vision.

Part of the larger vision of a practical methodology for parallel uP’s +
programmable logic SOC.

Brakefield Research: Optimal Design 01/13/04
13423 Blanco Road #144, San Antonio, TX 78216

Pg. 14 / 16

Sample Confluence Designs

OpenCores Project Source Name Description
FIR Filter fir.cf Finite impules response filter with variable

 taps and variable precision.
Memory Interleaver common.cf Memory interleaver with variable address and

data widths.
Floating Point Multiplier fp_mul.cf Variable precision floating point multiplier.
FFT fft.cf Continuous throghput multi-butterfly FFT.
Cordic cordic.cf Pipelined cordic for calculating trigonometric

functions. Separate cores for vectoring and
rotation modes.

State Space Processor ssp.cf Ultra-light processor for calculating multi-
variable linear functions common in DSP and
control applications.

LDPC Decoder ldpc.cf Low-density parity-check (LDPC) hard-decision
decoder. Implements Gallager’s algorithm A.

Reconfigurable Computing Array
rca.cf Fine-grained dynamic reconfigurable computing

array, similar to an FPGA.

Brakefield Research: Optimal Design 01/13/04
13423 Blanco Road #144, San Antonio, TX 78216

Pg. 15 / 16

Example Confluence Design
(* Basic code generation template. Defines an up/down counter as an example. *)
(* Local variables. *) with UpDownCounter is
(* Define the UpDownCounter component. *)
component UpDownCounter

(* Component ports. ’+’ is input, ’-’ is output. *)
+CounterWidth (* Integer configuration parameter. *)
+CountUp (* 1-bit signal. 1 counts up, 0 counts down. *)
-CountValue (* The output counter signal. *)

with (* Component implementation. *)
(* Local variables. *) ValueOne ValuePlusOne ValueMinusOne ValueSelected is
ValueOne <- {One CounterWidth $}
ValuePlusOne <- CountValue '+' ValueOne
ValueMinusOne <- CountValue '-' ValueOne
ValueSelected <- {Mux CountUp [ValueMinusOne ValuePlusOne] $}
CountValue <- {VectorReg CounterWidth ValueSelected $}

end
(* Instantiate an 8-bit UpDownCounter and connect inputs and outputs. *)
{UpDownCounter 8 {VectorInput "count_up" 1 1 $} {VectorOutput "count_value" 2 $}}

(* Set code generation constraints. *)
{Set "FileName" "up_down_counter"} {Set "BuildName" "UpDownCounter"}
{Set "Header" "A complete code gen example of an up/down counter."}
{Set "GenVerilog" true} {Set "GenVhdl" true} {Set "GenC" true} {Set "GenPython" true}

Brakefield Research: Optimal Design 01/13/04
13423 Blanco Road #144, San Antonio, TX 78216

Pg. 16 / 16

Example Confluence Design
Generated H file for C output

// Generated by Confluence 0.7.7 -- Launchbird Design Systems, Inc. -- www.launchbird.com
void UpDownCounter_ports(unsigned char* port_count_up_i, unsigned char* port_count_value_o);
void UpDownCounter_init();
void UpDownCounter_calc();
void UpDownCounter_cycle_clock();
void UpDownCounter_sim_init(const char* file);
void UpDownCounter_sim_end();
void UpDownCounter_sim_sample();

Generated Verilog output
// Generated by Confluence 0.7.7 -- Launchbird Design Systems, Inc. -- www.launchbird.com
`timescale 1 ns / 1 ns
module UpDownCounter (clock_c, count_up_i, count_value_o);
input clock_c; input count_up_i; output [7:0] count_value_o; wire [7:0] n1;
UpDownCounter_1 s1 (clock_c, count_up_i, n1);
assign count_value_o = n1; endmodule
module UpDownCounter_1 (clock_c, i1, o1);
input clock_c; input i1; output [7:0] o1; wire n1; wire n2; wire [7:0] n3;
wire [7:0] n4; wire [7:0] n5; wire n6; wire [7:0] n7; reg [7:0] n8;
assign n1 = 1'b1; assign n2 = 1'b0; assign n3 = 8'b00000001; assign n4 = n8 - n3;
assign n5 = n8 + n3; assign n6 = i1; assign n7 = n6 ? n5 : n4; initial n8 = 8'b00000000;
always @ (posedge clock_c)
 if (n2 == 1'b1) n8 <= 8'b00000000;
 else if (n1 == 1'b1) n8 <= n7; assign o1 = n8; endmodule

	Presentation to
	RTLRegister Transfer Logic, designer specs registers and logic between regs

	Glossary cont’d
	Confluence Data Types cont’d

