DRAFT

Table of contents

1 Scope
2 Normative references
3 Data processing
4 Video compression
Annex A Relationship between compression format and other documents
Annex B Digital filter for sampling-rate conversion
Annex C Compression specification
Annex D Abbreviations and acronyms
Annex E Bibliography

1 Scope

This standard defines the data structure for the interface of DV-based digital audio, subcode data, and compressed video at $100 \mathrm{Mb} / \mathrm{s}$. The standard defines the processes required to decode the DV-based data structure into eight channels of AES-3 digital audio at 48 kHz , subcode data, and high-definition video at 1080/60i, 1080/50i, 720/60p and 720/50p.

The following high-definition video parameters are used in this standard:
1080/60i system -
Input video format: 1920×1080 image sampling structure, $59.94-\mathrm{Hz}$ field rate, interlace format.
Compressed video data rate: $100 \mathrm{Mb} / \mathrm{s}$
1080/50i system -
Input video format: 1920×1080 image sampling structure, $50-\mathrm{Hz}$ field rate, interlace format. Compressed video data rate: $100 \mathrm{Mb} / \mathrm{s}$

720/60p system -
Input video format: 1280×720 image sampling structure, $59.94-\mathrm{Hz}$ frame rate, progressive format. Compressed video data rate: $100 \mathrm{Mb} / \mathrm{s}$

720/50p system -
Input video format: 1280×720 image sampling structure, $50-\mathrm{Hz}$ frame rate, progressive format. Compressed video data rate: $100 \mathrm{Mb} / \mathrm{s}$

In this standard, the term $60-\mathrm{Hz}$ system refers to both $1080 / 60 \mathrm{i}$ and $720 / 60$ p systems, and the term $50-\mathrm{Hz}$ system refers to both 1080/50i and 720/50p systems. The term 1080-line system refers to both 1080/60i and 1080/50i systems, and the term 720-line system refers to both 720/60p and 720/50p systems.

2 Normative references

The following standards, through reference in this text, constitute provisions of this standard. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below.

AES3-1992, Serial Transmission Format for Two-Channel Linearly Represented Digital Audio Data
SMPTE 12M-1999 Television, Audio and Film - Time and Control Code
SMPTE 260M-1999, Television - 1125/60 High-Definition Production System — Digital Representation and Bit-Parallel Interface

SMPTE 274M-2005, Television - 1920×1080 Image Sample Structure, Digital Representation and Digital Timing Reference Sequences for Multiple Picture Rates

SMPTE 296M-2001, Television - 1280×720 Progressive Image Sample Structure - Analog and Digital Representation and Analog Interface

SMPTE 321M-2002, Television - Data Stream Format for the Exchange of DV-Based Audio, Data and Compressed Video over a Serial Data Transport Interface

3 Data processing

3.1 General

As shown in figure 1, the processed audio, video and subcode data are output for the recording on a Type D12 recorder. Additionally these data are multiplexed in the DIF (digital interface) format data to output for different applications through a digital interface port. Details of the process shown in figure 1 are described in clauses 3 and 4. Dotted lines are related to the data flow described in the Type D-12 document.

Annex A shows the block diagram of the Type D-12 recorder. Figure A. 1 shows the part defined by this compression format document.

3.1.1 Video encoding parameter

The source component signal to be processed shall comply with the video parameters as defined by SMPTE 274M and SMPTE 296M.

3.1.2 Audio encoding parameter

The audio signal shall be sampled at 48 kHz , with 16 -bit quantization defined by AES3.

3.1.3 Subcode data

The time code format in the subcode area shall be the LTC codeword and comply with SMPTE 12M.

3.1.4 Frame structure

In the 1080-line system, video data, audio data, and subcode data in one video frame shall be processed in each frame. In the 720 -line system, these data in two video frames shall be processed within one frame duration of the 1080 -line system. Consequently, audio data and subcode data in the 720 -line system are processed in the same way as the 1080 -line system. The audio data corresponding to one video frame in the 1080 -line system and two video frames in the 720 -line system is defined as an audio-processing unit.

Each frame of time code shows a frame number that corresponds to each video frame in the 1080-line system, and two video frames each in the 720-line system. Therefore, time codes of the 1080-line and 720line system are the same.

Figure 1 - Data processing block diagram

3.2 Data structure

The data structure of the compressed stream at the digital interface is shown in figure 2 . The data of each frame shall be divided into four DIF channels.

Each DIF channel shall be divided into 10 DIF sequences for the $60-\mathrm{Hz}$ system and 12 DIF sequences for the 50-Hz system.

Each DIF sequence shall consist of a header section, subcode section, VAUX section, audio section, and video section with the following DIF blocks respectively:

Header section:	1 DIF block
Subcode section:	2 DIF blocks
VAUX section:	3 DIF blocks
Audio section:	9 DIF blocks
Video section:	135 DIF blocks

As shown in figure 2, each DIF block shall consist of a 3-byte ID and 77 bytes of data. The DIF data bytes are numbered 0 to 79 . Figure 3 shows the data structure of a DIF sequence.

where

$$
\begin{aligned}
& n=10 \text { for } 60-\mathrm{Hz} \text { system } \\
& \mathrm{n}=12 \text { for } 50-\mathrm{Hz} \text { system }
\end{aligned}
$$

Figure 2 - Data structure

DIF blocks

$\mathrm{H} 0, \mathrm{i}$	SC0, i	SC1, i	VA0, i	VA1, i	VA2,i

$\mathrm{A} 0, \mathrm{i}$	$\mathrm{V} 0, \mathrm{i}$	$\mathrm{V} 1, \mathrm{i}$	$\mathrm{V} 2, \mathrm{i}$	$\mathrm{V} 3, \mathrm{i}$	$\mathrm{V} 4, \mathrm{i}$	$\mathrm{V} 5, \mathrm{i}$	$\mathrm{V} 6, \mathrm{i}$	$\mathrm{V} 7, \mathrm{i}$	$\mathrm{V} 8, \mathrm{i}$	$\mathrm{V} 9, \mathrm{i}$	$\mathrm{V} 10, \mathrm{i}$	$\mathrm{V} 11, \mathrm{i}$	$\mathrm{V} 12, \mathrm{i}$	$\mathrm{V} 13, \mathrm{i}$	$\mathrm{V} 14, \mathrm{i}$

$\mathrm{A} 1, \mathrm{i}$	$\mathrm{V} 15, \mathrm{i}$	$\mathrm{V} 16, \mathrm{i}$	$\mathrm{V} 17, \mathrm{i}$	$\mathrm{V} 18, \mathrm{i}$	$\mathrm{V} 19, \mathrm{i}$	$\mathrm{V} 20, \mathrm{i}$	$\mathrm{V} 21, \mathrm{i}$	$\mathrm{V} 22, \mathrm{i}$	$\mathrm{V} 23, \mathrm{i}$	$\mathrm{V} 24, \mathrm{i}$	$\mathrm{V} 25, \mathrm{i}$	$\mathrm{V} 26, \mathrm{i}$	$\mathrm{V} 27, \mathrm{i}$	$\mathrm{V} 28, \mathrm{i}$	$\mathrm{V} 29, \mathrm{i}$

$A 2, i$	$V 30, i$	$V 31, i$	$\mathrm{~V} 32, i$	$\mathrm{~V} 33, \mathrm{i}$	$\mathrm{V} 34, \mathrm{i}$	$\mathrm{V} 35, \mathrm{i}$	$\mathrm{V} 36, \mathrm{i}$	$\mathrm{V} 37, \mathrm{i}$	$\mathrm{V} 38, \mathrm{i}$	$\mathrm{V} 39, \mathrm{i}$	$\mathrm{V} 40, \mathrm{i}$	$\mathrm{V} 41, \mathrm{i}$	$\mathrm{V} 42, \mathrm{i}$	$\mathrm{V} 43, \mathrm{i}$	$\mathrm{V} 44, \mathrm{i}$

$A 3, \mathrm{i}$	$\mathrm{V} 45, \mathrm{i}$	$\mathrm{V} 46, \mathrm{i}$	$\mathrm{V} 47, \mathrm{i}$	$\mathrm{V} 48, \mathrm{i}$	$\mathrm{V} 49, \mathrm{i}$	$\mathrm{V} 50, \mathrm{i}$	$\mathrm{V} 51, \mathrm{i}$	$\mathrm{V} 52, \mathrm{i}$	$\mathrm{V} 53, \mathrm{i}$	$\mathrm{V} 54, \mathrm{i}$	$\mathrm{V} 55, \mathrm{i}$	$\mathrm{V} 56, \mathrm{i}$	$\mathrm{V} 57, \mathrm{i}$	$\mathrm{V} 58, \mathrm{i}$	$\mathrm{V} 59, \mathrm{i}$

$A 4, i$	V60,i	V61,i	V62,i	V63,i	V64,i	V65,i	V66,i	V67,i	V68,i	V69,	V70,i	V71,	V72,i	V73,i	V74,i

A6,i	V90,i	V91,i	V92,i	V93,i	V94,i	V95,i	V96,i	V97,i	V98,i	V99,i	V100,i	V101,i	V102,i	V103,i	V104,i

A7,i	V105, i	V106,i	V107,i	V108,i	V109,i	V110,i	V111,i	V112,i	V113,i	V114,i	V115, i	V116,i	V117,i	V118,i	V119,i

where

$\begin{aligned} & \text { i: DIF chanr } \\ & \text { i }=0,1,2,3 \end{aligned}$	
H0,i	DIF block in header section
SC0,i to SC1,i	: DIF blocks in subcode section
VA0, i to VA2,i	DIF blocks in VAUX section
A0,i to A8,i	DIF blocks in audio section
V0,i to V134,i	DIF blocks in video section

Figure 3 - Data structure of a DIF sequence

3.3 Header section

3.3.1 ID

The ID part of each DIF block in the header section, shown in figure 2, shall consist of 3 bytes (ID0, ID1, ID2). Table 1 shows the ID content of a DIF block.

Table 1 - ID data of a DIF block

					Byte position number		
	0	1	2				
MSB	ID0	ID1	ID2				
	SCT2	Dseq3	DBN7				
	SCT1	Dseq2	DBN6				
SCT0	Dseq1	DBN5					
Res	Dseq0	DBN44					
Arb	FSC	DBN3					
Arb	FSP	DBN2					
Arb	Res	DBN1					
Arb	Res	DBN0					

The ID contains the followings :
SCT: \quad Section type (see table 2)
Dseq: DIF sequence number (see tables 3 and 4)
FSC, FSP: Channel identification of a DIF block (see table 5) NOTE - FSP bit is reserved in SMPTE 314M
DBN: DIF block number (see table 6)
Arb: Arbitrary bit
Res: Reserved bit for future use
Default value shall be set to 1

Table 2 - Section type

Section type bit			Section type
SCT2	SCT1	SCT0	
0	0	0	Header
0	0	1	Subcode
0	1	0	VAUX
0	1	1	Audio
1	0	0	Video
1	0	1	Reserved
1	1	0	
1	1	1	

Table 3 - DIF sequence number for the $60-\mathrm{Hz}$ system

DIF sequence number bit				DIF sequence number
Dseq3	Dseq2	Dseq1	Dseq0	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	Not used
1	0	1	1	Not used
1	1	0	0	Not used
1	1	0	1	Not used
1	1	1	0	Not used
1	1	1	1	Not used

Table 4 - DIF sequence number for the $50-\mathrm{Hz}$ system

DIF sequence number bit				DIF sequence number
Dseq3	Dseq2	Dseq1	Dseq0	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	Not used
1	1	0	1	Not used
1	1	1	0	Not used
1	1	1	1	Not used

Table 5 - DIF channel number

FSC	FSP	DIF channel number
0	1	$0:$ first channel
1	1	1: second channel
0	0	2: third channel
1	0	3: fourth channel

Table 6 - DIF block number

DIF block number bit									DIF block number
DBN7	DBN6	DBN5	DBN4	DBN3	DBN2	DBN1	DBN0		
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	1	1	
0	0	0	0	0	0	1	0	2	
0	0	0	0	0	0	1	1	3	

3.3.2 Data

The data part (payload) of each DIF block in the header section is shown in table 7 . Bytes 3 to 7 are active and bytes 8 to 79 are reserved.

