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Copula Methods vs
Canonical Multivariate Distributions:

the multivariate Student T distribution with
general degrees of freedom

W. T. Shaw and K.T.A. Lee∗

In mathematical finance and other applications of statistics, the computation of expec-

tations is often taken over a multi-dimensional probability distribution where there is
no clear multivariate distribution. Copula theory has become increasingly popular as

a means of gluing marginals together to circumvent this difficulty. There is then the

issue of reconciling the distributions implied by various choices of copula and marginal
with candidates for the canonical multivariate distribution when such candidates become

available. This article looks at the copulae and candidate multivariate distributions for

a general multivariate Student’s T distribution when the marginals do not necessarily
have the same degrees of freedom. We discuss the grouped T copula proposed recently

by Demarta and McNeil, and Daul et al and other options, including one based on our

own generalization of recent work by Jones, and a further proposal of our own. We com-
pare these with the meta-elliptical distributions proposed as the canonical multivariate

distribution by Fang et al. We argue that the natural appearance of independence in the

zero-dependence case should take priority over preserving the elliptical structure com-
monplace in multivariate distribution theory. We are able to give several detailed and

explicit representations for the bivariate case. For the bivariate case where one distri-
bution is Normal we argue that there is indeed a canonical bivariate Student-Normal

distribution with a naturally associated copula that arises simultaneously from several

of the copula methods, and an elegant tractable density is available. For the Student-
Student case there appears to be some genuine choice as to the canonical distribution,

though the requirement of independence in the zero-correlation case appears to constrain

us to just one choice. We also briefly discuss the inclusion of correlation data relevant to
calibration.

Key Words: T Copula; Student Copula; bivariate Student; multivariate Student; de-
grees of freedom; elliptical; independence; correlation; dependence; Pearson; Spear-
man; Kendall. AMS Classifications: 60E05, 62E15, 62H20, 60-08

1. Introduction

The computation of quantities of interest in mathematical finance often involves
expectations taking over complicated multivariate distributions. Such distributions
are of interest for their intrinsic mathematical properties as well as for their use in
applications of statistics generally. In mathematical finance one often has an idea as
to the nature of marginal distributions. This may be analytical or numerical. Then
one has the task of characterizing the links between the marginal distributions. The
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theory of copulas allows the links to be characterized separately from the marginals
and has become a powerful tool. See for example the book by Cherubini et al [7].

The widespread use of copula techniques has not been universally embraced,
to say the least. A critical and entertaining discussion has been given by Mikosch
[28], prompting a vigorous defence by Genest and Rémillard [18]. I am not going to
take sides on this particular collection of discussions. Rather, the purposes of this
paper is (a) to try to exhibit the reconciliation of copula techniques with a classical
multivariate analysis for a case of interest, and (b) to discuss the choices that may
be available and when these choices evaporate, leaving a natural or canonical choice
of copula and multivariate distribution.

1.1. Why consider the Student distribution at all?

The “Student”, or “T” distribution was introduced by W. Gosset in 1908 [37],
and has become well established in statistical theory, especially in the context of
hypothesis testing for small samples. Fisher’s elegant 1922 paper [15] on the distri-
bution of the coefficients in a linear regression with Normal errors established its
importance in model-fitting. Since this early work the distribution has become well
established - the recent survey book on the multivariate T distribution alone, by
Kotz and Nadarajah [25] cites about 400 references on the matter and the reader is
encouraged to consult this comprehensive text for the background. While we shall
explain later how this formula comes about, the density function for the univariate
distribution is given by

fn(t) =
1√
nπ

Γ(n+1
2 )

Γ(n
2 )

1

(1 + t2/n)
n+1

2

(1.1)

The number n, often assumed to be an integer, is called the “degrees of freedom”
of the distribution. A discussion of the univariate distribution and methods for its
simulation using quantile functions was given in [34].

The Student distribution is enjoying new interest for is applications in mathe-
matical finance, education and other applications of statistics. Recent work on T
copulas and multivariate distribution theory will be considered shortly, but there
are several other significant papers. The 2006 paper by Ferguson and Platen [14]
suggests, for example, that the “T” (with n ∼ 4) is a good model of index returns
in a global setting. That returns have positive excess kurtosis has been known for
over four decades – see e.g. the work in the 1960s by Mandelbrot [5] and Fama [13].

The book by Gencay et al [17] indicates that very short term returns exhibit
power law decay in the PDF. For a T distribution with n degrees of freedom, we
see from Equation (1.1) that the decay of the PDF is

O(t−n−1) (1.2)

and the decay of the CDF is

O(t−n) (1.3)



November 28, 2006 10:14 KCL WORKING PAPER ShawLee

3

so that if the power decay index in the CDF is q we take a value of n = q. The values
of q reported in [17] take values in the range 2 to 6. So this leads us to consider
not only small integer values of n : 2 ≤ n ≤ 6 but also non-integer n. This idea of
non-integer degrees of freedom, which was not part of Gosset’s original plan, was
also applied by Andreev and Kanto in their 2005 paper on the T applied to VaR
estimation [4]. The use of the T in risk management has become widely established.
See for example the recent work by Daul et al [8], Embrechts et al [10], Frey et al
[16] and Schloegl & O’Kane [33].

The T distribution is also well known in educational applications. The case
n = 1 is better known as the Cauchy distribution and is widely taught because of
its extreme fat-tailed behaviour and pathological moments, and more recently the
case n = 2 has been studied in more detail by Jones [24] and Nevzorov et al [32].
The cases n = 1, 2 and also n = 4 are also interesting because for these cases (at
least) there are closed-form solutions for the quantile function. For other even n the
quantile function can be found by solving a polynomial equation of degree n − 1
[34].

