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Patterns of diversification and timing of
evolution within Neoaves, which includes almost
95% of all bird species, are virtually unknown.
On the other hand, molecular data consistently
indicate a Cretaceous origin of many neoavian
lineages and the fossil record seems to support
an Early Tertiary diversification. Here, we
present the first well-resolved molecular phylo-
geny for Neoaves, together with divergence time
estimates calibrated with a large number of
stratigraphically and phylogenetically well-
documented fossils. Our study defines several
well-supported clades within Neoaves. The cali-
bration results suggest that Neoaves, after an
initial split from Galloanseres in Mid-Cretac-
eous, diversified around or soon after the K/T
boundary. Our results thus do not contradict
palaeontological data and show that there is no
solid molecular evidence for an extensive pre-
Tertiary radiation of Neoaves.
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1. INTRODUCTION
Birds are used as model organisms in many fields
of biology, and the lack of a thorough understanding
of their systematics has often compromised interpre-
tations of experiments and observations. The
DNA–DNA hybridization studies of Sibley & Ahl-
quist (1990) have repeatedly been criticized for
methodological reasons (Harshman 1994; Cracraft
et al. 2004), and the few cladistic analyses of Neoaves
with dense taxon sampling show poor resolution of
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the deep divergences (Livezey & Zusi 2001; Cracraft
et al. 2004; Fain & Houde 2004). DNA sequence
data have begun to clarify interfamily relationships for
a handful of higher level groups such as some aquatic
birds (van Tuinen et al. 2001), ‘higher land birds’
(Johansson et al. 2001; Mayr et al. 2003), shorebirds
(Ericson et al. 2003; Paton et al. 2003) and passerines
(Barker et al. 2004). Recent analyses of morphological
and molecular data support a sister group relationship
between Galloanseres (land- and waterfowl) and all
other neognathous birds, the Neoaves (Livezey &
Zusi 2001; Mayr & Clarke 2003; Cracraft et al. 2004;
Fain & Houde 2004). However, there are no
hypotheses concerning the most basal neoavian diver-
gences, except for the proposed division of the group
into Metaves and Coronaves based on an analysis of
b-fibrinogen sequence data (Fain & Houde 2004).

Molecular clock analyses have suggested that the
earliest diversification of Neoaves had already
occurred in the Cretaceous (Hedges et al. 1996;
Cooper & Penny 1997; Cracraft 2001; van Tuinen &
Hedges 2001). However, there are few neoavian
fossils from the Cretaceous (Hope 2002; Feduccia
2003) and instead the palaeontological record
suggests that only a few neoavian lineages existed at
the end of the Cretaceous, 65 Myr ago (Feduccia
2003). The considerable diversity of stem group
representatives of modern neoavian taxa, which is
evident in the Early Eocene 50 Myr ago (Mayr 2005),
would thus result from a rapid diversification of taxa,
which filled the many vacant ecological niches after
the K/T boundary (Feduccia 2003). There is an
apparent conflict between earlier molecular datings
and the palaeontological record—but is this conflict
real? The molecular dating methods must be correctly
calibrated to yield reliable data, and this has not
previously been done in studies including Neoaves.
Since all Cretaceous fossils of neornithine birds are
very fragmentary (Hope 2002) and their identification
is often uncertain (Hope 2002), most calibrations
have so far used a calculated age for the split between
galliforms and anseriforms (90 Myr ago) which is in
turn based on the diapsid/synapsid split age at
310 Myr ago (Hedges et al. 1996). However, Graur &
Martin (2004) have argued convincingly that this
estimate is not reliable, and nor are any of the
calibration points that are based on it. Here, we
employ an alternative strategy and use multiple fossils
of more recent neoavian groups as internal calibration
points in order to test the different diversification
models suggested by Penny & Phillips (2004).
2. MATERIAL AND METHODS
Traditional classification recognizes 145 families in Neoaves
(Morony et al. 1975). We obtained genomic DNA from blood or
tissue samples of 87 neoavian species representing 75 families.
Charadriiformes (shorebirds and allies, 19 families in total) and
Passeriformes (passerines, 57 families in total), which have been
shown to be monophyletic (Ericson et al. 2002, 2003; Paton et al.
2003; Barker et al. 2004), are represented by four and two families,
respectively. At least one genus was sampled from the remaining
neoavian families. Two palaeognaths (Rhea and Apteryx), one
megapode and one screamer, were used as outgroups following the
well-established hypothesis that Palaeognathae are the sister taxon
of Neognathae, and that Galloanseres, in turn, are the sisters of
Neoaves (Groth & Barrowclough 1999). The sample information
and GenBank accession numbers are given in the electronic
supplementary material.
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Figure1. (Caption Opposite.)
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Figure 1. (Opposite.) Family-level relationships within Neoaves estimated by Bayesian analysis of five nuclear genes (5007
nucleotide positions). Nodes that received a posterior probability value of less than 95% have been collapsed. Note that the
branch lengths are not proportional to the number of nucleotide substitutions along each branch. Neoavian families fall into
a few reciprocally monophyletic clades (coloured) that roughly correspond to ecological adaptations of extant taxa. Nodal
numbers correspond to clades discussed in the text. Letters in boxes, referring to table 3 in the electronic supplementary
material, indicate fossil calibration points.
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The aligned dataset consists of 5007 bp obtained from five gene
regions: c-myc (exon 3), RAG-1, myoglobin (intron 2), b-fibrinogen
(intron 7) and ornithine decarboxylase (introns 6 and 7, along with
the intercepting exon 7). For laboratory procedures, alignments,
selection of models for nucleotide substitutions, parsimony analysis
and Bayesian analyses of individual gene regions, see electronic
supplementary material.