Table 7 - Data (payload) in the header section

MSB	Byte position number							
	3	4	5	6	7	8	----	79
	DSF	Res	TF1	TF2	TF3	Res	-	Res
	0	Res	Res	Res	Res	Res	---	Res
	Res	Res	Res	Res	Res	Res	-------	Res
	Res	Res	Res	Res	Res	Res	--	Res
	Res	Res	Res	Res	Res	Res	-------	Res
	Res	APT2	AP12	AP22	AP32	Res	-------	Res
	Res	APT1	AP11	AP21	AP31	Res	-------	Res
LSB	Res	APT0	AP10	AP20	AP30	Res	-------	Res

DSF: DIF sequence flag
$0=10$ DIF sequences included in a DIF channel ($60-\mathrm{Hz}$ system)
$1=12$ DIF sequences included in a DIF channel ($50-\mathrm{Hz}$ system)
APTn, AP1n, AP2n, and AP3n data shall be identical to the track application IDs (APTn = $001, A P 1 n=001, A P 2 n=001, A P 3 n=001$), if the source signal comes from the DV based digital VCR. If the signal source is unknown, all bits for this data shall be set to 1 .

TF: Transmitting flag
TF1: Transmitting flag of audio DIF blocks
TF2: Transmitting flag of VAUX and Video DIF blocks
TF3: Transmitting flag of subcode DIF blocks
$0=$ Valid data
1 = Invalid data.
Res: Reserved bit for future use
Default value shall be set to 1 .

3.4 Subcode section

3.4.1 ID

The ID part of each DIF block in the subcode section shall be the same as described in 3.3.1. The section type shall be 001.

3.4.2 Data

The data part (payload) of each DIF block in the subcode section is shown in figure 4. The subcode data shall consist of 6 SSYBs, each 48 bytes long, and a reserved area of 29 bytes in each relevant DIF block. SSYBs in a DIF sequence are numbered 0 to 11. Each SSYB shall be composed of an SSYB ID equal to 2 bytes, an FF_{h}, and an SSYB data payload of 5 bytes.

Figure 4 - Data in the subcode section

3.4.2.1 SSYB ID

Table 8 shows the parts of SSYB ID (ID0, ID1). It shall contain FR ID, application ID (AP3 $\left.3_{2}, A P 3_{1}, A P 3_{0}\right)$, $\left(A P T_{2}, A P T_{1}, \mathrm{APT}_{0}\right)$, and SSYB number $\left(\mathrm{Syb}_{3}, \mathrm{Syb}_{2}, \mathrm{Syb}_{1}, \mathrm{Syb}_{0}\right)$.

Table 8 - SSYB ID

Bit position	SSYB number 0 and 6		SSYB number 1 to 5 and 7 to 10		SSYB number 11	
	ID0	ID1	ID0	ID1	ID0	ID1
b7	FR	Arb	FR	Arb	FR	Arb
b6	AP32	Arb	Res	Arb	APT2	Arb
b5	AP31	Arb	Res	Arb	APT1	Arb
b4	AP30	Arb	Res	Arb	APT0	Arb
b3	Arb	Syb3	Arb	Syb3	Arb	Syb3
b2	Arb	Syb2	Arb	Syb2	Arb	Syb2
b1	Arb	Syb1	Arb	Syb1	Arb	Syb1
b0	Arb	Syb0	Arb	Syb0	Arb	Syb0
NOTE - Arb = arbitrary bit						

FR : The identification for the first half or second half of each DIF channel.
$1=$ the first half of each DIF channel
$0=$ the second half of each DIF channel
The first half of each DIF channel
DIF sequence number $0,1,2,3,4$ for $60-\mathrm{Hz}$ system
DIF sequence number $0,1,2,3,4,5$ for $50-\mathrm{Hz}$ system
The second half of each DIF channel
DIF sequence number $5,6,7,8,9$ for $60-\mathrm{Hz}$ system
DIF sequence number $6,7,8,9,10,11$ for $50-\mathrm{Hz}$ system
If information is not available, all bits shall be set to 1 .

3.4.2.2 SSYB data

Each SSYB data payload shall consist of a pack of 5 bytes as shown in figure 5 . Table 9 shows the pack header table (PCO byte organization). Table 10 shows the pack arrangement in SSYB data for each DIF channel.

Figure 5 - Pack in SSYB

Table 9 - Pack header table

UPPER LOWER	0000	0001	0010	0011	0100	0101	0110	0111	-	1111
0000						AUDIO Source	VIDEO Source			
0001						AUDIO SOURCE Control	VIDEO Source Control			
0010										
0011		$\begin{aligned} & \text { TIME } \\ & \text { CODE } \end{aligned}$								
0100		BINARY GROUP								
0101										
\|										
1111										NO INFO

Table 10 - Mapping of packets in SSYB data

SSYB number	The first half of each DIF channel	The second half of each DIF channel
0	Reserved	Reserved
1	Reserved	Reserved
2	Reserved	Reserved
3	TC	TC
4	BG	Reserved
5	TC	Reserved
6	Reserved	Reserved
7	Reserved	Reserved
8	Reserved	Reserved
9	TC	TC
10	BG	Reserved
11	TC	Reserved
NOTES 1 TC = Time code pack. 2 BG = Binary group pack. 3 Reserved = Default value of all bits shall be set to 1 . 4 TC and BG data are the same within each frame. The time code data are an LCT type		

3.4.2.2.1 Time code pack (TC)

Table 11 shows the structure of the time code pack. The time code data mapped to the time code packs shall be the same within each frame.

Table 11 - Structure of time code pack
60-Hz system

| MSB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PC0 0 0 0 1 0 0
 PC1 CF DF TENS of
 FRAMES UNITS of FRAMES
 PC2 PC TENS of
 SECONDS UNITS of SECONDS
 PC3 BGF0 TENS of
 MINUTES UNITS of MINUTES
 PC4 BGF2 BGF1 TENS of
 HOURS UNITS of HOURS |

50-Hz system

MSB									
PC0 0 0 0 1 0 0 1									
PC1									

NOTE - Detailed information is given in SMPTE 12M.
CF: Color frame
$0=$ unsynchronized mode
1 = synchronized mode
DF: Drop frame flag
$0=$ Nondrop frame time code
1 = Drop frame time code
PC: Biphase mark polarity correction

$$
\begin{aligned}
& 0=\text { Even } \\
& 1 \text { = Odd }
\end{aligned}
$$

BGF: Binary group flag
Arb: Arbitrary bit

3.4.2.2.2 Binary group pack (BG)

Table 12 shows the structure of the binary group pack. The binary group data mapped to the binary group packs shall be the same within each frame.

Table 12 - Structure of binary group pack
MSB

PC0	0	0	0	1	0	1	0	0
PC1	BINARY GROUP2			BINARY GROUP1				
PC2	BINARY GROUP4			BINARY GROUP3				
PC3	BINARY GROUP6			BINARY GROUP5				
PC4	BINARY GROUP8			BINARY GROUP7				

3.5 VAUX section

3.5.1 ID

The ID part of each DIF block in the VAUX section shall be the same as described in 3.3.1. The section type shall be 010.

3.5.2 Data

The data part (payload) of each DIF block in the VAUX section is shown in figure 6. This figure shows the VAUX pack arrangement for each DIF sequence.

There shall be 15 packs, each 5 bytes long, and two reserved bytes in each VAUX DIF block payload. A default value for the reserved byte shall be set to FF_{h}.

Therefore, there are 45 packs in a DIF sequence. The VAUX packs in the DIF blocks are sequentially numbered 0 to 44 . This number is called a video pack number.

Table 13 shows the mapping of the VAUX packs of the VAUX DIF blocks. One VAUX source pack (VS) and one VAUX source control pack (VSC) shall exist in each frame. The remaining VAUX packs of the DIF blocks in a DIF sequence are reserved and the value of all reserved words shall be set to $F F_{h}$.

If VAUX data are not transmitted, a NO INFO pack, which is filled with FF_{h}, shall be transmitted.

Byte position number

Figure 6 - Data in the VAUX section

Table 13 - Mapping of VAUX pack in a DIF sequence

Pack	number	Pack data
Even DIF sequence		
39	0	VS
40	1	VSC

Even DIF sequence:
DIF sequence number $0,2,4,6,8$ for $60-\mathrm{Hz}$ system
DIF sequence number $0,2,4,6,8,10$ for $50-\mathrm{Hz}$ system
Odd DIF sequence:
DIF sequence number $1,3,5,7,9$ for $60-\mathrm{Hz}$ system
DIF sequence number $1,3,5,7,9,11$ for $50-\mathrm{Hz}$ system

3.5.2.1 VAUX source pack (VS)

Table 14 shows the structure of the VAUX source pack.

Table 14 - Structure of VAUX source pack

| MSB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PC 0 1 1 0 0 0 0
 PC1 Res Res Res Res Res Res Res
 Res
 PC2 Res Res Res Res Res Res Res
 Res
 PC3 Res Res $50 / 60$ STYPE
 PC4 0 Res Res Res Res Res Res Res |

50/60:
$0=60-\mathrm{Hz}$ system
$1=50-\mathrm{Hz}$ system
STYPE: Video signal type
For $60-\mathrm{Hz}$ system
$10100 \mathrm{~b}=1080 / 60 \mathrm{i}-100 \mathrm{Mb} / \mathrm{s}$ compression (active line 1080)
$10101 \mathrm{~b}=1080 / 60 \mathrm{i}-100 \mathrm{Mb} / \mathrm{s}$ compression (active line 1035)
$11000 \mathrm{~b}=720 / 60 \mathrm{p}-100 \mathrm{Mb} / \mathrm{s}$ compression
Other = Reserved
For $50-\mathrm{Hz}$ system
$10100 \mathrm{~b}=1080 / 50 \mathrm{i}-100 \mathrm{Mb} / \mathrm{s}$ compression
$11000 \mathrm{~b}=720 / 50 \mathrm{p}-100 \mathrm{Mb} / \mathrm{s}$ compression
Other $=$ Reserved
Res: Reserved bit for future use
Default value shall be set to 1 .

3.5.2.2 VAUX source control pack

Table 15 shows the structure of the VAUX source control pack.

Table 15 - Structure of VAUX source control pack
MSB

PC0	0	0	1	1	0	0	0	0
LSB								
PC1	CGMS		Res	Res	Res	Res	Res	Res
PC2	Res	Res	0	0	Res	DISP		
PC3	FF	FS	FC	Res	Res	Res	0	0
PC4	Res							

CGMS: Copy generation management system
$00 \mathrm{~b}=$ Copy free
Other $=$ Reserved
DISP: Display select mode
$010 \mathrm{~b}=16: 9$
Other $=$ Reserved
FF: Frame/field flag
For the 1080 -line system (see table 16)
FF indicates whether two consecutive fields are delivered, or one field is repeated
twice during one video frame period (see table 16)
$0=$ Only one of the two fields is delivered twice
$1=$ Both fields are delivered in order.
For the 720 -line system (see table 17)
FF indicates whether two consecutive video frames are delivered, or one video frame is repeated twice during the two video frames period.
$0=$ Only one of the two video frames is delivered twice.
$1=$ Both video frames are delivered in order.
FS: First/second field flag
For the 1080 -line system (see table 16)
FS indicates a field which is delivered during the field one period (see table 16)
$0=$ Field 2 is delivered
1 = Field 1 is delivered.
For the 720-line system (see table 17)
FS indicates a video frame which is delivered during the video frame one period.
$0=$ Video frame 2 is delivered.
1 = Video frame 1 is delivered.

Table 16 - FF/FS for the 1080-line system

FF	FS	Output field
1	1	Field 1 and field 2 are output in this order (1,2 sequence).
1	0	Field 2 and field 1 are output in this order (2,1 sequence).
0	1	Field 1 is output twice.
0	0	Field 2 is output twice.