Much of the recent work focuses on simulation aspects. As well as consider-
ing here such approaches in the multivariate case, we shall also be concerned here
with generating detailed expressions for the probability density functions, and an-
alytical representations of correlation information. While the presentation of such
distributions involves some detailed, and perhaps rather dry, representations in
terms of “special functions”, we consider this appropriate as it allows those doing
simulation work to make explicit checks against analytical representations in the
two-dimensional case, thereby facilitating the identification of errors or poor con-
vergence in simulation work. One of our goals is to assist in the process of making
the T as easy to work with as the Normal in multivariate applications. Likewise,
the presentation of formulae for correlations is designed to make the calibration to
observations on data more tractable, and this is very much in the same spirit as the
work by Daul et al [8] for the Kendall coefficient, and we shall present here (we be-
lieve for the first time) some explicit formulae for the product-moment correlations
for two types of T distribution.

1.2. Recent work on T copulas and distributions

As noted above, the Gaussian and T-copula are already in widespread use. This is
no doubt in part due to the ease with which the Monte-Carlo simulation may be
carried out compared to copulas in general, and also because of the ease with which a
correlation structure may be introduced. In this context it should be noted that the
T-copula in widespread use is that for which the associated marginal distributions
all have the same number of degrees of freedom. There are a host of options for what
else one might write down, as is discussed comprehensively in the recent book by
Kotz and Nadarajah [25]. More recent surveys of the bivariate and multivariate cases
have been by Nadarajah and co-workers [29,30], who emphasize, quite literally, that
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there are a multitude of possibilities. However, many of the variations cited in [29,30]
focus on the introduction of non-centrality or skewness into the bi- and multivariate
T, rather than the key concept of what should be meant by a “multivariate T” in
the first place.

Recently, more attention has been paid to the case of unequal marginal degrees
of freedom. This has been discussed to some extent in [25], but in terms of the
relevance to mathematical finance, and an understanding of what might be a truly
canonical approach, there seem to be (at least) three related threads of thought on
the matter. These area

(1) The grouped t copula approach, as discussed by Demarta and McNeil [9] and
Daul et al [8];

(2) The bi- and multi-variate T distributions developed by Jones [23];
(3) The meta-elliptical distribution developed by Fang et al [11].

These papers take various approaches and have varying emphases on

(1) ease of Monte-Carlo simulation of the multivariate distribution;
(2) simulation of the associated copula;
(3) analytical representation of the copula;
(4) analytical representations of the density function and other properties.

We should also point out, however, that in terms of the fundamental mathematics
involved, the first T copulas that cope with the case of unequal degrees of freedom
in the marginals were in fact implicit in the much earlier work of Bulgren et al
[6]. Their work introduced the idea of considering dependent Normal numerators
divided by the square root of χ2 variables of differing orders, and followed on from
earlier work by Siddiqui [35] where the orders were the same. The work by Bulgren
et al [6] dealt with the matter by exploiting the elegant additive properties of the
χ2 distribution within the context of statistical hypothesis testing. The additive
properties are also the basis for the work by Jones [23]. Our own contribution to
this particular thread of thought is largely to put it in the same setting as the
others, but also to clarify how it all works in the case of non-zero correlation, and
indeed to give an explicit formula for the (product-moment) correlation as well as
a tractable representation of the density, albeit as a finite integral.

This paper is an attempt to characterize the precise relationship between these
approaches, with the goal of trying to establish a truly canonical multi-variate Stu-
dent T for the case of general marginals, with clear details about Monte Carlo
and copula aspects with a good understanding of the associated probability density
functions. This it is hoped will provide a combination of analytical and numerical
tools that may be useful. The focus here will be on items 1,2 and 4 above. Finan-
cial practitioners are often interested in the simulation of the distribution and its

aComments on other options which might be candidates for a canonical distribution or its Monte-

Carlo or copula equivalent are welcome!
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associated copula, while the density is useful for corresponding analytical or semi-
analytical calculations. Analytical representations of the copula itself tend to be less
useful. I will also tend to refer to simulation of the copula as being essentially done
by covering item 1, since the copula can be simulated by just applying the marginal
CDFs to each variable. In this case of the T the CDFs are well-known [34] and the
key facts are summarized in Appendix A.

For analytical tractability much of the discussion will focus on the bivariate case.
For this case this paper claims to have resolved the issued of creating a canonical
picture completely for the special case of the bivariate Student-Normal distribution.
There appear to be some genuine choices for the Student-Student case. For the first
case, when one of the degrees of freedom tends to infinity, the choices coincide
and we have a canonical representation for the density as well as methods for its
simulation and copula. In particular we can write down simple formulae for such
exotics as the correlated bivariate Cauchy-Normal distribution and Student-Normal
with low integer degrees of freedom (on the first variable) in terms of elementary
functions. The general Student-Normal case has a hypergeometric representation
which we shall also exhibit. Such representations allow Monte-Carlo calculations
of partially fat-tailed distributions to be done in parallel with analytical or semi-
analytical calculations with a tractable density, thus allowing detailed checks to be
made on numerical calculations, or in simple cases to be done entirely analytically.

1.3. Elliptic Structures vs Independence

The statistics literature is frequently concerned with distributions whose structure
is elliptical, or, in more recent discussions, meta-elliptical. A good recent summary
is given in [1]. In simple terms, such distributions arise naturally as it is often
clear how to generalize the appearance of structures in a one-dimensional p.d.f.
such as f(σ2x2), where σ is a standard deviation parameter, to a multi-dimensional
structure where one writes down p.d.f.s such as

f(xT Ax) (1.4)

where A is a matrix and x is a vector of random variables. We obtain zero correlation
(what we mean by correlation is discussed presently) when A is diagonal. But we
only obtain independence when f is exponential, i.e. the distribution is multivariate
Gaussian. In our view this is a fundamental drawback of the elliptical methodology,
particularly for financial modelling. This and other issues with elliptical methods
have been discussed by others, for example [1]. Part of the motivation for this
paper is to look at other options and to present structures for the Student T that
get around this difficulty.

A good illustration of the issues about non-independence of non-normal ellip-
tical distributions with zero covariance is given by the local dependence function
of Holland and Wang [20]. An example of the local dependence function for the
bivariate Cauchy distribution is given by Jones [22] - see Figure 2 of [22] and also
Figure 2 of [23].
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However, it should also be stressed that there are also certain advantages to ellip-
tical structures in the context of financial risk management, and readers should see
the thorough survey by Embrechts et al [10] for further discussion. Also, sometimes
an elliptical model may be attractiveb if one thinks that linear factors (producing
correlations) and a systemic factor (producing tail dependence) co-exist. It is im-
portant that modellers can distinguish between the two and choose what they want.
This paper provides modellers with some viable options.

