
TOUCH OF CLASS

Learning to program well

with Object Technology
and Design by Contract

AN INTRODUCTION TO SOFTWARE ENGINEERING

Bertrand Meyer

Draft 16.06, 3 December 06 17:35 (Zürich)

Not for publication

For explanations seese.ethz.ch/touch/

http://se.ethz.ch/touch/


TOUCH OF CLASSii

Draft of ongoing work by Bertrand Meyer
TOUCH OF CLASS:

Learning to program well
with Object Technology and Design by Contrac

Important: this text is in draft form and is intended for the use of
students in the ETH Zurich “Introduction to Programming” course
(252-001-00), as well as for members of the “Touch of Class” mailing
list. Do not copy it other than for personal use, or distribute it
without the author’s permission.

 Bertrand Meyer, 2003-2006

For a record of changes see“Change log”,  page 595.



Draft 16.06, 3 December 06 17:35 (Zürich)

Short contents

The full table of contents appears on pagexxxvii.

Prefaces v

student_preface vii

instructor_preface xv

Contents xxxvii

PART I: BASICS 5

1 The industry of pure ideas 5
2 Dealing with objects 17
3 Program structure basics 39
4 The interface of a class 51
5 Just Enough Logic 73
6 Creating objects and executing systems

109
7 Control structures 137
8 Routines and functional abstraction 197
9 Variables, assignment and references213
10 Fundamental data structures,

genericity, and algorithm complexity241
11 Input, output and exceptions 309

PART II: HOW THINGS WORK 311

12 Just enough hardware 313
13 Describing syntax 327
14 Programming languages 353
15 Compilers and friends: the basic

software tools 355

PART III:  ALGORITHMS AND DATA
STRUCTURES 357

16 Recursion and trees 359
17 An elegant algorithm family:

Topological Sort 409

PART IV: OBJECT-ORIENTED TECH-
NIQUES 453

18 Inheritance 455
19 Operations as objects: agents and

lambda calculus 457
20 Event-driven design 501
21 Program correctness 535

PART V: TOWARDS SOFTWARE ENGI-
NEERING 537

22 Overview of software engineering 539
23 The software process 561
24 Writing requirements and

documentation 563
25 Designing Graphical User Interfaces565
26 Testing and debugging 567
27 Towards software reuse 569

PART VI: APPENDICES 571

A Using the EiffelStudio environment 573
B Eiffel syntax specification 577
C The C# language 579
D The Java language 581
E The C language 583
F The C++ language 585

Picture credits 587

Index 589

Change log 595



CONTENTSiv



Draft 16.06, 3 December 06 17:35 (Zürich)

Prefaces
note

description: "[
This book has two prefaces, one for instructors and one for students, as stated
here through a contrived but correct use of its own programming notation.

"]
class PREFACINGinherit
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student_preface* ∗The preface for instr-
uctors is on pagexv.

Programming is fun. Where else can you spend your days devising machines
of your own imagination, build them without ever touching a hammer or
staining your clothes, make them run as by magic, and get paid — not too bad,
thanks for asking — at the end of the month?

Programming is tough. Where else do products from the most prestigious
companies fail even in ordinary use? Where else does one find so many users
complaining so loudly? Where else do engineers routinely work for hours or
days trying to understand why something that should work doesn’t?

Get ready for the mastery of programming and its professional form,
software engineering; get ready for both the toughness and the fun.

Software everywhere

By going into computing science you have chosen one of the most exciting and
fast-moving topics in science and technology. Fifty years ago it wasn’t even
recognized as a scientific subject; today there’s hardly a university in the world
without a CS department. Thousands of books, conferences, journals,
magazines cover the field. The worldwide revenues of its industry — called
information technology or IT — are in the trillions. It is hard to think, in the
history of technology, of any field that has undergone growth of either such
magnitude or such speed.

And we’ve made a difference. Without software there would be no
large-scale plane travel, and in fact no modern planes (or modern cars, or
high-speed trains) since their design requires sophisticated “Computer-Aided
Design” software. To pay its employees, any large corporation would employ
hundreds of people just to write the paychecks. There would be no video
games, camcorders, iPods; a phone would still be a device requiring a cable to
a wall outlet; to produce a report we would still hand-write a draft, give it over
to a professional typist, and go through rounds of copy-editing. A sudden itch
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to know the name of the captain inThe Grand Illusion, or the population of
Cape Town, or the author of a certain familiar citation, would require (rather
than typing three words and getting the answer in a second) a trip to the library.
The list goes on; at the heart of countless practices that now affect our daily
life lie programs — increasingly sophisticated programs.