Table 17 - FF/FS for the 720-line system

FF	FS	Output video frame
1	1	Video frame 1 and video frame 2 are output in this order (1,2 sequence).
1	0	Video frame 2 and video frame 1 are output in this order (2,1 sequence).
0	1	Video frame 1 is output twice.
0	0	Video frame 2 is output twice.

FC : Frame change flag
For the 1080-line system
FC indicates whether the picture of the current video frame is repeated based on the immediate previous video frame.
$0=$ Same picture as the previous video frame
1 = Different picture than the previous video frame
For the 720-line system
FC indicates whether the picture of the current two video frames is repeated based on the immediate previous two video frames.
$0=$ Same picture as the previous two video frames
1 = Different picture than the previous two video frames
Res : Reserved bit for future use
Default value shall be set to 1 .

3.6 Audio section

3.6.1 ID

The ID part of each DIF block in the audio section shall be the same as described in 3.3.1. The section type shall be 011 .

3.6.2 Data

The data part (payload) of each DIF block in the audio section is shown in figure 7. The data of the DIF block in the audio section shall be composed of 5 bytes of audio auxiliary data (AAUX) and 72 bytes of audio data which is encoded and shuffled by the process as described in 3.6.2.1 and 3.6.2.2.

Byte position number		
01	$\square \times \square$	\square
ID	Audio auxiliary data	Audio data

Figure 7 - Data in the audio section

3.6.2.1 Audio encoding

3.6.2.1.1 Source coding

Each audio input signal shall be sampled at 48 kHz , with 16 -bit quantization. The system provides eight audio channels. Audio data for each audio channel are located in each respective audio block.

3.6.2.1.2 Emphasis

The audio encoding shall be carried out with the first order pre-emphasis of $50 / 15 \mu \mathrm{~s}$. For the analog input recording, emphasis shall be off in the default state.

3.6.2.1.3 Audio error code

In the encoded audio data, 8000_{h} shall be assigned as the audio error code to indicate an invalid audio sample. This code corresponds to the negative full scale value in ordinary twos complement representation. When the encoded data includes 8000_{h}, it shall be converted to 8001 h .

3.6.2.1.4 Relative audio-video timing

1080-line system -
An audio frame shall begin with an audio sample acquired within the duration of minus 50 samples relative to zero samples from the start of line number 1 .

```
720-line system -
```

An audio frame shall begin with an audio sample acquired within the duration of minus 50 samples relative to zero samples from the start of line number 1 of video frame 1.

3.6.2.1.5 Audio frame processing

The audio data shall be processed in each audio frame. Each audio frame shall contain 1602 or 1600 audio samples for the $60-\mathrm{Hz}$ system or 1920 audio samples for the $50-\mathrm{Hz}$ system for an audio channel with associated status, user, and validity data. For the $60-\mathrm{Hz}$ system, the number of audio samples per audio frame shall follow the five-frame sequence as shown below:

$$
\text { 1600, 1602, 1602, 1602, } 1602 \text { samples. }
$$

One audio frame shall be capable of 1620 samples for the $60-\mathrm{Hz}$ system or 1944 samples for the $50-\mathrm{Hz}$ system. The unused space at the end of each audio frame is filled with arbitrary values.

3.6.2.2 Audio shuffling

The 16-bit audio data word shall be divided into two bytes. The upper byte shall contain MSB, and the lower byte shall contain LSB, as shown in figure 8. Audio data shall be shuffled over DIF sequences and DIF blocks within an audio frame. The data bytes are defined as $D_{n}(n=0,1,2, \ldots .$.$) which is sampled in the n$-th order within an audio frame and shuffled by each D_{n} unit.

The data shall be shuffled through the process as expressed by the following equations:
60-Hz system -
DIF channel number: $\quad i=0$: Audio $\mathrm{CH} 1, \mathrm{CH} 2$
$\mathrm{i}=1$: Audio $\mathrm{CH} 3, \mathrm{CH} 4$
$\mathrm{i}=2$: Audio CH5, CH 6
$\mathrm{i}=3$: Audio CH7,CH8
DIF Sequence number: (INT $(n / 3)+2 x(n \bmod 3)) \bmod 5$ for Audio $\mathrm{CH} 1, \mathrm{CH} 3, \mathrm{CH} 5, \mathrm{CH} 7$
(INT $(\mathrm{n} / 3)+2 \times(\mathrm{n} \bmod 3)) \bmod 5+5$ for Audio CH2,CH4,CH6,CH8
Audio DIF block number: $3 \times(\mathrm{n} \bmod 3)+$ INT $((\mathrm{n} \bmod 45) / 15)$

Byte position number: $8+2 \times \operatorname{INT}(\mathrm{n} / 45)$ for the most significant byte
$9+2 \mathrm{x} \operatorname{INT}(\mathrm{n} / 45)$ for the least significant byte
where $\mathrm{n}=0$ to 1619
50-Hz system -
DIF channel number: $\quad i=0$: Audio $\mathrm{CH} 1, \mathrm{CH} 2$
$\mathrm{i}=1$: Audio $\mathrm{CH} 3, \mathrm{CH} 4$
$\mathrm{i}=2$: Audio $\mathrm{CH} 5, \mathrm{CH} 6$
$\mathrm{i}=3$: Audio CH7,CH8
DIF Sequence number: (INT $(\mathrm{n} / 3)+2 x(\mathrm{n} \bmod 3)) \bmod 6$ for Audio $\mathrm{CH} 1, \mathrm{CH} 3, \mathrm{CH} 5, \mathrm{CH} 7$
(INT $(\mathrm{n} / 3)+2 x(\mathrm{n} \bmod 3)) \bmod 6+6$ for Audio CH2,CH4,CH6,CH8
Audio DIF block number: $3 \times(\mathrm{n} \bmod 3)+$ INT $((\mathrm{n} \bmod 54) / 18)$
Byte position number: $8+2 \times \operatorname{INT}(\mathrm{n} / 54)$ for the most significant byte $9+2 \times \operatorname{INT}(\mathrm{n} / 54)$ for the least significant byte
where $n=0$ to 1943

Figure 8 - Conversion of audio sample to audio data bytes

3.6.2.3 Audio auxiliary data (AAUX)

AAUX shall be added to the shuffled audio data as shown in figures 7 and 9 . The AAUX pack shall include the AAUX pack header and data (AAUX payload). The length of the AAUX pack shall be 5 bytes as shown in figure 9 , which depicts the AAUX pack arrangement. The audio packs are numbered 0 to 8 as shown in figure 9. This number is called an audio pack number.

Table18 shows the structure of the AAUX pack. One AAUX source pack (AS) and one AAUX source control pack (ASC) shall be included in the compressed stream.

Figure 9 - Arrangement of AAUX packs in audio auxiliary data

Table 18 - Mapping of AAUX pack in a DIF sequence

Audio pack		
Even DIF sequence	Odd DIF sequence	
3	0	AS
4	1	ASC

Even DIF sequence :

DIF sequence number $0,2,4,6,8$ for $60-\mathrm{Hz}$ system
DIF sequence number $0,2,4,6,8,10$ for $50-\mathrm{Hz}$ system
Odd DIF sequence :
DIF sequence number $1,3,5,7,9$ for $60-\mathrm{Hz}$ system
DIF sequence number $1,3,5,7,9,11$ for $50-\mathrm{Hz}$ system

3.6.2.3.1 AAUX source pack (AS)

The AAUX Source pack shall be configured as shown in table 19.

Table 19 - Structure of AAUX source pack
MSB

PC0	0	1	0	1	0	0	0	0		
PC1	LF	Res	AF SIZE							
PC2	0	CHN		Res	AUDIO MODE					
PC3	Res	Res	$50 / 60$		STYPE					
PC4	Res	Res	SMP			QU				

LF: Locked mode flag
Locking condition of audio sampling frequency with video signal.
0 = Locked mode
1 = Reserved
AF SIZE: The number of audio samples per frame
$010100 \mathrm{~b}=1600$ samples / frame ($60-\mathrm{Hz}$ system)
$010110 \mathrm{~b}=1602$ samples / frame ($60-\mathrm{Hz}$ system)
$011000 \mathrm{~b}=1920$ samples / frame ($50-\mathrm{Hz}$ system)
Other $=$ Reserved
CHN: The number of audio channels within an audio block
$00 \mathrm{~b}=$ One audio channel per an audio block
Other $=$ Reserved
An audio block consists of 45 DIF blocks (9 DIF blocks x 5 DIF sequences) for the $60-\mathrm{Hz}$ system and 54 DIF blocks (9 DIF blocks $x 6$ DIF sequences) for the $50-\mathrm{Hz}$ system.

AUDIO MODE: The contents of the audio signal on each audio channel
0000 b = Audio $\mathrm{CH} 1, \mathrm{CH} 3, \mathrm{CH} 5, \mathrm{CH} 7$
0001 b = Audio CH2,CH4, $\mathrm{CH} 6, \mathrm{CH} 8$
1111 b = Invalid audio data
Other $=$ Reserved
50/60:
$0=60-\mathrm{Hz}$ system
$1=50-\mathrm{Hz}$ system
STYPE: Audio blocks for each frame
00011 b = 8 audio blocks
Other = Reserved
SMP: Sampling frequency
$000 \mathrm{~b}=48 \mathrm{kHz}$
Other $=$ Reserved
QU: Quantization
$000 b=16$ bits linear
Other $=$ Reserved
Res: Reserved bit for future use
Default value shall be set to 1 .

3.6.2.3.2 AAUX source control pack (ASC)

The AAUX source control pack shall be configured as shown in table 20.

Table 20 - Structure of AAUX source control pack

CGMS: Copy generation management system
$00 \mathrm{~b}=$ Copy free
Other $=$ Reserved
EFC: Emphasis audio channel flag
$00 \mathrm{~b}=$ Emphasis off
$01 \mathrm{~b}=$ Emphasis on
Other $=$ Reserved
EFC shall be set for each audio block.
REC ST: Recording start point
$0=$ Recording start point
$1=$ Not recording start point
At the recording start frame, REC ST is set to zero for duration of one audio block which is equal to 5 or 6 DIF sequences for each audio channel.

REC END: Recording end point
$0=$ Recording end point
1 = Not recording end point
At the recording end frame, REC END is set to zero for duration of one audio block which is equal to 5 or 6 DIF sequences for each audio channel.

FADE ST: Fading of recording start point
$0=$ Fading off
1 = Fading on
The FADE ST information is only effective at the recording start frame (REC ST = 0).If FADE ST is 1 at the recording start frame, the output audio signal should be faded in from the first sampling signal of the frame. If FADE ST is 0 at the recording start frame, the output audio signal should not be faded.

FADE END: Fading of recording end point
0 = Fading off
1 = Fading on
The FADE END information is only effective at the recording end frame (REC END $=0$). If FADE END is 1 at the recording end frame, the output audio signal should be faded out to the last sampling signal of the frame. If FADE END is 0 at the recording end frame, the output audio signal should not be faded.

DRF: Direction flag
$0=$ Reverse direction
1 = Forward direction
SPEED: Shuttle speed of VTR (see table 21)

Table 21 - SPEED code definition

Codeword MSB LSB	Shuttle speed of VTR	
	$60-\mathrm{Hz}$ system	$50-\mathrm{Hz}$ system
0000000	$0 / 120(=0)$	$0 / 100(=0)$
0000001	$1 / 120$	$1 / 100$
$:$	$:$	$:$
1100100	$100 / 120$	$100 / 100(=1)$
$:$	$:$	Reserved
1111000	$120 / 120(=1)$	Reserved
$:$	Reserved	Reserved
1111110	Reserved	Reserved
111111	Data invalid	Data invalid

Res: Reserved bit for future use
Default value shall be set to 1 .

3.7 Video section

3.7.1 ID

The ID part of each DIF block in the video section shall be the same as described in 3.3.1. The section type shall be 100 .

3.7.2 Data

Data part (payload) of each DIF block in the video section consists of 77 bytes of video data which shall be sampled, shuffled and encoded. The video data of every frame shall be processed as described in clause 4. This 77 byte data are called a compressed macro block.