1.4. Reminder on the univariate case

Many of our constructions will have a common root in the construction of the
univariate Student T. We quickly remind the reader of how this works, using the
terminology of Shaw [34]. Let Z0, Z1, . . . Zn be independent standard Normal ran-
dom variables and set

χ2
n = Z2

1 + · · ·+ Z2
n (1.5)

The density function of χ2
n is easily worked out, using moment generating functions

(see e.g. Sections 7.2 and 8.5 of Stirzaker [36]), and is given by

qn(z) =
1

2Γ(n
2 )

e−z/2

(
z

2

)n
2−1

(1.6)

χ2
n is a random variable with a mean of n and a variance of 2n. We now define a

Student T random variable by:

T =
Z0√
χ2

n/n
(1.7)

To obtain the density f(t) of T we note that

f(t|χ2
n = ν) =

√
ν

2πn
e−

t2ν
2n (1.8)

Then to get the joint density of T and χ2
n we need to multiply by qn(ν). Finally, to

extract the univariate density for T , which we shall call fn(t), we integrate out ν.
The density fn(t) is then given by∫ ∞

0

f(t|χn = ν)qn(ν)dν ≡
∫ ∞

0

dν

2Γ(n
2 )

√
ν

2πn

(
ν

2

)( n
2−1)

e−( ν
2 + t2ν

2n ) (1.9)

and by the use of standard integral, we obtain the formula

fn(t) =
1√
nπ

Γ(n+1
2 )

Γ(n
2 )

1

(1 + t2/n)
n+1

2

(1.10)

The number n, often assumed to be an integer, is called the “degrees of freedom”
of the distribution. It is evident that a sample from this distribution can easily be

bWe are grateful to Dr Andreas Tsanakas for these observations
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obtained by using n + 1 samples from the standard Normal distribution, provided
n is an integer. This is well known, as is the use of a Normal variate divided by the
square root of a scaled sample from the χ2 distribution, that itself being obtained
by other methods.

More compactly and generally, we can think of a T variable as being given by
the representation

T =
Z√
C2/a

(1.11)

where Z is normal and C2 is independent of Z and has a χ2 distribution with, in
general a degrees of freedom, where a is real but not necessarily an integer. How
C2 is sampled is a matter of choice. If a is a low integer adding up the squares
of normals is easy and fast. In general we might want to think of it as arising
from a cunning simulation of a gamma variable, or formally as F−1

χ2 (U), where F is
the gamma CDF and U is uniform. As discussed by Shaw [34] it is actually quite
straightforward to simulate the T directly in the univariate case, but to understand
the multivariate case and associated copula, the “normal over root chi-squared”
approach gives some obvious clues how to proceed.

1.5. Concepts of Correlation

The final initial task is to define the relevant correlation concepts. The usual Pear-
son or product-moment correlation will be denoted ρ and is given, for two random
variables X1, X2 by

ρ =
E[X1X2]− E[X1]E[X2]√

V ar(X1)V arX2)
(1.12)

The Spearman rank correlation ρS is given by applying the product-moment formula
to the ranks of the Xi. To express it in terms of distributions we realize the ranks
as the transformed variables Yi = Fi(Xi) where Fi is the cumulative distribution
function. Since the Yi are uniform the product-moment expression simplifies to

ρS = 12E[F (X1)F (X2)]− 3 (1.13)

The third measure is Kendall’s τ . While this is normally defined in terms of data
its distributional form is given by the expression

τ = 4E[F (X1, X2)]− 1 (1.14)

where F is now the joint distribution function. For an elegant proof of both these
expressions in the copula framework, see [31]. A substantial discussion of issues of
correlation and dependence is given by Embrechts et al [10].

A complete knowledge of these parameters for complicated multivariate distri-
butions is not available. However, in the multivariate Gaussian case we have

ρS =
6
π

sin−1(
ρ

2
) (1.15)
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τ =
2
π

sin−1(ρ) (1.16)

These results are not entirely obvious! The first formula linking the rank correlation
was given by Kruskal [26] - see also [21]. The second formula, for Kendall’s τ , actually
applies for a large class of elliptical distributions - see e.g. [11]. We shall see that τ

is closely related to the mixing parameter we shall employ throughout this paper.

2. Approaches to the multivariate Student T with equal marginals

Note the plural in the title of this Section! In the finance literature the Student T
copula with equal marginals is commonly understood as being simulated by taking
a linear combination of Gaussian variables defined by the Cholesky decomposition
of the correlation structure, and dividing all of them by the same χ2 variable. This
is described in many papers - see for example the book by Cherubini et al [7]. We
will describe the bivariate case to fix our notation for what follows, and also to
explore an issue that is, so far as this author can tell, quite routinely ignored. Let
Wi be independent Gaussians and let

Z01 = αW1 + βW2, Z02 = γW1 + δW2 (2.1)

subject to the transformed variables having unit variance:

α2 + β2 = 1 = γ2 + δ2 (2.2)

Then one constructs

T1 = Z01

√
n

C2
, T2 = Z02

√
n

C2
(2.3)

where C is a sample from the χ2 distribution with parameter n.
To derive the density let us fix the notation further and introduce a “mixing

angle” θ. The idea is that in the standard bivariate Normal case the linear correlation
would turn out to be ρ = sin θ, and Kendall’s τ is indeed just 2θ/π in the Normal
case. More generally, we set

Z01 = W1, Z02 = W1 sin θ + W2 cos θ (2.4)

T1 =
√

n

C2
W1, T2 =

√
n

C2
(W1 sin θ + W2 cos θ) (2.5)

Then we can invert this relationship as

W1 =

√
C2

n
T1, W2 =

√
C2

n

1
cos θ

(T2 − T1 sin θ) (2.6)