Through this book you will become familiar with the world of programs
and programming, with a view to becoming a professional in the field.

Casual and professional software development

Although more and more people are acquiring basic computing proficiency,
ability to do computing at a professional level is another matter, and it’s what
a curriculum in computing science will bring you.

For comparison, consider mathematics. A few centuries ago, just being
able to add and subtract 5-digit numbers required a university education, and
in return provided qualifications for such good jobs as accountant. Nowadays
these skills are taught in grade school; if you want to become an engineer or a
physicist, or just a stock trader, you need to study more advanced
mathematical topics, such as calculus, in a university. The boundary between
basic training and university-level education has moved up.

Computing is following the same evolution, only much faster — the scale
is decades, not centuries. Not so long ago, being somehow able to program a
computer was enough to land a job. Don’t expect this today; an employer will
not be much more impressed if your résumé states “I have written programs”
than if you say you can add numbers.

What increasingly counts is the difference between having some basic
programming experience and being a software engineer. The former skill will
soon be available to anyone who has gone through a basic education; but the
latter is a professional qualification, just like advanced mathematics. Studying
this book is a step towards becoming a computing professional.

If you have done some computing before, you will recognize some of the
ideas, but you should also expect to be surprised at times, since the
professional study of any topic is different from its use by the general public.
Once in a while, for example, you may find that I belabor a seemingly simple
matter. If so, you will (I think) discover after a while that the topic isnot as
simple as it seems at first — just as addition is more challenging to the
mathematician than to the accountant.

Factors that distinguish professional software development from casual
programming includesize, duration andchange. In professional software
development, you may become involved in programs that reach into the
millions of lines of program text, must remain in operation for years or
decades, and will undergo many changes and extensions in response to new
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circumstances. Many a problem that seems trivial or irrelevant when you are
working on a medium-size program, only meant to solve a problem of
immediate interest, becomes critical when you move to the scale of
professional development.

With this book I’ll try to prepare you for the real world of software, where
systems are complex, solve serious problems (often affecting human life or
property), stay around for a long time, and must lend themselves gracefully to
requests for change.

Prior experience — or not

This book doesn’t assume any prior experience in programming.

If you did program before, that experience will help you master some of
the concepts faster. While you must be prepared to question some of your
previous practices if they do not match the professional software engineering
principles developed here, you can and should take advantage of everything
you know. Learning to program well takes a lot of effort: every bit — every
angle from which you can approach the problem — helps. In particular, the
discussion relies, as explained below in more detail, on a supporting software
system, Traffic. If you are familiar with programming and some programming
languages, you will be able to discover some of Traffic by yourself, possibly
ahead of the official assignments. Don’t hesitate to do so: one learns
programming in part by reading existing programs for inspiration and
imitation. You may have to do some guessing for elements of Traffic that rely
on techniques and language constructs you haven’t formally studied yet, but
this is where your experience will help you move faster.

On the other hand, if you havenot done any programming, you’re OK
too. You might progress more slowly at the beginning, but should just study
all the material carefully and do all the exercises. In particular, even though
there’s little actual mathematics in this book, it particularly helps if you have
a mathematical mindset and the practice of logical reasoning. This is just as
beneficial as programming experience, and will compensate any handicap you
feel relative to those fellow students who look like they typed in their first
program before they lost their baby teeth.

Programming, like the rest of computing science, is at the confluence of
engineering and science. Success requires both a hands-on attitude (the
“hacker” side, in the positive sense of the word), useful in technology-oriented
work, and an aptitude to perform abstract, logical reasoning, required in
mathematics and other sciences. Experience with programming helps you
with the first goal; a logical mind helps you with the second. Wherever your
strength lies, take advantage of it, and use this book to compensate for any
initial deficiency on the other side.
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Modern software technology

Becoming a software professional requires more than one course or one book:
it takes a multi-year curriculum in which you will learn about software
engineering, theory of computation, data structures, algorithms, operating
systems, artificial intelligence, databases, hardware, networking, project
management, software metrics, numerical computation, graphics and many
other topics. But to prepare you for these other courses it is essential to use the
best of what is known in software technology.