3.7.2.1 DIF block and compressed macro block

Correspondence between Video DIF blocks and video compressed macro blocks CM h,i,j,k is shown in table 22 for the $60-\mathrm{Hz}$ system, table 23 for the 1080/50i system and table 24 for the 720/50p system.

The rule defining the correspondence between video DIF blocks and compressed macro blocks shall be as shown below:
$60-\mathrm{Hz}$ and $720 / 50 \mathrm{p}$ systems -
for (h=0; h<4; h++)\{
for(s=0; s<2; s++)\{
for(k=0; k<27; k++)\{
for $(\mathrm{t}=0 ; \mathrm{t}<5 ; \mathrm{t}++)$ \{
$\mathrm{a}=(4 \mathrm{~h}+\mathrm{s}+2 \mathrm{t}+2) \bmod 10 ;$
$\mathrm{b}=(4 \mathrm{~h}+\mathrm{s}+2 \mathrm{t}+6) \bmod 10 ;$
$\mathrm{c}=(4 \mathrm{~h}+\mathrm{s}+2 \mathrm{t}+8) \bmod 10$;
$\mathrm{d}=(4 \mathrm{~h}+\mathrm{s}+2 \mathrm{t}+0) \bmod 10 ;$
$e=(4 h+s+2 t+4) \bmod 10 ;$
DBNq $=(5 t+25 k) \bmod 135 ;$
DSNp $=\operatorname{INT}((5 \mathrm{t}+25 \mathrm{k}+675 \mathrm{~s}) / 135)$;
V DBNq, h of DSNp = CM h,a,2,k
V (DBNq + 1), h of DSNp $=C M h, b, 1, k$

```
                V (DBNq + 2), h of DSNp = CM h,c,3,k
                V (DBNq + 3), h of DSNp = CM h,d,0,k
                    V (DBNq + 4), h of DSNp = CM h,e,4,k
            }
        }
    }
}
```

where

DBNq: DIF block number
DSNp: DIF sequence number
h: Divided block
s, t : Vertical order of super block
k: Macro block order in super block
1080/50i system -

```
for(h=0; h<4; h++)\{
    for(k=0; k<27; k++)\{
        for(i=0; i<11; i++)\{
                        \(\mathrm{a}=(4 \mathrm{~h}+\mathrm{i}+2) \bmod 11\);
                    \(b=(4 h+i+6) \bmod 11\);
                    \(c=(4 h+i+8) \bmod 11 ;\)
                    \(\mathrm{d}=(4 \mathrm{~h}+\mathrm{i}+0) \bmod 11\);
                    \(\mathrm{e}=(4 \mathrm{~h}+\mathrm{i}+4) \bmod 11\);
                    DBNq \(=(5 i+55 k) \bmod 135 ;\)
                    DSNp \(=\operatorname{INT}((5 i+55 k) / 135)\);
                    \(V\) DBNq, h of \(\mathrm{DSNp}=\mathrm{CM} \mathrm{h}, \mathrm{a}, 2, \mathrm{k}\)
                    \(V(D B N q+1), h\) of \(D S N p=C M h, b, 1, k\)
                    \(V(D B N q+2)\), h of DSNp \(=C M h, c, 3, k\)
                    \(V(D B N q+3), h\) of \(D S N p=C M h, d, 0, k\)
                    \(V(D B N q+4), h\) of \(D S N p=C M h, e, 4, k\)
        \}
    \}
\}
for(k=0; k<27; k++)\{
    DBNq \(=5 k ;\)
    DSNp = 11;
    \(V\) DBNq, 0 of \(\operatorname{DSNp}=\mathrm{CM} 0,11,0, k\)
    \(V(D B N q+1), 0\) of \(D S N p=C M 0,11,1, k\)
    \(V(D B N q+2), 0\) of \(D S N p=C M 0,11,2, k\)
    \(V(D B N q+3), 0\) of \(D S N p=C M 0,11,3, k\)
    \(V(D B N q+4), 0\) of \(D S N p=C M 0,11,4, k\)
\}
```

where
DBNq: DIF block number
DSNp: DIF sequence number
h: Divided block
i: Vertical order of super block
k: Macro block order in super block

Table 22 - Video DIF blocks and compressed macro blocks for the 60-Hz system

DIF channel number	DIF sequence number	DIF block	Compressed macro block
0	0	V 0,0	CM 0,2,2,0
		V 1,0	CM 0,6,1,0
		V 2,0	CM 0,8,3,0
		V 3,0	CM 0,0,0,0
		V 4,0	CM 0,4,4,0
		:	:
	:	:	:
	9	:	:
		V 134,0	CM 0,3,4,26
1	0	V 0,1	CM 1,6,2,0
		V 1,1	CM 1,0,1,0
		V 2,1	CM 1,2,3,0
		V 3,1	CM 1,4,0,0
		V 4,1	CM 1,8,4,0
		:	:
	:	:	:
	9	:	:
		V 134,1	CM 1,7,4,26
:	:	:	:
3	0	V 0,3	CM 3,4,2,0
		V 1,3	CM 3,8,1,0
		V 2,3	CM 3,0,3,0
		V 3,3	CM 3,2,0,0
		V 4,3	CM 3,6,4,0
		:	:
	:	:	:
	9	:	:
		V 134,3	CM 3,5,4,26

Table 23 - Video DIF blocks and compressed macro blocks for the 1080/50i system

DIF channel number	DIF sequence number	DIF block	Compressed macro block
0	0	V 0,0	CM 0,2,2,0
		V 1,0	CM 0,6,1,0
		V 2,0	CM 0,8,3,0
		V 3,0	CM 0,0,0,0
		V 4,0	CM 0,4,4,0
		:	:
	:	:	:
	10		:
		V 134,0	CM 0,3,4,26
	11	V 0,0	CM 0,11,0,0
		V 1,0	CM 0,11, 1,0
		:	:
		V 134,0	CM 0,11,4,26
1	0	V 0,1	CM 1,6,2,0
		V 1,1	CM 1,10,1,0
		V 2,1	CM 1,1,3,0
		V 3,1	CM 1,4,0,0
		V 4,1	CM 1,8,4,0
		:	:
	:	:	:
	10	:	:
		V 134,1	CM 1,7,4,26
	11	V 0,1	-
		:	:
		V 134,1	-
:	:	:	:
3	0	V 0,3	CM 3,3,2,0
		V 1,3	CM 3,7,1,0
		V 2,3	CM 3,9,3,0
		V 3,3	CM 3, 1, 0, 0
		V 4,3	CM 3,5,4,0
		:	:
	:	:	:
	10	:	:
		V 134,3	CM 3,4,4,26
	11	V 0,3	-
		:	:
		V 134,3	-

Table 24 - Video DIF blocks and compressed macro blocks for the 720/50p system

DIF channel number	DIF sequence number	DIF block	Compressed macro block
0	0	V 0,0	CM 0,2,2,0
		V 1,0	CM 0,6,1,0
		V 2,0	CM 0,8,3,0
		V 3,0	CM 0,0,0,0
		V 4,0	CM 0,4,4,0
		:	:
	:	:	:
	9	:	:
		V 134,0	CM 0,3,4,26
	10	V 0,0	-
		:	:
		V 134,0	-
	11	V 0,0	-
		:	:
		V 134,0	-
1	0	V 0,1	CM 1,6,2,0
		V 1,1	CM 1,0,1,0
		V 2,1	CM 1,2,3,0
		V 3,1	CM 1,4,0,0
		V 4,1	CM 1,8,4,0
		:	:
	:	:	:
	9	:	:
		V 134,1	CM 1,7,4,26
	10	V 0,1	-
		:	:
		V 134,1	-
	11	V 0,1	-
		:	:
		V 134,1	-
:	:	:	:
3	0	V 0,3	CM 3,4,2,0
		V 1,3	CM 3,8,1,0
		V 2,3	CM 3,0,3,0
		V 3,3	CM 3,2,0,0
		V 4,3	CM 3,6,4,0
		:	:
	:	:	:
	9	:	:
		V 134,3	CM 3,5,4,26
	10	V 0,3	-
		:	:
		V 134,3	-
	11	V 0,3	-
		:	:
		V 134,3	-

4 Video compression

This clause includes the video compression processing for the 1080/60i system, the 1080/50i system, the $720 / 60$ p system and the $720 / 50$ p system.

4.1 Video structure

4.1.1 Video sampling structure

The video sampling structure shall comply with SMPTE 274M for the 1080-line system, and SMPTE 296M for the 720 -line system. The construction of luminance (Y) and two color-difference signals $\left(C_{R}, C_{B}\right)$ is described in table 25. A sample conversion from 10-bit input video to 8 bits or more is provided by the resampling process (the first processing block of figure 1).

4.1.1.1 Video frame pixel structure

1080/60i system -

The sampling starting point of Y signal shall be 192T from the horizontal sync timing reference;

$$
\text { where } T=1.001 /\left(74.25 \times 10^{6}\right) \mathrm{sec}
$$

1920 pixels of luminance and 960 pixels of each color-difference signal per line shall be transmitted as shown in figure 10. The sampling starting point in the active period of C_{R} and C_{B} signals shall be the same as the sampling starting point in the active period of the Y signal. Each pixel shall be converted to the code of twos complement (-508 to 507) by inverting the MSB of the input video signal.

1080/50i system -
The sampling starting point of Y signal shall be 192T from the horizontal sync timing reference;

$$
\text { where } T=1 /\left(74.25 \times 10^{6}\right) \mathrm{sec}
$$

1920 pixels of luminance and 960 pixels of each color-difference signal per line shall be transmitted as shown in figure 11. The sampling starting point in the active period of C_{R} and C_{B} signals shall be the same as the sampling starting point in the active period of the Y signal. Each pixel shall be converted to the code of twos complement (-508 to 507) by inverting the MSB of the input video signal.

720/60p system -
The sampling starting point of Y signal shall be 260T from the horizontal sync timing reference;

$$
\text { where } \mathrm{T}=1.001 /\left(74.25 \times 10^{6}\right) \mathrm{sec}
$$

1280 pixels of luminance and 640 pixels of each color-difference signal per line shall be transmitted as shown in figure 12. The sampling starting point in the active period of C_{R} and C_{B} signals shall be the same as the sampling starting point in the active period of the Y signal. Each pixel shall be converted to the code of twos complement (-508 to 507) by inverting the MSB of the input video signal.

720/50p system -

The sampling starting point of the Y signal shall be 260 T from the horizontal sync timing reference;

$$
\text { where } \mathrm{T}=1 /\left(74.25 \times 10^{6}\right) \mathrm{sec}
$$

1280 pixels of luminance and 640 pixels of each color-difference signal per line shall be transmitted as shown in figure 12. The sampling starting point in the active period of the C_{R} and C_{B} signals shall be the same as the sampling starting point in the active period of the Y signal. Each pixel shall be converted to the code of twos complement (-508 to 507) by inverting the MSB of the input video signal.

4.1.1.2 Video frame line structure

1080 line system -
540 lines for Y, C_{R}, and C_{B} signals from each field shall be transmitted. The transmitted lines in each two fields are described in table 25.

720 line system -

720 lines for Y, C_{R} and C_{B} signals from each video frame shall be transmitted. The transmitted lines in each video frame are described in table 25.

4.1.1.3 Horizontal resampling

1080/60i system -
1920 horizontally sampled Y signals shall be resampled to 1280 pixels. The 960 horizontally sampled C_{R} and C_{B} signals shall be resampled to 640 pixels. The output signal of the resampler shall have a sample resolution equal to 8 bits or more. (See annex B.)

1080/50i system -

1920 horizontally sampled Y signals shall be resampled to 1440 pixels. The 960 horizontally sampled C_{R} and C_{B} signals shall be resampled to 720 pixels. The output signal of the resampler shall have a sample resolution equal to 8 bits or more. (See annex B.)