We know the standard normal density for the Wi in the form

1
2π

exp{−1
2
(w2

1 + w2
2)} (2.7)
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and so the conditional density of the Ti given a fixed value of C2 = z is just

f(t1, t2|C2 = z) =
z

2πn cos θ
exp
{
− z

2n cos2 θ

(
t21 + t22 − 2t2t2 sin θ

)}
(2.8)

As in the univariate case we can now integrate out over the density of z, and obtain
the result for the joint PDF as

f(t1, t2) =
1

2π cos θ

1
(1 + ∆/n)n/2+1

(2.9)

where

∆ =
t21 + t22 − 2t2t2 sin θ

cos2 θ
(2.10)

This joint distribution has marginals which are each T-distributed with n degrees
of freedom. However, in sharp contrast to the Normal case, when θ = 0, we have

f(t1, t2) =
1
2π

1
(1 + (t21 + t22)/n)n/2+1

(2.11)

which is not the product of the two marginal density functions unless n → ∞ and
we are back in the Normal case. So we have a manifest failure to secure the desired
structure for independence.

2.1. An alternative T copula with equal degrees of freedom

The failure to achieve the desirable product structure suggests we look for an alter-
native. There is an obvious one, which is to use independent denominators rather
than the same one. So with the same notation as before, we have

T1 =
√

n

C2
1

W1, T2 =
√

n

C2
2

(W1 sin θ + W2 cos θ) (2.12)

Then we can invert this relationship as

W1 =

√
C2

1

n
T1, W2 =

1
cos θ

(

√
C2

2

n
T2 −

√
C2

1

n
T1 sin θ) (2.13)

Proceeding as before, the conditional density given fixed values z1, z2 of C2
1 , C2

2 , is
f(t1, t2|C2

1 = z1;C2
2 = z2) and is given by

√
z1z2

2πn cos θ
exp
{
− 1

2n cos2 θ

(
z1t

2
1 + z2t

2
2 − 2t2t2 sin θ

√
z1z2

)}
(2.14)

Note that this reduces to the previous conditional density if z1 = z2. But now we
integrate over a gamma distribution for each zi, each with the “same” n - they are
i.i.d. So we integrate the conditional density against the product density for the zi,
this being

1
2nΓ2(n/2)

(z1z2)(n/2−1)e−
1
2 (z1+z2) (2.15)
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The resulting formula can be given in terms of hypergeometric functions as
follows. We introduce intermediate variables as follows:

α1 = 1 +
t21

n cos2(θ)
, α2 = 1 +

t22
n cos2(θ)

, γ =
2t1t2 sin(θ)
n cos2(θ)

(2.16)

and the normalizing constant

C ′ =
1

cos(θ)πnΓ(n/2)2
(2.17)

and the density is then given by

C ′(α1α2)−
n
2−1

[
Γ
(

n + 1
2

)2

2F1

(
n + 1

2
,
n + 1

2
;
1
2
;

γ2

4α1α2

)
√

α1
√

α2

−γΓ
(n

2
+ 1
)2

2F1

(
n

2
+ 1,

n

2
+ 1;

3
2
;

γ2

4α1α2

)]
(2.18)

However, we can check very directly that as θ → 0 this expression simplifies (as it
must, by its construction) to just

Γ[n+1
2 ]2

Γ[n
2 ]2aπ

(
1

1 + t21/n

)(n+1)/2( 1
1 + t22/n

)(n+1)/2

(2.19)

So we see that we can recover a product structure in the independent case, albeit
with a moderately complicated bivariate density function. However, the simulation
remains trivial, as does the copula construction. We are not aware of this density
appearing before in the literature.c

3. Approaches to the Student T with unequal marginals

We shall now turn to the multivariate case and look at the definitions of the mul-
tivariate T that correspond to the natural generalizations of the normal over chi
approach. In order to keep the notation straightforward we write down the bivari-
ate versions. In all cases we have degrees of freedom n1 and n2 which are neither
necessarily equal nor integer.

3.1. Grouped approaches

I first describe an approach developed by Demarta and McNeil [9] and Daul et
al [8], that I will refer to as the tightly grouped approach. In the bivariate case
this simplifies to writing down two independent normal variables W1 and W2, and
forming

Z01 = αW1 + βW2, Z02 = γW1 + δW2 (3.1)

cWe have not been able to recognize it in any paper or book to which we have access, though

correction on this matter is appreciated!



November 28, 2006 10:14 KCL WORKING PAPER ShawLee

11

subject to

α2 + β2 = 1 = γ2 + δ2 (3.2)

Then one constructs

T1 = Z01

√
n1

C2
1

, T2 = Z02

√
n2

C2
2

(3.3)

where the C2
i are dependent χ2 variables with degrees of freedom ni. They are

obtained by taking one sample U from a uniform distribution and setting

C2
i = G−1

ni
(U) (3.4)

where Gni
is the CDF for the χ2 distributed with parameter ni. The grouping refers

to the fact that in the general multivariate case we group together all the marginals
with the same degrees of freedom and use the same χ2 denominator to turn the
normal variable to a T variable within each group. I refer to this as the “tight” case
as the same U is used for all the groups. It has the nice property that because the
same U is employed this approach coalesces into the ordinary T copula when all
degrees of freedom are the same. However, there are at least two other routes one
might take.

The first and rather obvious option would be to take the Ci to be independent
- I would call this the loosely grouped approach. This approach is straightforward
and transparent. However, it does have a feature that should be noted. As long as
n2 6= n1 the groups remain distinct, and as n2 → n1 the groups remain distinct. We
can now recognize the loosely grouped approach as being the natural generalization
of our alternative equal d.o.f. method.

The second further option is a generalization of the method of Jones (see below).
So far we have just discussed the simulation part of the construction, which is

very easy. The construction of the copula follows by the application of the marginal
CDFs with degrees of freedom ni to the Ti. The formulae to be used are given in
Appendix A.