In recent years two major ideas, holding the potential for producing
software of much better quality than was available before, have made their
way into the software field:object-oriented software constructionand
formal methods. Both of these ideas, but especially the first, can be used to
make the introductory study of computing more exciting and more profitable.
Along with other concepts from modern software technology, they play a
major role in this book. Let’s have a quick look at both of them.

Object-oriented software construction

Object-oriented (“O-O”) software construction follows from the realization
that proper systems engineering requires the ability to rely on a large inventory
of high-quality reusable components, as in the electronic or construction
industries. The O-O approach defines what form these components should
have: each of them must be based on a certaintype of objects. The term
“object”, which gives its name to the method, does not just refer to objects of
the application domain, for example circles or polygons in a graphics
program, but also to objects that are purely internal to the software, such as a
list. If you do not quite see what this all means, that’s normal; I hope that if
you read this Preface again in a few months it will all be crystal-clear!

Object technology (the shorter name for object-oriented software
construction) is quickly changing the software industry, and becoming
familiar with it from the very beginning of your computing studies is an
excellent insurance policy against technical obsolescence.

Formal methods

Formal methods are the application of systematic reasoning techniques, based
on mathematical logic, to the construction of reliable software. Reliability, or
rather the lack of it, is a vexing problem in software; errors, or the fear of error,
are the programmer’s constant companion. Anyone who uses computers has
some anecdote about bugs.
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Formal methods can help improve this situation. To learn formal methods
in their full extent requires more knowledge than is available at the beginning
of a university education. But the approach used in this book shows a
significant influence of formal methods, in particular through the idea of
Design by Contractwhich considers the construction of software systems as
the implementation of a number of individual contractual relations between
modules, each characterized by a precise specification of obligations and
benefits. I hope that you will understand the importance of these ideas and
remember them for the rest of your career; in industry, everyone knows the
difference between a programmer who just “hacks code” and one who is able
to produce correct, robust, durable software elements.

Learning by doing

This book is not a theoretical presentation; it assumes that as you go along you
practice what you learn on a computing system. The associatedWeb site
provides the necessary software, in versions for Windows, Linux and MacOS,
which you can download. Your school may also have the equivalent facilities
available on its computers. In fact, the material is so organized as to prompt
you, in some cases, to do the practical work with the softwarebeforelearning
the theoretical concepts.

The system that you will use for this course is one of the major
object-oriented environments: EiffelStudio, an implementation of the Eiffel
analysis, design and programming language. Eiffel is a simple, modern
language, used worldwide in large, mission-critical industrial projects
(banking and finance, health care, networking, aerospace etc.) as well as for
teaching and research in universities. The EiffelStudio version that you will
use is exactly the same as the professional version, with the same graphical
development environment and fundamental reusable components such as the
EiffelBase, EiffelVision and EiffelMedia libraries. Your school may also have
an academic license providing for maintenance and support.

An appendix presents an introduction to four others languages also
widely used in industry: C#, Java, C and C++.

touch.ethz.ch.

http://touch.ethz.ch
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From the consumer to the producer

Because from day one of the course you will have the whole power of
EiffelStudio at your fingertips, you’ll be able to skip many of the “baby”
exercises that have traditionally been used to learn programming. The
approach of this book is based on the observation that to learn a technique or
a trade it is best to start by looking at the example of excellent work produced
by professionals, and taking advantage of it by (in order) using that work,
understanding its internal construction, extending it, improving it — and
starting to build your own. This is the time-honored method of apprenticeship,
which places newcomers under the guidance of experts.

The expertise is represented here by software, more specificallylibrary
classes: software elements from the Traffic library, specially developed for
this book. As you write your first software examples, you will use these classes
to produce results which are already impressive even though you haven’t had
much to write; you will be just relying on the mechanisms defined by the
classes, acting, through your own software, as aconsumerof existing
components. Then, as someone who knows how to drive but is studying to
become an automobile engineer, you will be encouraged to lift the hood and
see how these classes are made, so that you can later on write extensions to the
classes, improve them perhaps, and write your own classes.

The Traffic library, as its name suggests, provides mechanisms for
dealing with traffic in a city — cars, pedestrians, metros, trams... —, with
graphical visualization, simulations, computing routes, animating the routes
etc. It’s a rich reservoir of applications and extensions: you can use it to build
video games, solve optimization problems, learn many new algorithms.