720/60p and 720/50p systems -
The 1280 horizontally sampled Y signals shall be resampled to 960 pixels. The 640 horizontally sampled C_{R} and C_{B} signals shall be resampled to 480 pixels. The output signal of the resampler shall have a sample resolution equal to 8 bits or more. (See annex B.)

Table 25 - Construction of input video

		1080/60i system	1080/50i system	720/60p system	720/50p system
Sampling frequency	Y	74.25 / 1.001 MHz	74.25 MHz	74.25 / 1.001 MHz	74.25 MHz
	$\mathrm{C}_{\mathrm{R}}, \mathrm{C}_{\mathrm{B}}$	37.125 / 1.001 MHz	37.125 MHz	$37.125 / 1.001 \mathrm{MHz}$	37.125 MHz
Total number of pixels per line	Y	2200	2640	1650	1980
	$\mathrm{C}_{\mathrm{R}}, \mathrm{C}_{\mathrm{B}}$	1100	1320	825	990
The number of active pixels per line	Y	1920		1280	
	$\mathrm{C}_{\mathrm{R},} \mathrm{C}_{\mathrm{B}}$	960		640	
Total number of lines per video frame		1125		750	
The number of active lines per vid	o frame	1080		720	
The active line numbers		Field 1	21 to 560	26 to 745	
		Field 2	584 to 1123		
Quantization		Each sample is linearly quantized to 10 bits for $\mathrm{Y}, \mathrm{C}_{\mathrm{R}}$ and C_{B}.			
The relation between video signal level and quantized level	Scale	4 to 1019			
	Y	Video signal level of white: 940 Video signal level of black: 64		Quantized level 877	
	$\mathrm{C}_{\mathrm{R}}, \mathrm{C}_{\mathrm{B}}$	Video signal level of gray: 512		Quantized level 897	

Figure 10 - Sampling structure for the 1080/60i system

Figure 11 - Sampling structure for the 1080/50i system

Figure 12 - Sampling structure for the 720/60p and 720/50p systems

4.1.2 DCT block

The $\mathrm{Y}, \mathrm{C}_{\mathrm{R}}$, and C_{B} pixels in each video frame shall be divided into DCT blocks as shown in figure 13 for the 1080 -line system, and figure 14 for the 720 -line system. The DCT blocks shall be structured with a rectangular area of eight vertical pixels and eight horizontal pixels in a video frame. The value of x shows the horizontal coordinate from the left and the value of y shows the vertical coordinate from the top. For the 1080line system, even lines of $y=0,2,4,6$ are the horizontal lines of field one, and odd lines of $y=1,3,5,7$ are those of field two.

DCT block arrangement in each video frame

1080/60i system -
The arrangement of horizontal DCT blocks in each video frame shall be as shown in figure 15. The same horizontal arrangement is repeated to 135 DCT blocks in the vertical direction. Pixels in one video frame are divided into 43200 DCT blocks.

Y: 135 vertical DCT blocks $x 160$ horizontal DCT blocks $=21600$ DCT blocks
C_{R} : 135 vertical DCT blocks $x 80$ horizontal DCT blocks $=10800$ DCT blocks
C_{B} : 135 vertical DCT blocks $x 80$ horizontal DCT blocks $=10800$ DCT blocks
1080/50i system -

The arrangement of horizontal DCT blocks in each video frame shall be as shown in figure 16. The same horizontal arrangement is repeated to 135 DCT blocks in the vertical direction. Pixels in one video frame are divided into 48600 DCT blocks.

Y: 135 vertical DCT blocks $x 180$ horizontal DCT blocks $=24300$ DCT blocks
C_{R} : 135 vertical DCT blocks $x 90$ horizontal DCT blocks $=12150$ DCT blocks
C_{B} : 135 vertical DCT blocks x 90 horizontal DCT blocks $=12150$ DCT blocks
720/60p and 720/50p systems -
The arrangement of horizontal DCT blocks in each video frame shall be as shown in figure 17. The same horizontal arrangement is repeated to 90 DCT blocks in the vertical direction. Pixels in one video frame are divided into 21600 DCT blocks.

Y: 90 vertical DCT blocks $\times 120$ horizontal DCT blocks $=10800$ DCT blocks
C_{R} : 90 vertical DCT blocks x 60 horizontal DCT blocks $=5400$ DCT blocks
C_{B} : 90 vertical DCT blocks x 60 horizontal DCT blocks $=5400$ DCT blocks

4.1.3 Macro block

Each macro block shall consist of eight DCT blocks. Figure 18 for the 1080 -line system and figure 19 for the 720- line system show the relationship between the macro block and the DCT blocks.

4.1.3.1 Arrangement of macro block

1080/60i system -
Macro block arrangement in each video frame shall have the following two steps.
Step1: Arranging macro blocks
Pixels in each video frame shall be divided into 5400 macro blocks as shown in figure 20.
Each macro block except the bottom macro blocks shall consist of four DCT blocks of Y which are horizontally and vertically adjacent, two vertically adjacent DCT blocks of C_{R} and two vertically adjacent DCT blocks of C_{B} on a TV screen;
where, 67 vertical macro blocks x 80 horizontal macro blocks $=5360$ macro blocks.
Each bottom macro block shall consist of four horizontally adjacent DCT blocks of Y , two horizontally adjacent DCT blocks of C_{R} and two horizontally adjacent DCT blocks of C_{B} on a TV screen;
where, 1 vertical macro blocks x 40 horizontal macro blocks $=40$ macro blocks.

Step 2: Rearranging macro blocks

Sets consisting of 40 macro blocks which are named A0 to A7 and sets consisting of 30 macro blocks which are named A8 to A15 shall be arranged as shown in figure 20.

40 macro blocks in A16 shall be arranged into 4 vertical macro blocks $\times 10$ horizontal macro blocks in B16 respectively as shown in figure 20;
where, 60 vertical macro blocks $\times 90$ horizontal macro blocks $=5400$ macro blocks
1080/50i system -
Macro block arrangement in each video frame shall have the following two steps.
Step1: Arranging macro blocks
Pixels in each video frame shall be divided into 6075 macro blocks as shown in figure 21.
Each macro block except the bottom macro blocks shall consist of four DCT blocks of Y which are horizontally and vertically adjacent, two vertically adjacent DCT blocks of C_{R} and two vertically adjacent DCT blocks of C_{B} on a TV screen;
where, 67 vertical macro blocks $\times 90$ horizontal macro blocks $=6030$ macro blocks.
Each bottom macro block shall consist of four horizontally adjacent DCT blocks of Y , two horizontally adjacent DCT blocks of C_{R} and two horizontally adjacent DCT blocks of C_{B} on a TV screen;
where, 1 vertical macro blocks $\times 45$ horizontal macro blocks $=45$ macro blocks .

Step 2 : Rearranging macro blocks

The macro blocks shall be divided into a main unit and an edge unit. The edge unit shall contain the top macro blocks in A0 and the bottom macro blocks in A1 as shown in figure 21. The main unit shall contain the remaining blocks;
where,
main unit: 66 vertical macro blocks x 90 horizontal macro blocks $=5940$ macro blocks edge unit: 1 vertical macro blocks $\times 135$ horizontal macro blocks $=135$ macro blocks

720/60p and 720/50p systems -
Pixels in each video frame shall be divided into 2700 macro blocks as shown in figure 22;
where, 45 vertical macro blocks x 60 horizontal macro blocks $=2700$ macro blocks

4.1.3.2 Divided blocks

1080/60i system -
The macro blocks in each video frame shall be divided into the halfway blocks as shown in figure 23. Each halfway block H consists of nine macro blocks horizontally and one macro block vertically.

The halfway blocks H shall be distributed into the divided blocks as follows:

Divided blocks: $h=0: H 2 m, 2 n$
$h=1: H 2 m, 2 n+1$
$h=2: H 2 m+1,2 n$
h=3: H 2m+1,2n+1
where, $m=0,1,2, \ldots, 29$

$$
n=0,1,2,3,4
$$

As a result, one video frame is divided into four divided blocks. Each divided block consists of 30 vertical macro blocks x 45 horizontal macro blocks.

1080/50i system -
The macro blocks in the main unit shall be divided into the halfway blocks as shown in figure 24 . Each halfway block H consists of nine horizontally adjacent macro blocks.

The halfway blocks H shall be distributed into the divided blocks as follows:

Divided blocks: $h=0: H 2 m, 2 n$
$h=1: H 2 m, 2 n+1$
$h=2: H 2 m+1,2 n$
$h=3: H 2 m+1,2 n+1$
where, $m=0,1,2, \ldots, 32$
$n=0,1,2,3,4$
As a result, the main unit is divided into four divided blocks. Each divided block is consists of 33 vertical macro blocks x 45 horizontal macro blocks.

720/60p and 720/50p systems -
The macro blocks in each video frame shall be divided into the halfway blocks as shown in figure 25. Each halfway block H consists of six macro blocks horizontally and one macro block vertically.

The halfway blocks H shall be distributed into the divided blocks as follows bellow:
Divided blocks: $\mathrm{h}=0$: H m, 2n
$h=1: H$ m, $2 n+1$
$\mathrm{h}=2: \mathrm{H} \mathrm{m}+45,2 \mathrm{n}$
$\mathrm{h}=3: \mathrm{H}$ m $+45,2 \mathrm{n}+1$
where, $m=0,1,2, \ldots, 44$
$n=0,1,2,3,4$
As a result, each two video frames are divided into four divided blocks. Each divided block is consists of 45 vertical macro blocks x 30 horizontal macro blocks.

Figure 13 - DCT block and the pixel coordinates for the 1080-line system

Figure 14 - DCT block and the pixel coordinates for the 720-line system

Figure 15 - DCT block arrangement for the 1080/60i system

Figure 16 - DCT block arrangement for the 1080/50i system

Figure 17 - DCT block arrangement for the 720/60p and the 720/50p systems

Figure 18 - Macro block and DCT blocks for the 1080-line system

Figure 19 - Macro block and DCT blocks for the 720-line system

Step1: Arranging macro blocks

Bottom macro blocks

Step2: Rearranging macro blocks

Rearranging A16 to B16

A16

| 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | ….. | 38 | 39 |
| :--- | :--- |

B16

0	1	2		8	9
10	11	12		18	19
20	21	22		28	29
30	31	32		38	39

Figure 20 - Arrangement of macro blocks for the 1080/60i system

Step1: Arranging macro blocks

Step2: Rearranging macro blocks

Figure 21 - Arrangement of macro blocks for the 1080/50i system

Figure 22 - Arrangement of macro blocks for the 720/60p and the 720/50p systems

Figure 23 - Divided blocks for the 1080/60i system

Figure 24 - Divided blocks for the 1080/50i system

Figure 25 - Divided blocks for the 720/60p and the 720/50p systems

4.1.4 Super block

Each super block shall consist of 27 macro blocks.
1080/60i system -
The arrangement of the super blocks in the divided block shall be as shown in figure 26 . The pixels in the divided block shall be divided into 50 super blocks.

10 vertical super blocks $\times 5$ horizontal super blocks $=50$ super blocks.

1080/50i system -

The arrangement of the super blocks in the divided block shall be as shown in figure 28 . The pixels in the divided block shall be divided into 55 super blocks.

11 vertical super blocks $\times 5$ horizontal super blocks $=55$ super blocks.
The pixels in the edge unit shall be divided into 5 super blocks.
1 vertical super blocks $\times 5$ horizontal super blocks $=5$ super blocks.

720/60p and 720/50p systems -

The arrangement of the super blocks in the divided block shall be as shown in figure 30 . The pixels in the divided block shall be divided into 50 super blocks.

10 vertical super blocks $\times 5$ horizontal super blocks $=50$ super blocks .

4.1.5 Definition of super block number, macro block number and value of the pixel

Super block number - The super block number is expressed as S h,i,j shown in figures 26, 28, and 30 .