3.2. A generalization of the approach of Jones

Another elegant approach has already been given by Jones [23] and is also summa-
rized in [25]. In general one sorts the degrees of freedom into increasing order and
exploits the additive properties of the χ2 distribution. This is an idea we believe
was first introduced by Bulgren et al [6]. Suppose that n1 ≤ n2. We let a = n1 and
b = n2 − n1. In Jones’ original specification the dependence is only through the
chi-squared variables. So in our notation his model is of the form

T1 = W1

√
a

C2
1

, T2 = W2

√
a + b

C2
1 + C2

2

(3.5)

where C2
1 has a χ2 distribution with a degrees of freedom, and C2 has a χ2 distri-

bution with b degrees of freedom. This gives a model with strictly zero correlation,
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despite the dependency in the denominators. However, it is straightforward to gen-
eralize this to include dependency in the numerator, as introduced in [27], by using
the mixed variables:

T1 = Z01

√
a

C2
1

, T2 = Z02

√
a + b

C2
1 + C2

2

(3.6)

The copula implied by this “generalized Jones” method is obtained by applying
the marginal CDFs with degrees of freedom a and a + b respectively to T1 and T2

respectively.

3.3. The meta-elliptical distribution

The meta-elliptical distributions were introduced by Fang et al [11]. Further very
useful discussion is provided by Abdous et al [1] and the corrigendum [12] to [11].
It does not appear to be possible to give an elementary closed-form expression for
the PDF in this case, even for the simpler bivariate case.

The simulation of these distributions fall outside (so far as we can establish)
the family of methods described as ”normal over root chi-squared”. A simulation
algorithm is given in Section 4.2 of [11].

3.4. A canonical limit for the bivariate case?

It is evident that while the tightly and loosely grouped and Jones methods are
all different in general, they do have a common limit in the bivariate case when
n2 → +∞. One just has to note that for either grouped case, C2

2/n2 → 1, and that
in the Jones case the same thing happens as b →∞. So there is in a sense a natural
or canonical common limit, where we take

T1 = Z01

√
n1

C2
1

, T2 = Z02 (3.7)

This gives the recipe for simulating a Student-Normal distribution with a correla-
tion. The associated copula is again obvious. The commonality of this limit suggests
that it has a role to play as the canonical Student-Normal distribution.

3.5. What do we want to know?

The approaches discussed above give a construction method. We want to know
various associated things, including, but not necessarily limited to:

• What is the associated density function?
• How precisely do we feed in measured correlations?
• What are the mathematical and implementation drawbacks?

We will take a look at these issues first with the most straightforward case. As we
have already observed, there is a candidate canonical construction, in the sense that
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the Jones and grouping approaches coincide, for the Student-Normal case, so this
is considered in some detail first. The common nature of the limit that these have
in common with the grouped case suggests that it is helpful to characterize them
in more detail. In particular we shall be able to characterize the densities in rather
more elementary terms that would allow much greater accessibility to the results
for both applications and education.

4. The Canonical Student-Normal Distribution

In the general case the grouped and Jones copulas discussed previously represent
different objects. However, it is clear than when n2 → ∞ the approaches coalesce
into the same entity. We first reduce the problem by parametrizing the linkage
between the two distributions by a rotation angle θ. With W1,W2 as before, we set

T1 =
W1√
C2

1/a
, T2 = W1 sin θ + W2 cos θ (4.1)

with no variance randomization in the latter. Inverting this definition, we have

W1 =

√
C2

1

a
T1 , W2 =

1
cos θ

(T2 −
√

C2
1

a
T1 sin θ) (4.2)

We know the standard normal density for the Wi in the form

1
2π

exp{−1
2
(w2

1 + w2
2)} (4.3)

and so the conditional density of the Ti given a fixed value of C2
1 = z is just

f(t1, t2|C2
1 = z) =

1
2π cos θ

√
z

a
exp
{
− 1

2 cos2 θ

(z
a
t21 + t22 − 2t2t2 sin θ

√
z

a

)}
(4.4)

The unconditional joint density of the Ti is then given by integrating this conditional
density against the chi-squared density function for z. That is,

f(t1, t2) =
∫ ∞

0

dzf(t1, t2|χ2 = z)
1

Γ(a/2)2a/2
za/2−1e−z/2 (4.5)

So that

f(t1, t2) = c

∫ ∞

0

dz z(a−1)/2 exp
{
−z

2
− 1

2 cos2 θ

(z
a
t21 + t22 − 2t2t2 sin θ

√
z

a

)}
(4.6)

where c = 1/(2π2a/2Γ(a/2)
√

a cos θ). Some simplification and the change of vari-
ables z = q2 gives us

f(t1, t2) = 2ce−t22/(2 cos2 θ)

∫ ∞

0

dq qa exp
{
−q2

2

(
1 +

t21
a cos2 θ

)
+

t1t2q sin θ√
a cos2 θ

}
(4.7)

We shall now proceed to investigate this expression for some cases of interest. First
we write down some moments.
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4.1. Simple Moments

The basic moments can be calculated from the conditional distribution (since it is
a correlated bivariate Gaussian) followed by integration over q. The results are

E[t1] = 0,∀a > 1 (4.8)

E[t21] =
a

a− 2
,∀a > 2 (4.9)

E[t2] = 0,∀a > 0 (4.10)

E[t22] = 1,∀a > 0 (4.11)

E[t1t2] =
√

a sin(θ)Γ
(

a−1
2

)
√

2Γ
(

a
2

) ,∀a > 1 (4.12)

From these results we may infer that the ordinary product-moment correlation ρ

exists provided a > 2 and is given by

ρ = sin(θ)
Γ
(

a−1
2

)
Γ
(

a
2

) √a

2
− 1 (4.13)

We note that ρ → sin(θ) as a → +∞ so that the usual bivariate Normal result is re-
covered, but for finite a we have |ρ| < | sin θ| with ρ/ sin(θ) increasing monotonically
with increasing a, from zero when a = 2 to unity as a →∞.

4.2. The uncorrelated general case

The integral is easy if we decouple the variables by setting sin θ = 0, cos θ = 1 and
we recover the product density formula after some simplification:

f(t1, t2) =
1√
aπ

Γ((a + 1)/2)
Γ(a/2)

(
1 + t21/a

)(a+1)/2

× 1√
2π

e−t22/2 (4.14)

But now we have an expression also valid when there is mixing between the two
distributions, and we can look at some special cases of interest.