Divergence times were estimated using two rate-smoothing
methods, penalized likelihood (PL; Sanderson 2002) and PATHd8
(Britton et al. 2006). PL combines a model that overfits the data
with a penalty for fast-rate changes between mother and daughter
lineages. PATHd8 smoothes substitution rates between sister
groups, instead of mother–daughter lineages, by sequentially taking
averages over path lengths from an internode to all its descending
terminals. Both PL and PATHd8 need one fixed calibration point.
For this purpose, we used a 47.5-Myr-old stem group representa-
tive of hummingbirds. We also constrained the root of the tree (the
stem species of extant birds) to a maximum age of 100 Myr. An
additional set of 21 stratigraphically and phylogenetically well-
studied fossils were used as minimum age constraints. All the fossils
used for calibrations (see electronic supplementary material) are
stem group representatives of extant higher level taxa and provide a
minimum age for the divergence of the total group (stem and
crown group) from its sister taxon.
3. RESULTS AND DISCUSSION
Our Bayesian analysis of the dataset resulted in a well-
resolved and strongly supported topology defining
several clades within Neoaves (figure 1). The obtained
tree topologies, one from the combined data, one
without b-fibrinogen and one based on b-fibrinogen
only, are similar in many respects, providing further
evidence for a strong phylogenetic signal in the
analysed data (see electronic supplementary material).

The combined data support a basal dichotomy into
Metaves and Coronaves as proposed by Fain & Houde
(2004). However, monophyly of Metaves (doves, sand-
grouse, mesites, flamingos, grebes, kagu, sunbittern,
hoatzin, tropicbirds, swifts, treeswifts, hummingbirds
and nightbirds) is retained only if the b-fibrinogen data
are included. Moreover, our Bayesian analysis of the
b-fibrinogen data alone did not provide a strong
support for Metaves even though this group was
originally defined in an analysis based on this gene
(Fain & Houde 2004). We obtained strong support for
Metaves only after the inclusion of all genes, which
shows that all or some other genes also contain a
phylogenetic signal for Metaves, albeit this signal seems
to be weak. Our data also strongly support the recently
suggested flamingo–grebe clade (van Tuinen et al.
2001; Cracraft et al. 2004; Mayr 2004).