Macro block number - The macro block number is expressed as $\mathrm{Mh}, \mathrm{i}, \mathrm{j}, \mathrm{k}$. The symbol k is the macro block order in the super block shown in figure 27 for the 1080/60i system, figure 29 for the 1080/50i system, and figure 31 for the 720/60p and the 720/50p systems. The small rectangle in these figures shows the macro block, and a number in the small rectangle expresses k .

```
M h,i,j,k where h,i, j: the super block number
k : the macro block order in the super block \(\mathrm{k}=0, \ldots, 26\)
```

Pixel location - The pixel location is expressed as $P h, i, j, k, l(x, y)$. The pixel is indicated as the suffix of h, i, j, $\mathrm{k}, \mathrm{I}(\mathrm{x}, \mathrm{y})$. The symbol I is the DCT block order in a macro block shown in figures 18 and 19. The rectangle in the figure shows a DCT block, and a DCT number in the rectangle expresses I. The symbol x and y are the pixel coordinate in the DCT block as described in 4.1.2.

$$
\begin{array}{ll}
\text { P h,i,j,k,l(x,y) } \quad \begin{aligned}
& \text { where } \text { h,i, } \mathrm{j}, \mathrm{k} \text { : the macro block number } \\
& \text { l: the DCT block order in the macro block } \\
& \text { (x, y): the pixel coordinate in the DCT block } x=0, \ldots, 7 y=0, \ldots, 7
\end{aligned}
\end{array}
$$

Left				j	Right	
Top 0	0	1	2	3	4	$\underbrace{\mathbb{T}}_{\text {macro }}{ }^{2}$
	Sh,0,0	Sh,0,1	Sh,0,2	Sh,0,3	Sh,0,4	
1	Sh, 1,0	Sh, 1,1	Sh, 1,2	Sh,1,3	Sh, 1,4	
2	Sh, 2,0	Sh,2,1	Sh, 2, 2	Sh,2,3	Sh, 2,4	
3	Sh, 3,0	Sh, 3, 1	Sh, 3, 2	Sh, 3,3	Sh, 3,4	
4	Sh,4,0	Sh, 4, 1	Sh, 4, 2	Sh, 4, 3	Sh, 4,4	
5	Sh,5,0	Sh,5,1	Sh,5,2	Sh,5,3	Sh,5,4	
6	Sh,6,0	Sh,6,1	Sh,6,2	Sh,6,3	Sh,6,4	
7	Sh,7,0	Sh,7,1	Sh, 7,2	Sh,7,3	Sh, 7,4	
8	Sh, 8,0	Sh, 8, 1	Sh, 8,2	Sh, 8,3	Sh, 8,4	
9	Sh, 9,0	Sh, 9, 1	Sh, 9, 2	Sh, 9,3	Sh, 9,4	
Bottom						

Figure 26 - Super blocks and macro blocks in a divided block for the 1080/60i system

Figure 27 - Macro block order in a super block for the 1080/60i system

Figure 28 - Super blocks and macro blocks for the 1080/50i system

Super block Sh,i,j (h=0,...,3, i=0,...,10, j=0,...,4)

0	1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16	17
18	19	20	21	22	23	24	25	26

Super block S $0,11, \mathrm{j}$ ($\mathrm{j}=0, \ldots, 4$)

Figure 29 - Macro block order in a super block for the 1080/50i system

Figure 30 - Super blocks and macro blocks in a divided block for the 720/60p and the 720/50p systems

Super block Sh,i,j ($\mathrm{h}=0, \ldots, 3, \mathrm{i}=0, \ldots, 9, \mathrm{j}=0, \ldots, 4$)

0	1	2	3	4	5
6	7	8	9	10	11
12	13	14	15	16	17
18	19	20	21	22	23
24	25	26	0	1	2
3	4	5	6	7	8
9	10	11	12	13	14
15	16	17	18	19	20
21	22	23	24	25	26

Figure 31 - Macro block order in a super block for the 720/60p and the 720/50p systems

4.1.6 Definition of video segment and compressed macro block

The video segment shall consist of five macro blocks which are assembled from various areas within the video frame.

60-Hz system -
$\mathrm{Mh}, \mathrm{a}, \mathrm{p}, \mathrm{k}$ where $\mathrm{a}=(\mathrm{i}+2) \bmod 10, \mathrm{p}=2$
$\mathrm{Mh}, \mathrm{b}, \mathrm{q}, \mathrm{k}$ where $\mathrm{b}=(\mathrm{i}+6) \bmod 10, \mathrm{q}=1$
$\mathrm{Mh}, \mathrm{c}, \mathrm{r}, \mathrm{k} \quad$ where $\mathrm{c}=(\mathrm{i}+8) \bmod 10, \mathrm{r}=3$
$\mathrm{Mh}, \mathrm{d}, \mathrm{s}, \mathrm{k}$ where $\mathrm{d}=(\mathrm{i}+0) \bmod 10, \mathrm{~s}=0$
$\mathrm{Mh}, \mathrm{e}, \mathrm{t}, \mathrm{k} \quad$ where $\mathrm{e}=(\mathrm{i}+4) \bmod 10, \mathrm{t}=4$
where h : the divided block
$h=0, \ldots, 3$
i: the vertical order of the super block
$i=0, \ldots, 9$
k : the macro block order in the super block
$\mathrm{k}=0, \ldots, 26$
50-Hz system -
divided block
$\mathrm{Mh}, \mathrm{a}, \mathrm{p}, \mathrm{k}$ where $\mathrm{a}=(\mathrm{i}+2) \bmod 11, \mathrm{p}=2$
$\mathrm{Mh}, \mathrm{b}, \mathrm{q}, \mathrm{k}$ where $\mathrm{b}=(\mathrm{i}+6) \bmod 11, \mathrm{q}=1$
$\mathrm{Mh}, \mathrm{c}, \mathrm{r}, \mathrm{k} \quad$ where $\mathrm{c}=(\mathrm{i}+8) \bmod 11, \mathrm{r}=3$
$\mathrm{Mh}, \mathrm{d}, \mathrm{s}, \mathrm{k}$ where $\mathrm{d}=(\mathrm{i}+0) \bmod 11, \mathrm{~s}=0$
$\mathrm{Mh}, \mathrm{e}, \mathrm{t}, \mathrm{k} \quad$ where $\mathrm{e}=(\mathrm{i}+4) \bmod 11, \mathrm{t}=4$
where h : the divided block
$h=0, \ldots, 3$
i: the vertical order of the super block
$i=0, \ldots, 10$
k : the macro block order in the super block
$k=0, \ldots, 26$
edge unit
$\mathrm{Mh}, \mathrm{a}, \mathrm{p}, \mathrm{k}$ where $\mathrm{h}=0, \mathrm{a}=11, \mathrm{p}=0$
$\mathrm{Mh}, \mathrm{b}, \mathrm{q}, \mathrm{k}$ where $\mathrm{h}=0, \mathrm{~b}=11, \mathrm{q}=1$
$\mathrm{Mh}, \mathrm{c}, \mathrm{r}, \mathrm{k}$ where $\mathrm{h}=0, \mathrm{c}=11, \mathrm{r}=2$
$\mathrm{Mh}, \mathrm{d}, \mathrm{s}, \mathrm{k}$ where $\mathrm{h}=0, \mathrm{~d}=11, \mathrm{~s}=3$
$\mathrm{Mh}, \mathrm{e}, \mathrm{t}, \mathrm{k}$ where $\mathrm{h}=0, \mathrm{e}=11, \mathrm{t}=4$
where k : the macro block order in the super block $k=0, \ldots, 26$
Each video segment before the bit rate reduction is expressed as V h,i,k which consists of M h,a,p,k; M $\mathrm{h}, \mathrm{b}, \mathrm{q}, \mathrm{k} ; \mathrm{Mh} \mathrm{h}, \mathrm{c}, \mathrm{r}, \mathrm{k} ; \mathrm{Mh} \mathrm{h}, \mathrm{d}, \mathrm{s}, \mathrm{k}$; and $\mathrm{M} \mathrm{h}, \mathrm{e}, \mathrm{t}, \mathrm{k}$.

The bit-rate reduction process shall be operated sequentially from $\mathrm{Mh}, \mathrm{a}, \mathrm{p}, \mathrm{k}$ to $\mathrm{Mh}, \mathrm{e}, \mathrm{t}, \mathrm{k}$. The data in the video segment shall be compressed and transformed to a 385 -byte data stream. A set of compressed video data consists of five compressed macro blocks. Each compressed macro block shall consist of 77 bytes and is expressed as CM. Each video segment after the bit-rate reduction is expressed as $\mathrm{CV} \mathrm{h}, \mathrm{i}, \mathrm{k}$ which consists of CM h,a,p,k; CM h,b,q,k; CM h,c,r,k; CM h,d,s,k; and CM h,e,t,k as shown below:

CM h,a,p,k :
This block includes all parts or most parts of the compressed data from macro block $\mathrm{M} \mathrm{h}, \mathrm{a}, \mathrm{p}, \mathrm{k}$ and may include the compressed data of macro block $\mathrm{Mh}, \mathrm{b}, \mathrm{q}, \mathrm{k}$; or $\mathrm{Mh}, \mathrm{c}, \mathrm{r}, \mathrm{k}$; or $\mathrm{Mh}, \mathrm{d}, \mathrm{s}, \mathrm{k}$; or $\mathrm{Mh}, \mathrm{e}, \mathrm{t}, \mathrm{k}$.

CM h,b,q,k :
This block includes all parts or most parts of the compressed data from macro block $M \mathrm{~h}, \mathrm{~b}, \mathrm{q}, \mathrm{k}$ and may include the compressed data of macro block $\mathrm{M} \mathrm{h}, \mathrm{a}, \mathrm{p}, \mathrm{k}$; or $\mathrm{Mh}, \mathrm{c}, \mathrm{r}, \mathrm{k}$; or $\mathrm{Mh} \mathrm{h}, \mathrm{d}, \mathrm{s}, \mathrm{k}$; or $\mathrm{M} \mathrm{h,e,t,k}$.

CM h,c,r,k :
This block includes all parts or most parts of the compressed data from macro block $M \mathrm{~h}, \mathrm{c}, \mathrm{r}, \mathrm{k}$ and may include the compressed data of macro block $M h, a, p, k$; or $M h, b, q, k$; or $M h, d, s, k ;$ or $M h, e, t, k$.

CM h,d,s,k :
This block includes all parts or most parts of the compressed data from macro block $\mathrm{M} \mathrm{h}, \mathrm{d}, \mathrm{s}, \mathrm{k}$ and may include the compressed data of macro block $\mathrm{M} \mathrm{h,a,p,k;} \mathrm{or} \mathrm{M} \mathrm{h}, \mathrm{b}, \mathrm{q}, \mathrm{k}$; or $\mathrm{M} \mathrm{h}, \mathrm{c}, \mathrm{r}, \mathrm{k}$; or $\mathrm{M} \mathrm{h,e,t,k}$.

CM h,e,t,k :
This block includes all parts or most parts of the compressed data from macro block $\mathrm{M} \mathrm{h}, \mathrm{e}, \mathrm{t}, \mathrm{k}$ and may include the compressed data of macro block $M \mathrm{~h}, \mathrm{a}, \mathrm{p}, \mathrm{k}$; or $\mathrm{M} \mathrm{h}, \mathrm{b}, \mathrm{q}, \mathrm{k}$; or $\mathrm{M} \mathrm{h}, \mathrm{c}, \mathrm{r}, \mathrm{k}$; or $\mathrm{M} \mathrm{h}, \mathrm{d}, \mathrm{s}, \mathrm{k}$.

4.2 DCT processing

Four rows of eight horizontal pixels from each field of a video frame form the DCT block in the 1080-line system. Eight rows of eight horizontal pixels from a video frame form the DCT block in the 720 -line system.

The DCT transformation from 64 pixels in a DCT block whose numbers are $\mathrm{h}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{I}(\mathrm{x}, \mathrm{y})$ to 64 coefficients whose numbers are $h, i, j, k, l(u, v)$ is described as follows:
$P h, i, j, k, l(x, y)$ is the value of the pixel and $C h, i, j, k, l(u, v)$ is the value of the coefficient.
For $u=0$ and $v=0$, the coefficient is called DC coefficient. All other coefficients are called AC coefficients.