4.3. The correlated general case

In the general case we have the intermediate variables

α = 1 +
t21

a cos2 θ
, β =

t1t2 sin θ√
a cos2 θ

, γ =
β√
α

(4.15)

and the density function is given by

2
a−1
2 − a

2 e
γ2

2 −
1
2 sec2(θ)t22α−

a
2−

1
2

√
aπΓ

(
a
2

)
cos θ

× (4.16)
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[√
2γΓ

(a

2
+ 1
)

1F1

(
1
2
− a

2
;
3
2
;−γ2

2

)
+ Γ

(
a + 1

2

)
1F1

(
−a

2
;
1
2
;−γ2

2

)]
It is useful to see how this simplifies when a is a low integer, since then the hyperge-
ometric function can be simplified in terms of the cumulative normal distribution.

4.4. The correlated Cauchy-Normal Distribution

If we allow θ to be general, i.e. we allow for a “correlation”, and also set a = 1
to try and get one marginal to be a Cauchy the integral integrates to elementary
functions. To keep the algebra tractable we introduce parameters

α = 1 +
t21

cos2 θ
, β =

t1t2 sin θ

cos2 θ
, γ =

β√
α

(4.17)

and then

f(t1, t2) =
1

cos θ
√

2π
e−t22/(2 cos2 θ) 1

πα

[
1 + eγ2

γ
√

2πΦ(γ)
]

(4.18)

gives the density of the joint Cauchy-Normal distribution, where Φ(x) as usual
denotes the Normal CDF evaluated at x.

4.5. The correlated T2-Normal Distribution

The intermediate variables are

α = 1 +
t21

2 cos2 θ
, β =

t1t2 sin θ√
2 cos2 θ

, γ =
β√
α

(4.19)

and the density function is given by

f(t1, t2) =
e−

1
2 sec2(θ)t22

(
γ + e

γ2

2
√

2π
(
γ2 + 1

)
Φ(γ)

)
cos(θ)2

√
2πα3/2

(4.20)

4.6. The correlated T3-Normal Distribution

The intermediate variables are

α = 1 +
t21

3 cos2 θ
, β =

t1t2 sin θ√
3 cos2 θ

, γ =
β√
α

(4.21)

and the density function is given by

f(t1, t2) =
e−

1
2 sec2(θ)t22

(
γ2 + e

γ2

2
√

2π
(
γ2 + 3

)
Φ(γ)γ + 2

)
cos(θ)

√
6π3/2α2

(4.22)
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4.7. The correlated T4-Normal Distribution

The intermediate variables are

α = 1 +
t21

4 cos2 θ
, β =

t1t2 sin θ

2 cos2 θ
, γ =

β√
α

(4.23)

and the density function is given by

f(t1, t2) =
e−

1
2 sec2(θ)t22

(
γ
(
γ2 + 5

)
+ e

γ2

2
√

2π
(
γ4 + 6γ2 + 3

)
Φ(γ)

)
8 cos(θ)πα5/2

(4.24)

4.8. What do these densities look like?

Contour plots of the density functions for a = 1, 2, 4, 20 are shown in Figure 1. Each
row represents a value of a and the near-elliptical quality for a = 20 is geometrically
evident. The low values of a are manifestly and highly non-elliptical in character.
The three columns represent θ = 0, π/4,−π/4.
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Fig. 1. Contour plots of densities with a = 1 (top), a = 2, 4, 20 (bottom) and θ = 0, π/4 − π/4
(left to right)
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5. Densities, Correlations for Student-Student case

5.1. Jones approach and strongly dependent generalization

The density function for the case θ = 0 and n1 ≤ n2 has been given by Jones
[23]. I will reproduce his formula here as although it appeared correctly normalized
in Jones original paper it has been given incorrectly normalized elsewhere [29,25].
With the (correct) normalization constant

C =
Γ
(

1
2 (n1 + 1)

)
Γ
(

n2
2 + 1

)
πΓ
(

n1
2

)
Γ
(

1
2 (n2 + 1)

)√
n1n2

(5.1)

the density is then given by

C 2F1

(
n2

2
+ 1,

1
2

(n2 − n1) ;
1
2

(n2 + 1) ;
t21
n1

(
1 +

t21
n1

+
t22
n2

)−1
)(

1 +
t21
n1

+
t22
n2

)−n2
2 −1

(5.2)
It is easy to see that when n1 = n2 the hypergeometric function evaluates to unity
leaving the standard formula

f(t1, t2) =
1
2π

1
(1 + (t21 + t22)/n1)n1/2+1

(5.3)

Jones established that the product-moment correlation is zero when it exists, but
also exhibited the dependency features.

The case with θ 6= 0 is significantly harder to characterize. Suppose we condition
on the chi-squared variables being fixed at C2

1 = z and C2
2 = w, with degrees of

freedom a = n1 and b = n2−n1. We note first that the independent normal variables
are given in terms of the dependent T variables by

W1 =
√

z

a
T1, W2 =

1
cos(θ)

[√
z + w

a + b
T2 − sin(θ)

√
z

a
T1

]
(5.4)

Making the change of variables gives us

f(t1, t2|C2
1 = z;C2

2 = w) =√
z(z + w)

2π cos(θ)
√

a(a + b)
exp

{
−1

2 cos2(θ)

[
z

a
t21 +

(z + w)
(a + b)

t22 − 2 sin(θ)t1t2

√
z(z + w)
a(a + b)

]}
(5.5)

By an ordinary Gaussian calculation we can see right away that the conditional
product-moment expectation is given by

E[t1t2|C2
1 = z;C2

2 = w] =

√
a(a + b)
z(z + w)

sin(θ) (5.6)

So the unconditional product moment expectation is given by the integral of√
a(a + b)√
z(z + w)

sin(θ) (5.7)
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against the joint density function

2−
a
2−

b
2 e−

w
2 −

z
2 w

b
2−1z

a
2−1

Γ
(

a
2

)
Γ
(

b
2

) (5.8)

over the range 0 ≤ w, z < ∞. Combining this with the expressions for the variances
we see that the product-moment correlation is given for a > 2, a + b > 2 by