All trees support a clade including nightbirds
(the traditional ‘caprimulgiforms’ but not owls) and
apodiform birds (swifts and hummingbirds; figure 1,
node 1). Our results confirm a sister group relationship
between the owlet-nightjars and Apodiformes (Mayr
2002; Cracraft et al. 2004), and for the first time,
suggest monophyly of a clade that includes all the taxa
traditionally placed in ‘Caprimulgiformes’ and Apodi-
formes. The obtained topology suggests that the diurnal
Apodiformes evolved within a radiation of nocturnal
birds, indicating a nocturnal ancestor of Apodiformes.
Biol. Lett.
Strongly supported is a previously unrecognized
major clade (Johansson et al. 2001; Mayr et al. 2003),
which includes diurnal birds of prey, seriemas, parrots
and the ‘higher landbird assemblage’ (figure 1,
node 2). For the majority of families, traditionally
included in the orders Coraciiformes and Piciformes
(figure 1, node 3), the same internal relationships
have been recovered as in other recent molecular
analyses (Johansson et al. 2001; Johansson & Ericson
2003; Mayr et al. 2003).

In concordance with other recent analyses (Sibley &
Ahlquist 1990; Cracraft et al. 2004; Fain & Houde
2004), our data recover a clade (figure 1, node 4) that
includes the secretarybird and accipitrid diurnal birds of
prey (osprey, hawks and allies) to the exclusion of
falcons. This grouping is recovered in separate analyses
of four of the five investigated genes. The New World
vultures clearly have their affinity with other raptors and
not with storks (contra, e.g. Sibley & Ahlquist 1990).

Another well-supported clade includes birds with
various aquatic or semi-aquatic adaptations (figure 1,
node 5), as well as, in unresolved basal positions,
the terrestrial turacos, bustards and cuckoos. The
well-supported groupings within this clade are the
‘core-gruiforms’ (i.e. cranes, limpkin, rails, finfoots
and trumpeters; figure 1, node 6), procellariiforms
(albatrosses, storm-petrels, diving petrels, petrels and
shearwaters; figure 1, node 7) and a group consisting
of the anhingas, cormorants, gannets and frigatebirds
(figure 1, node 8). As suggested previously, pelicans
group not only with shoebill and hamerkop (Cottam
1957; Livezey & Zusi 2001; van Tuinen et al. 2001;
Cracraft et al. 2004), but also with herons and ibises.
Penguins, loons and storks also belong to this clade.
The results confirm that the traditional Pelecaniformes
and Ciconiiformes are not monophyletic. The shore-
birds (figure 1, node 9) are in an unresolved position
relative to the two major clades of terrestrial/arboreal
and aquatic/semi-aquatic groups, respectively.

The PATHd8 analysis suggests that although the
earliest diversification of Neoaves took place in the
Late Cretaceous, the majority of higher level phyloge-
netic splits in Neoaves occurs after the K/T boundary
(figure 2). The pattern of divergence obtained from
PATHd8 and PL is similar with both the methods.
However, PL adds an average ‘ghost range’ of 21 Myr
to all the fossil records, and hence provides system-
atically older ages. We therefore consider the
PATHd8 result to be the more reliable one
(a comparison between the PATHd8 and the PL
chronograms, and age estimates for major bird
groups, are placed in the electronic supplementary
material). The differences between the results of the
PATHd8 and PL analyses leave open the question of
how many stem lineages of neoavian birds existed
before the K/T boundary. While the PATHd8 analysis
suggests that there were only a few (model 2 of
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Figure 2. Chronogram (calibrated ultrametric tree with branch lengths proportional to time) for Neoaves estimated using
PATHd8. Note that the split between Palaeognathae (represented by Rheidae and Apterygidae) and Neognathae is not
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4 P. G. P. Ericson and others Diversification of Neoaves

Biol. Lett.



Diversification of Neoaves P. G. P. Ericson and others 5
Penny & Phillips 2004), the PL analysis (see elec-

tronic supplementary material; Figure 9) indicates

that there may have been more lineages of which

some may have already obtained the ecological

adaptation of their crown group representatives

(model 4 of Penny & Phillips 2004). The present

reconstruction of the phylogeny and divergence times

of Neoaves accounts for both molecular and palaeon-

tological data. It disagrees with the claim that

molecular data indicate a deep Cretaceous diversifica-

tion of neoavian birds (cf. Hedges et al. 1996; van

Tuinen & Hedges 2001; corresponding to model 5 of

Penny & Phillips 2004).
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