4.2.1 DCT mode

For the 1080-line system, one of two DCT modes is selected for purpose to improve picture quality after bit rate reduction. These modes are defined as the $8-8$-frame-DCT mode and the $8-8$-field-DCT mode. The $8-8-$ frame-DCT mode should be selected when the difference between two fields in a video frame is small. The 8 8 -field-DCT mode should be selected when the difference between two fields in a video frame is large.

For the DCT blocks in the bottom macro block in the $1080 / 60$ i system, it is recommended to select the 8-8-frame-DCT mode.

For the 720 -line system, the $8-8$-frame-DCT mode should be selected.
The same DCT mode shall be applied to all DCT blocks in a macro block.
As shown in figure 32, if the 8-8-field-DCT mode is selected, pixels in the two vertical adjacent DCT blocks shall be rearranged to form the re-arranged DCT blocks that contain pixels from the same field.

The following DCT paragraph shows the algorithm that is applied to both DCT modes, the 8-8-frame-DCT and the 8-8-field-DCT modes.

DCT :

$$
C h, i, j, k, I(u, v)=C(v) C(u) \sum_{y=0}^{7} \sum_{x=0}^{7}(P h, i, j, k, l(x, y) \cos (\pi v(2 y+1) / 16) \cos (\pi u(2 x+1) / 16))
$$

Inverse DCT:

$$
P h, i, j, k, l(x, y)=\sum_{v=0}^{7} \sum_{u=0}^{7}(C(v) C(u) C h, i, j, k, l(u, v) \cos (\pi v(2 y+1) / 16) \cos (\pi u(2 x+1) / 16))
$$

where:

$$
\begin{array}{ll}
C(u)=0.5 / \sqrt{2} & \text { for } u=0 \\
C(u)=0.5 & \text { for } u=1 \text { to } 7 \\
C(v)=0.5 / \sqrt{2} & \text { for } v=0 \\
C(v)=0.5 & \text { for } v=1 \text { to } 7
\end{array}
$$

The values of the DCT coefficients $C h, i, j, k, I(u, v)$ are represented with 16 bits. Before weighting, therefore, the DCT coefficients shall be scaled depending on the sample resolution of the DCT input.

Figure 32 - Rearrangement of pixels in the 8-8-field-DCT mode

4.2.2 Weighting

The DCT coefficients $C h, i, j, k, l(u, v)$ shall be weighted by quantizer matrix. The different quantizer matrices shall be set for luminance signals and color difference signals as shown in figure 33 for the 1080/60i system, figure 34 for the 1080/50i system, and figure 35 for the 720/60p and the 720/50p systems.

4.2.3 Output order

Figure 36 shows the output order of the weighted coefficients.

Figure 33 - Quantizer matrix for the 1080/60i system

Figure 34 - Quantizer matrix for the 1080/50i system

Figure 35 - Quantizer matrix for the 720/60p and the 720/50p systems

Figure 36 - Output order of weighted DCT coefficients

4.3 Quantization

4.3.1 Introduction

The weighted DCT coefficients shall be divided by quantization steps in order to limit the amount of data in one video segment to five compressed macro blocks and limit the bit length of the AC coefficients within 9 bits.

4.3.2 Bit assignment for quantization

The weighted DCT coefficients shall be represented as follows:

DC coefficient value (9 bits):	b 8 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 twos complement $(-255$ to 255$)$
AC coefficient value (12 bits):	s b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 1 sign bit +11 bits of absolute value (-2047 to 2047)

4.3.3 Quantization step

The quantization step (Q -step) is selected in order to limit the amount of data in each five compressed macro blocks which are generated from a single video segment. Q-step shall be decided by the quantization number (QNO) and class number as specified in table 26 . The QNO shall be applied to every macro block. The class number shall be applied to every DCT block.

Data reduction consists of two procedures. First, the AC coefficient is divided by the Q-step. If the bit length of the quantized AC coefficient obtained is more than 9, then the second procedure is performed. In the second procedure, the AC coefficient is divided again by larger Q-step according to increasing class numbers in order to make the bit length of the quantized AC coefficient 9 or less.

Table 26 - Quantization step

		Class number			
		0	1	2	3
Quantization number (QNO)	1	1	2	4	8
	2	2	4	8	
	3	3	6	12	
	4	4	8		
	5	5	10		
	6	6	12		
	7	7	14		
	8	8			
	9	16	32	64	
	10	18	36	72	
	11	20	40	80	
	12	22	44	88	
	13	24	48	96	
	14	28	56	112	
	15	52	104		

4.4 Variable length coding (VLC)

Variable length coding is an operation for transforming from quantized AC coefficients to variable length codes. One or more successive AC coefficients within a DCT block shall be coded into one variable length code according to the order as shown in figure 36 . Run length and amplitude are defined as follows:

Run length: The number of successive AC coefficients quantized to 0

$$
(\text { run }=0, \ldots, 61)
$$

Amplitude: Absolute value just after successive AC coefficients quantized to 0

$$
(\mathrm{amp}=0, \ldots, 255)
$$

(run, amp): The pair of run length and amplitude.
Table 27 shows the length of code words corresponding to (run, amp). In table 27, sign bit is not included in the length of code words. When the amplitude is not zero, the code length is incremented by one to express the sign bit of the amplitude. For empty cells in table 27, the code word of the (run, amp) is expressed by a combination of the (run-1,0) and the ($0, a m p$).

Code words for (run.amp) shall be assigned as shown in table 28. The leftmost bit of code words is MSB and the rightmost bit of code words is LSB in table 28. The MSB of a subsequent code word is next to the LSB of the code word just before. Sign bit " s " shall be set as follows.

When the quantized AC coefficient is greater than zero, $\mathrm{s}=0$
When the quantized AC coefficient is less than zero, $s=1$
When the values of all of the remaining quantized coefficients are zero within a DCT block, the coding process is ended by adding the EOB (end of block) code word of 0110b immediately after the last code word.

Table 27 - Length of codewords

	Amplitude																									
Run length	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	\cdots	255
0	11	2	3	4	4	5	5	6	6	7	7	7	8	8	8	8	8	8	9	9	9	9	9	15	\cdots	15
1	11	4	5	7	7	8	8	8	9	10	10	10	11	11	11	12	12	12								
2	12	5	7	8	9	9	10	12	12	12	12	12														
3	12	6	8	9	10	10	11	12																		
4	12	6	8	9	11	12																				
5	12	7	9	10																						
6	13	7	9	11																						
7	13	8	12	12																						
8	13	8	12	12																						
9	13	8	12																							
10	13	8	12																							
11	13	9																								
12	13	9																								
13	13	9																								
14	13	9																								
15	13																									
	1																									
61	13																									

NOTES

1 Sign bit is not included.
2 The length of $\mathrm{EOB}=4$.

Table 28 - Codewords of variable length coding

(Run, amp)		Code	Length	(Run, amp)		Code	Length	(Run, amp)		Code			Length
0	1	00s	2+1	11	1	111100000s	9+1	7	2	1110110			12+1
0	2	010s	3+1	12	1	111100001s		8	2	1111101	0001s		
EOB		0110	4	13	1	111100010s		9	2	1111101	0010s		
1	1	0111s	4+1	14	1	111100011s		10	2	1111101	0011s		
0	3	1000s		5	2	111100100s		7	3	1111011	00s		
0	4	1001s		6	2	111100101s		8	3	1111101	101s		
2	1	10100s	5+1	3	3	111100110s		4	5	1111011	10s		
1	2	10101s		4	3	111100111s		3	7	1111011	11s		
0	5	10110s		2	4	111101000s		2	7	1111011	00s		
0	6	10111s		2	5	111101001s		2	8	1111011	001s		
3	1	110000s	6+1	1	8	111101010s		2	9	1111011	10s		
4	1	110001s		0	18	111101011s		2	10	1111011	11s		
0	7	110010s		0	19	111101100s		2	11	1111011	00s		
0	8	110011s		0	20	111101101s		1	15	1111011	01s		
5	1	1101000s	7+1	0	21	111101110s		1	16	1110111			
6	1	1101001s		0	22	111101111s		1	17	1111101	11s		
2	2	1101010s		5	3	1111100000s	10+1	6	0	1111100	110		13
1	3	1101011s		3	4	1111100001s		7	0	1111000			
1	4	1101100s		3	5	1111100010s		$\begin{aligned} & \mathrm{I} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	1111110	Binary notation of R R = 6 to 61		
0	9	1101101s		2	6	1111100011s							
0	10	1101110s		1	9	1111100100s							
0	11	1101111s		1	10	1111100101s		61	0	1111110	1101		
7	1	1110000s	8+1	1	11	1111100110s		0	23	1111100	0111s		15+1
8	1	1110001s		0	0	11111001110	11	0	24	1111110	11000s		
9	1	11100010s		1	0	11111001111		101	A I	1111111	$\begin{gathered} \text { Binary } \\ \text { notation of } A \\ A=23 \text { to } 255 \end{gathered}$	S	
10	1	11100011s		6	3	11111010000s	11+1						
3	2	11100100s		4	4	11111010001s							
4	2	11100101s		3	6	11111010010s							
2	3	11100110s		1	12	11111010011s		0	255	1111111	111111s		
1	5	11100111s		1	13	11111010100s							
1	6	11101000s		1	14	11111010101s							
1	7	11101001s		2	0	111110101100	12						
0	12	11101010s		3	0	111110101101							
0	13	11101011s		4	0	111110101110							
0	14	11101100s		5	0	111110101111							
0	15	11101101s											
0	16	11101110s											
0	17	11101111s											

4.5 Arrangement of a compressed macro block

The compressed video segment shall consist of five compressed macro blocks. Each compressed macro block has 77 bytes of data. The arrangement of the compressed macro block shall be as shown in figure 37 .

STA (status of the compressed macro block)
STA expresses the error and concealment information of the compressed macro block and shall consist of four bits: $s 3, \mathrm{~s} 2, \mathrm{~s} 1, \mathrm{~s} 0$. Table 29 shows the definitions of STA.

QNO (quantization number) - QNO is the quantization number applied to the macro block. Code words of the QNO shall be as shown in table 30.

DC -
DCI (where I is the DCT block order in the macro block, $\mathrm{I}=0, \ldots, 7$) shall consist of a DC coefficient, the DCT mode, and the class number of the DCT block.

MSB
LSB
DCI: b8 b7 b6 b5 b4 b3 b2 b1 b0 mo c1 c0
where
b8 to b0: DC coefficient value
mo: DCT mode

$$
\begin{array}{rl}
\text { for } \mathrm{I}=0 & 0=8-8 \text {-frame-DCT mode } \\
& 1=8-8 \text {-field-DCT mode }
\end{array}
$$

for $\mathrm{I}=1$ to 7 reserved bit for future use
Default value shall be set to 1
c1 c0 : class number
AC -
AC is a generic term for variable length coded AC coefficients within the video segment V h,i,k. The areas of $Y_{0}, Y_{1}, Y_{2}, Y_{3}, C_{R 0}, C_{R 1}, C_{B 0}$, and $C_{B 1}$ are defined as compressed-data areas, each of $Y_{0}, Y_{1}, Y_{2}, Y_{3}, C_{R 0}$, and $\mathrm{C}_{R 1}$ shall consist of 80 bits and each $\mathrm{C}_{\mathrm{B} 0}$ and $\mathrm{C}_{\mathrm{B} 1}$ shall consist of 64 bits as shown in figure $37 . \mathrm{DCl}$ and variable length code for AC coefficients in the DCT block whose DCT block number is h,i,j,k,l shall be assigned from the beginning of the compressed-data area in the compressed macro block CM h,i,j,k. In figure 37, the variable length code word is located starting from MSB which is shown in the upper left side, and the LSB shown in the lower right side. Therefore, AC data are distributed from the upper left corner to the lower right corner.