ρ = sin(θ)

√
(a− 2)(a + b− 2)

2((a+b)/2)Γ[a/2]Γ[b/2]

∫ ∞

0

dz

∫ ∞

0

dw
w(b/2−1)z(a/2−1)√

z(z + w)
e−(z+w)/2 (5.9)

This integral may easily be evaluated by setting z = p2, w = q2 and then chang-
ing to polar coordinates to deal with the denominator. After doing some standard
integrals we finally obtain

ρ = sin(θ)
Γ
(

a−1
2

)
Γ
(

a
2

) √a

2
− 1

Γ
(

a+b−2
2

)
Γ
(

a+b−1
2

)√a + b

2
− 1 (5.10)

and we remind the reader that a = n1, b = n2−n1. Note that this formula has the
elegant properties that

lim
b→0

ρ = sin(θ), lim
b→∞

ρ = sin θ
Γ
(

n1−1
2

)
Γ
(

n1
2

) √n1

2
− 1 (5.11)

The first result gives the standard (elliptical) result for equal degrees of freedom
while the second is in agreement with what we established for the canonical Student-
Normal limit.

We do not yet have a closed-form for the density for θ 6= 0. The simulation
is of course straightforward, but details on the rank correlation and Kendall’s τ

remain to be elucidated. A density function was given as a doubly-infinite sum for
the similar problem considered by Bulgren et al. Our own integral representation
for the density is given in Appendix B.

5.2. The (loosely) grouped approach

We can carry out the calculation of ordinary correlation and the density by following
a similar route to that taken by our generalization of the Jones approach. There
are minor modifications along the way arising from the fact that we now have
a = n1, b = n2.

W1 =
√

z

n1
T1, W2 =

1
cos(θ)

[√
w

n2
T2 − sin(θ)

√
z

n1
T1

]
(5.12)

Making the change of variables gives us

f(t1, t2|C2
1 = z;C2

2 = w) =

√
zw

2π cos(θ)
√

n1n2
exp

{
−1

2 cos2(θ)

[
z

n1
t21 +

w

n2
t22 − 2 sin(θ)t1t2

√
zw

n1n2

]}
(5.13)



November 28, 2006 10:14 KCL WORKING PAPER ShawLee

19

We deal first with the ordinary correlation. By an ordinary Gaussian calculation we
can see right away that the conditional product-moment expectation is given by

E[t1t2|C2
1 = z;C2

2 = w] =
√

n1n2

zw
sin(θ) (5.14)

So the unconditional product moment expectation is given the integral of
√

n1n2√
zw

sin(θ) (5.15)

against the joint density function

2−
n1
2 −

n2
2 e−

w
2 −

z
2 w

n2
2 −1z

n1
2 −1

Γ
(

n1
2

)
Γ
(

n2
2

) (5.16)

over the range 0 ≤ w, z < ∞. Combining this with the expressions for the variances
we see that the product-moment correlation is given for n1 > 2, n2 > 2 by

ρ = sin(θ)
Γ
(

n1−1
2

)
Γ
(

n1
2

) √n1

2
− 1

Γ
(

n2−1
2

)
Γ
(

n2
2

) √n2

2
− 1 (5.17)

One can check that as n2 →∞ we recover the formula of Section 4.1. A reasonably
simple expression is available for the density in terms of hypergeometric functions
of type 2F1. We introduce intermediate variables

α1 = 1 +
t21

n1 cos2(θ)
, α2 = 1 +

t22
n2 cos2(θ)

, γ =
2t1t2 sin(θ)

√
n1n2 cos2(θ)

(5.18)

and the normalizing constant

C ′ =
1

cos(θ)π
√

n1n2Γ(n1/2)Γ(n2/2)
(5.19)

and the density is then given by

C ′α
−n1

2 −1
1 α

−n2
2 −1

2

[
Γ
(

n1 + 1
2

)
Γ
(

n2 + 1
2

)
2F1

(
n1 + 1

2
,
n2 + 1

2
;
1
2
;

γ2

4α1α2

)
√

α1α2

−γΓ
(n1

2
+ 1
)

Γ
(n2

2
+ 1
)

2F1

(
n1

2
+ 1,

n2

2
+ 1;

3
2
;

γ2

4α1α2

)]
(5.20)

It may now be seen very explicitly that when θ = 0 this reduces to

Γ
(

n1+1
2

)
Γ
(

n2+1
2

) (
1 + t21

n1

)−n1
2 −

1
2
(
1 + t22

n2

)−n2
2 −

1
2

√
n1
√

n2πΓ
(

n1
2

)
Γ
(

n2
2

) (5.21)

which is the desired product of two independent T distributions with non-equal
degrees of freedom. Although we have a formula for ρ, the rank correlation and
Kendall’s τ are not yet known. Given that the ordinary correlation vanishes as
n1, n2 → 2+ we need further insight into this, but the situation is not that surprising
given this is the limit at which the variance of either marginal distribution tends to
infinity.



November 28, 2006 10:14 KCL WORKING PAPER ShawLee

20

5.3. The (tightly) grouped approach

In this case no elementary density has been given. However, there is a very useful
correlation approximation, obtained by Daul et al [8].

τ ∼ 2
π

arcsin ρ̃ (5.22)

where ρ̃ is the correlation between the underlying Gaussian variables in the numer-
ator. In our terminology this means that

τ ∼ 2
π

θ (5.23)

is approximately true. This powerful result makes calibration of the method
tractable.

5.4. The meta-elliptical approach

In this case no closed-form density has been given. A formula for the density using
the distribution functions implicitly has been given in the original paper [11]. Again,
a powerful and this time exact relationship between Kendall’s τ and the mixing
parameter exists in the form

τ =
2
π

θ (5.24)

where θ is the analogous parameter in the meta-elliptical framework.

6. Summary

In this paper we have surveyed the various options by which a “normal over root chi-
squared” approach can be used to generate bivariate T copulas and distributions.
We are able to proceed for the case of unequal marginals just as easily as for equal
marginals.