The built-in examples use Paris as the sample city, because it’s a
well-known tourist destination; you can easily adapt them to another city
without touching the Traffic software, since all the location information is
provided separately in a file (using a standard format, XML). It suffices to
provide such a file representing your chosen city. For example, the course is
taught at ETH Zurich with examples representing the Zurich tram system,
replacing the Paris metro network.

Abstraction

Basing your work on existing components has another important consequence
for your education as a professional software engineer. The program modules
that you reuse are a substantial piece of software, embodying a lot of
knowledge. It would be very difficult to use them for your own applications if
you had to read the full program text of each one you need. Instead, you will
rely on a description of theirabstract interfaces, which are extracted from
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their text (by automatic software mechanisms, part of EiffelStudio) but retain
only the essential information that, as a consumer, you need. An abstract
interface is a description of the purpose of a software module, which states
only its functions, nothow the module’s code realizes these functions. In
software terms, it’s also called thespecificationof the module, excluding the
module’simplementation.

This technique will help you learn a key skill of the professional software
developer:abstraction, meaning here the ability to distinguish the purpose of
any piece of software from the details, often numerous, of its implementation.
Every professor and textbook of software development preaches the virtues of
abstraction, and for good reason; here you’ll get the occasional bit of
preaching too but mostly you’ll been encouraged to learn abstraction by
example, experiencing its benefits through the reuse of existing components.
When you get to build your own software you should apply the same
principles; that’s the only way to tame the ogre of software complexity.

The benefits of abstraction are quite concrete; you’ll be able to
experience them right from the beginning. Thefirst program you’ll write is
only a few lines long, but already produces a significant result (an animated
itinerary on a city map). It can do this only by using modules from Traffic; and
it can use them only because they are available through an abstract
specification. If you had to examine the text of these modules (theirsource
code), then the text of the modules they rely on themselves, and so on, you
would quickly drown in an ocean of details and could not produce anything.

Throughout your work with software, abstraction is the lifevest that will
save you from drowning in the sea of complexity.

Destination: quality

This book teaches not only techniques but methodology. Throughout the
presentation you will encounter design principles and rules on programming
style. Sometimes you may think I’m being fussy and that you could write the
program just as well without the rules. Well, often you can. But the
methodological rules make the difference between an amateurish program,
which sometimes works, sometimes not, and the kind of professional-quality
software that you will want to produce. You should apply these rules not just
because this book and your teachers say so, but because the power and speed
of computers magnify any deficiency, however small, and requires from the
programmer attention both to the big picture and to every detail. They are also
good job insurance for your future career: there are many programmers
around, and what really differentiates them in the eyes of an employer is the
long-term quality of the software they produce.

→ “A CLASS TEXT”,
2.1, page 17.
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Don’t fool yourself with the excuse that “this is only an exercise” or “this
is only a small program”:
• Exercises are precisely where you need to learn the best possible

techniques; when Airbus hires you to write the control software for their
next plane, it will be too late.

• Calling a program “small” is often more hope than guarantee. In industry,
many big programs are small programs that grew, since a good program
tends to give its users endless ideas for requesting new functionalities.

So you should apply the same methodological principles throughout the
programs you develop, whether small or large, educational or operational.

This is the goal of this book: not just to take you through the basics of
software engineering and to let you experience the fun and thrill of producing
software that works, but also to develop — along with a sense of beauty for
the principles, methods, algorithms, data structures and other techniques that
define the discipline — a sense for what makes good software stand out, and
a determination to produce programs of the highest possible quality.

BM
Zurich / Santa Barbara, October 2006
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instructor_preface* ∗The preface for stu-
dents is on pagevii.

Right from its subtitle, this book shows its colors: it’s not just about learning
to program but about “Learning to ProgramWell”. I am trying to get the
students started on the right track so that they can enjoy programming —
without enjoyment one doesn’t go very far — and have a successful career; not
just a first job, but a lifelong ability to tackle new challenges.

To help them reach this goal, the book applies innovative ideas
detailed below:

• Inverted curriculum , also known as the “outside-in” approach, relying
on a large library of reusable components.

• Pervasive use ofobject-oriented and model-driven techniques.

• Eiffel  andDesign by Contract.

• A moderate dose offormal methods.