Byte position number

Figure 37 - Arrangement of a compressed macro block

Table 29 - Definition of STA

STA bit				Information of the compressed macro block		
s3	s2	s1	s0	Error	Error concealment	Continuity
0	0	0	0	No error	Not proceeded	
0	0	1	0		Type A	Type a
0	1	0	0		Type B	
0	1	1	0		Type C	
0	1	1	1	Error exists	-	-
1	0	1	0	No error	Type A	Type b
1	1	0	0		Type B	
1	1	1	0		Type C	
1	1	1	1	Error exists	-	- -
other				reserved		

where
Type A: Replaced with a compressed macro block of the same compressed macro block number in the frame immediately previous.
Type B: Replaced with a compressed macro block of the same compressed macro block number in the next immediate frame.
Type C: This compressed macro block is concealed, but the concealment method is not specified.
Type a The continuity of data processing sequence with other compressed macro block whose $s 0=0$ and $s 3=0$ in the same video segment is guaranteed.
Type b: The continuity of data processing sequence with other compressed macro block is not guaranteed.

NOTES
1 For STA = 0111b, the error code is inserted in the compressed macro block. This is an option.
2 For STA = 1111b, the error position is unidentified.

Table 30 - Codewords of the QNO

Q number bit				QNO
q3	q2	q1	q0	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

4.6 Arrangement of a video segment

In this clause, the distribution method of quantized AC coefficients is described. The video segment CV h,i,k after bit-rate reduction shall be arranged as shown in figure 38. The column shows the compressed macro block. Symbol F h,i,j,k,l expresses a compressed data area for the DCT block whose DCT block number is h , $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{I}$. Bit sequence, defined as B h,i,j,k,l, shall consist of the following concatenated data: DC coefficient, DCT mode information, class number, and AC coefficient code words for DCT blocks numbered h,i,j,k,l. Code words for AC coefficients of B h,i,j,k,I shall be concatenated according to the order as shown in figure 36 and the last code word shall be EOB. The MSB of the subsequent code word shall be next to the LSB of the code word just before it.

The algorithm for the arrangement of the video segment shall be composed of the three passes below:
Pass 1: The distribution of $B h, i, j, k, I$ to the compressed-data area;
Pass 2: The distribution of the overflow $B h, i, j, k, l$ which remains after the pass 1 operation in the same compressed macro block;

Pass 3: The distribution of the overflow $B \mathrm{~h}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}$ which remains after the pass 2 operation in the same video segment.

Arrangement algorithm of a video segment

```
for(h = 0; h < 4; h ++) \{
    if ( 60 Hz system) \(\mathrm{n}=10\);
    else if \((h=0) n=12 ;\)
    else \(\mathrm{n}=11\);
    for ( \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++\) ) \(\{\)
        if \((i<11)\) \{
            \(\mathrm{a}=(\mathrm{i}+2) \bmod \mathrm{n}\);
            \(\mathrm{b}=(\mathrm{i}+6) \bmod \mathrm{n}\);
            \(\mathrm{c}=(\mathrm{i}+8) \bmod \mathrm{n}\);
            \(\mathrm{d}=(\mathrm{i}+0) \bmod \mathrm{n}\);
            \(\mathrm{e}=(\mathrm{i}+4) \operatorname{modn} \mathrm{n}\);
            \(p=2 ; q=1 ; r=3 ; s=0 ; t=4 ;\)
            \}
            else \{
                    \(a=b=c=d=e=11 ;\)
                    \(p=0 ; q=1 ; r=2 ; s=3 ; t=4 ;\)
            \}
            for ( \(k=0 ; k<27 ; k++\) ) \{
                    \(x=a ; y=p ;\)
                    VR = 0;
                    /* VR is the bit sequence for the data */
            /* which are not distributed to video segment CV h,i,k by pass 2. */
        /* pass 1 */
            for ( \(\mathrm{j}=0 ; \mathrm{j}<5 ; \mathrm{j}++\) ) \{
                    MRy \(=0\);
                /* MRy is the bit sequence for the data
                */
                /* which are not distributed to macro block \(\mathrm{M} \mathrm{h}, \mathrm{x}, \mathrm{y}, \mathrm{k}\) by pass 1 . */
                for ( \(1=0 ; 1<8 ; 1++\) ) \{
                    remain \(=\) distribute ( \(\mathrm{B} \mathrm{h}, \mathrm{x}, \mathrm{y}, \mathrm{k}, \mathrm{l}, \mathrm{Fh}\) h, \(\mathrm{x}, \mathrm{y}, \mathrm{k}, \mathrm{l})\);
                    MRy = connect (MRy, remain);
                    \}
                    if \((y==p)\{y=q ; x=b ;\}\)
```

```
            else if (y== q) {y=r;x=c;}
            else if (y== r) {y=s; x=d;}
            else if (y== s) {y=t;x=e;}
            else if (y== t) {y=p;x=a;}
        }
    /* pass 2 */
        for (j= 0; j < 5; j ++) {
            for (I=0; I < 8; I ++) {
                    MRy = distribute (MRy, F h,x,y,k,l);
            }
            VR = connect (VR, MRy);
                    if (y== p) {y=q; x = b;}
            else if (y== q) {y=r; x = c;}
            else if (y== r) {y=s; x=d;}
            else if (y== s) {y=t;x=e;}
            else if (y==t) {y=p; x=a;}
        }
    /* pass 3 */
        for (j = 0; j < 5; j ++) {
            for (I=0; I < 8; I ++) {
                    VR = distribute (VR, F h,x,y,k,l);
            }
                if (y== p) {y=q; x = b;}
            else if (y== q) {y=r;x=c;}
            else if (y == r) {y=s; x = d;}
            else if (y== s) {y=t;x=e;}
            else if (y== t) {y=p;x=a;}
        }
        }
    }
}
where
    distribute (data 0, area 0) { /* Distribute data 0 from MSB into empty area of area 0. */
                    /* The area 0 is filled starting from the MSB. */
        remain = (remaining_data); /* Remaining_data are the data which are not distributed. */
        return (remain);
    }
    connect (data 1, data 2 ) { /* Connect the MSB of data 2 with the LSB of data 1. */
        data 3 = (connecting_data); /* Connecting_data are the data which are connected. */
                        /* data 2 with data }1
                            */
        return (data3);
    }
```

The remaining data which can not be distributed within the unused space of the macro block will be ignored. Therefore, when error concealment is performed for a compressed macro block, some data distributed by pass 3 may not be reproduced.

Video error code processing
If errors are detected in a compressed macro block which is reproduced and processed with error correction, the compressed-data area containing these errors should be replaced with the video error code. This process replaces the first two bytes of data of the compressed-data area with the code as follows:

MSB LSB
1000000000000110b

The first 9 bits are DC error code, the next 3 bits are the information of DCT mode and class number and the last 4 bits are the EOB as shown in figure 39.

When the compressed macro blocks, after error code processing, are input to the decoder which does not operate with video error code, all data in this compressed macro block should be processed as invalid.

Compressed macro block numberCMn,a,p,k	Byte position number								
	a	F h,a,p,k,0	F $\mathrm{h}, \mathrm{a}, \mathrm{p}, \mathrm{k}, 1$	Fh,a,p,k,2	F h,a,p,k, 3	F h,a,p,k,4	F h,a,p,k,5	F h,a,p,k,6	Fh,a,p,k,7
CMn,b,q,k	a 0 a N 0 b	F h,b,q,k,0	F $\mathrm{h}, \mathrm{b}, \mathrm{q}, \mathrm{k}, 1$	Fh,b,q,k, 2	F $\mathrm{h}, \mathrm{b}, \mathrm{q}, \mathrm{k}, 3$	F $\mathrm{h}, \mathrm{b}, \mathrm{q}, \mathrm{k}, 4$	F $\mathrm{h}, \mathrm{b}, \mathrm{q}, \mathrm{k}, 5$	F h,b,q,k, 6	Fh,b,q,k,7
CMh,c,r,k		F h,c,r, , , 0	F h,c,r, , , , 1	Fh,c,r,k,2	F h,c,r,k,3	Fh,c,r,k,4	Fh,c,r,k,5	F h,c,r,k,6	Fh,c,r,k,7
CMh, d, s, k	d d N N d	F h,d,s,k,0	F h,d,s,k, 1	Fh,d,s,k,2	F h,d,s,k,3	F h,d,s,k,4	Fh,d,s,k,5	F h,d,s,k,6	F h,d,s,k,7
CMh,e,t,k	e Q N e	F h,e,t,k,0	F h,e,t,k,1	Fh,e,t,k,2	F h,e,t,k,3	F h,e,t,k,4	Fh,e,t,k,5	F h,e,t,k,6	Fh,e,t,k,7
		Y_{0}	Y_{1}	Y_{2}	Y_{3}	C_{R} o	$\mathrm{C}_{\mathrm{R} 1}$	$\mathrm{C}_{\mathrm{B}} 0$	$\mathrm{C}_{\mathrm{B} 1}$
		10 bytes	8 bytes	8 bytes					

Figure 38 - Arrangement of a video segment after the bit rate reduction

Figure 39 - Video error code

Annex A (informative)
Relationship between compression format and other documents

Figure A. 1 shows the relationship between the compression format (this document) and other documents defining the Type D-12 recorder.

Figure A. 1 - Block diagram of Type D-12 recorder

Annex B (normative)
Digital filter for sampling-rate conversion

Figure B. 1 - Template for insertion loss frequency characteristic

Figure B. 2 - Pass band ripple tolerance

Table B. 1 - Parameter of digital filter

		fs	a	b	c	d	e
1080/60i	Y	74.25/1.001 MHz	0.05	0.25	0.333	0.45	0.55
	$\mathrm{C}_{\mathrm{B}}, \mathrm{C}_{\mathrm{R}}$		0.025	0.125	0.167	0.225	0.275
1080/50i	Y	74.25 MHz	0.05	0.25	0.375	0.50	0.60
	$\mathrm{C}_{\mathrm{B}}, \mathrm{C}_{\mathrm{R}}$		0.025	0.125	0.1875	0.25	0.30
720/60p	Y	74.25/1.001 MHz	0.05	0.25	0.375	0.50	0.60
	$\mathrm{C}_{\mathrm{B}}, \mathrm{C}_{\mathrm{R}}$		0.025	0.125	0.1875	0.25	0.30
720/50p	Y	74.25 MHz	0.05	0.25	0.375	0.50	0.60
	$\mathrm{C}_{\mathrm{B}}, \mathrm{C}_{\mathrm{R}}$		0.025	0.125	0.1875	0.25	0.30

Annex C (informative)
 Compression specification

The compression specification of this standard is different from the IEC 61834-3 HD format for 1125-60 and 1250-50 systems

Annex D (informative)
Abbreviations and acronyms

AAUX	Audio auxiliary data
AP1	Audio application ID
AP2	Video application ID
AP3	Subcode application ID
APT	Track application ID
Arb	Arbitrary
AS	AAUX source pack
ASC	AAUX source control pack
CGMS	Copy generation management system
CM	Compressed macro block
DBN	DIF block number
DCT	Discrete cosine transform
DIF	Digital interface
DRF	Direction flag
Dseq	DIF sequence number
DSF	DIF sequence flag
EFC	Emphasis audio channel flag
EOB	End of block
LF	Locked mode flag
QNO	Quantization number
QU	Quantization
Res	Reserved for future use
SCT	Section type
SMP	Sampling frequency
SSYB	Subcode sync block
STA	Status of the compressed macro block
STYPE	Signal type
Syb	Subcode sync block number
TF	Transmitting flag
VAUX	Video auxiliary data
VLC	Variable length coding
VS	VAUX source pack
VSC	VAUX source control pack

Annex E (informative)
 Bibliography

IEC 61834-2 (1997), Recording - Helical-Scan Digital Video Cassette Recording System Using 6,35 mm Magnetic Tape for Consumer Use (525-60, 625-50, 1125-60 and 1250-50 Systems) - Part 2: SD Format for 525-60 and 625-50 Systems - Part 3: HD Format for 1125-60 and 1250-50 Systems

SMPTE 371M-2002, Television - 6.35-mm Type D-12 Component Format — Digital Recording at 100Mb/s 1080/60i, 1080/50i , 720/60p