We have demonstrated the existence of a natural alternative to the elliptical
method that allows distributions satisfying the independence condition to be con-
structed, with or without equal degrees of freedom, and have exhibited the bivariate
density for this case. We have also shown how to generalize Jones’ method to the
situation of strong dependence and non-zero correlation, though we have not been
able to create a closed-form density for this case.

The simulation methods are easy, irrespective of the complexity of the density,
and so provide a clear options further to the standard T and grouped T copulas
already in use, but with the independence condition in place.

We have also made some progress on the correlation aspects, though the rank
measures require further clarification. There are of other issues that are worth con-
sideration. Are these distributions manifestly unimodal? What is an efficient method
of extracting the degrees of freedom from a data set? Indeed - the estimation of the
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ni is part of a more general question of estimating a model based on the T with un-
known mean, variance (which is coupled to ni) and perhaps slope or other non-linear
parameters. Such questions are best set in the context of estimating a regression
model with T-distributed noise. Some progress has been made on this but will be
reported elsewhere.

Appendix A. Student CDFs

In order to simulate the T copula with any of the approaches for simulation discussed
in this paper it is necessary to apply the appropriate marginal distribution functions.
We start with the formula

Fn(x) =
∫ x

−∞
fn(t)dt =

1√
nπ

Γ(n+1
2 )

Γ(n
2 )

∫ x

−∞

1

(1 + t2/n)
n+1

2

dt (A.1)

An obvious approach is to make a trigonometric substitution, t =
√

n tan θ. We can
then obtain the integral as a collection of powers of trigonometric functions. The
resulting expressions are given by expressions 26.7.3 and 26.7.4 of Abramowitz and
Stegun [2] (on-line at [3]).

Fn(x) can be written in “closed form”, albeit in terms of hypergeometric func-
tions, for general n. Integration in Mathematica [38] gives

Fn(x) =
1
2

+
Γ
(

n+1
2

)
√

nπΓ
(

n
2

)x 2F1

(
1
2
,
n + 1

2
;
3
2
;−x2

n
)
)

(A.2)

The CDF may also be thought of in terms of β-functions, for we can rewrite the
hypergeometric function to obtain (see Section 26.7.1 of [2,3], bearing in mind the
conversion from one- to two-sided results):

Fn(x) =
1
2

(
1 + sgn(x)(1− I( n

x2+n
)

(
n

2
,
1
2

))
(A.3)

giving an expression in terms of regularized β-functions. As usual sgn(x) is +1 if
x > 0 and −1 if x < 0. The regularized beta function Ix(a, b) is given by

Ix(a, b) =
Bx(a, b)
B(a, b)

(A.4)

where B(a, b) is the ordinary β-function and Bx(a, b) is the incomplete version

Bx(a, b) =
∫ x

0

t(a−1)(1− t)(b−1)dt (A.5)

For our immediate purposes it will be useful to look at some cases of Fn(x) for
small n very explicitly. We tabulate the cases n = 1 to n = 6 explicitly in terms of
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rational and trigonometric functions.

n Fn(x)

1 1
2 + 1

π tan−1(x)

2 1
2 + x

2
√

x2+2

3 1
2 + 1

π tan−1
(

x√
3

)
+

√
3x

π(x2+3)

4 1
2 +

x(x2+6)
2(x2+4)3/2

5 1
2 + 1

π tan−1
(

x√
5

)
+
√

5x(3x2+25)
3π(x2+5)2

6 1
2 +

x(2x4+30x2+135)
4(x2+6)5/2

(A.6)

This establishes the general pattern. We can see that odd n contains a mixture of
algebraic and trigonometric functions, but the case of n even is always algebraic.
The CDF for the case of any even n can be written in the form:

Fn(x) =
1
2

+ x

(
x2

n
+ 1
) 1−n

2

n
2−1∑
k=0

x2ka(k, n)

 (A.7)

where the coefficients are defined recursively by the relations

a(0, n) =
Γ
(

n+1
2

)
√

nπΓ
(

n
2

) (A.8)

a(k, n) =
(n− 2k)a(k − 1, n)

(2k + 1)n
(A.9)

This may be proved by elementary differentiation and noting the the recurrence
relation causes cancellations of all non-zero powers of x in the numerator of the
resulting expression.

Appendix B. A representation of the density for the additive χ2

model

The strongly dependent generalization of the Jones approach [23] (see also Bulgren
et al [6]) involves a rather awkward density function. Although we cannot give it in
closed form we have a simple representation as a finite integral as follows. We take
the conditional distribution given by Equation (5.6) and the joint density function
of Equation (5.9). As with the correlation calculation, we let z = p2, w = q2 and
then make a further change of variables p = r cos(θ), q = r sin(θ). The r integral



November 28, 2006 10:14 KCL WORKING PAPER ShawLee

23

can be done and we are left with the following representation as an integral over
u = cos(θ). Recall that a = n1 and b = n2−n1. We introduce intermediate variables

α1 = 1 +
t21

a cos2(θ)
+

t22
(a + b) cos2(θ)

, α2 = 1 +
t22

(a + b) cos2(θ)
(B.1)

β =
2 sin(θ)t1t2√

a(a + b) cos2(θ)
(B.2)

We also have the normaling constant

D =
2Γ
(

a+b+2
2

)
Γ(a

2 )Γ( b
2 )π cos(θ)

√
a(a + b)

(B.3)

Then the density function is given by

f(t1, t2) = D

∫ 1

0

du ua(1− u2)(b−2)/2[α2 + (α1 − α2)u2 − βu]−(a+b+2)/2 (B.4)

One can show that when β = 0, for example when θ = 0, this evaluates to a
Gauss hypergeometric function in precisely the form originally given by Jones and
reproduced here in Equations (5.1) and (5.2). This is readily checked by using
the integral identities and transformation identities for the Gauss hypergeometric
functions given in [19]. This integral expression is valid for zero or non-zero θ and
is a good basis for numerical computation provided b = n2 − n1 > 0. If b = 0 our
constructions reduce to that given in the much simpler form by Equations (2.14)
and (2.15) with n1 = n2 = n.
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