• Inclusion, from the very beginning, ofsoftware engineering concerns.

These techniques have for several years been applied to the “Introduction to
Programming” course at ETH Zurich, taken by all entering Computer Science
students.Touch of Classbuilds on this course and draws from its lessons. This
also means that teachers using it as a textbook can rely on theteachingmaterial
developed for the course: a full set of slides, lecture schedules, exercises,
self-study tutorials, student projects, even video recordings of our lectures.

THE CHALLENGES OF A FIRST COURSE

Many computer science departments around the world are wondering today
how best to teach introductory programming. This has always been a difficult
task, but new challenges have added themselves to the traditional ones:

Seese.ethz.ch/touch.
Most material in
English; some German
versions available.

This section is based
on[12].

http://se.ethz.ch/touch
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• Adapting to ever higher stakes.

• Identifying the key knowledge and skills to teach.

• Coping with fads and outside pressures.

• Addressing a broad diversity of initial student backgrounds and abilities.

• Meeting high expectations for examples and exercises.

• Introducing the real challenges of professional software development.

• Teaching methodology and formal techniques without scaring off students.

The stakes are getting ever higher. In educating future software
professionals, we must teach durable skills. It is not enough to present
immediately applicable technology, for which in our globalized industry a
cheaper  programmer will always be available elsewhere.

We mustidentify the key knowledge and skillsto teach. Programming
is no longer a rare, specialized ability; a large proportion of the population
gets exposed to computers, software and some rudimentary form of
programming, for example through spreadsheet macros or Web site
development with Javascript, PHP or ASP.NET. Software engineers need
more than being able to program; they must master software development as
a professional endeavor, and by this distinguish themselves from the
occasional or amateur programmer.

It is important to keep a cool head in the presence offads and outside
pressures. Fads are a given of our field, and they are not always bad —
structured programming, object technology and design patterns were all fads
once — but we must make sure an idea has proved its worth before inflicting
it on our students. Outside pressures can be more delicate to handle. Student
families have more say nowadays than in the past; this too is not necessarily a
bad thing, but sometimes results in inappropriate demands that we teach the
specific technologies required in the job ads of the moment. What this attitude
misses is that four years later some of the fashionable acronyms will be
different, and that good industry recruiters look for problem-solving skills, not
narrow knowledge. It is our duty to serve the very interests of the students and
their families by teaching them the fundamental matters, which will give them
not just a first job but a rewarding career.

This whole obsession with learning the right résumé-filling buzzwords for fear of
not landing a job is silly anyway. It is a worldwide phenomenon, likely to last for
decades, that a decent software developer has no trouble finding a good job. For all
the gloom that the media have spread after the “burst of the Internet bubble”, and
the fears that “all the jobs have gone to Bangalore”, no end is in sight to the
challenges and excitement of our field, including of course for our colleagues in
Bangalore. But there’s a qualification: people who get andkeepgood jobs are not
the narrow-minded specialists having been taught whatever filled the headlines of
the day; they are the professional developers with a wide and deep understanding
of computing science, and mastery of many complementary technologies.
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The broad diversity of student backgroundscomplicates the task.
Among the students in the lecture hall on the first day of the typical
introductory course, you may find some who have barely touched a computer,
some who have already produced an e-commerce site, and the full range
in-between. What can the teacher do?

• It is tempting to assume a fair amount of prior programming experience
and teach to the most advanced students only; but this shuts out students
who simply haven’t had the opportunity or inclination to work with
computers yet. In my experience, they include some who later turn out to
be excellent computer scientists thanks to excellent abstraction skills,
which they have so far applied to topics such as mathematics rather than
computing. The nerdy image still widely associated with computers may
have prevented them from realizing that it’s not about late-night video
game sessions fueled by home-delivery pizza (a picture which, in
particular, turns off many girls with excellent computer science potential)
but about cogent thinking applied to solving some of the most exciting
intellectual challenges open to humankind.

• We must not either — at the other extreme — bring everyone down to
the lowest level: we need a way to catch and retain the attention of the
more experienced students, letting them use and expand the insights they
have already gained.

Reliance on reusable components, discussed below, is a central part of this
book’s solution to the issue. By giving students access to high-quality
libraries, we let the novices take advantage of their functionality through
abstract interfaces without needing at first to understand what’s inside. The
more advanced and curious students can, ahead of the others, start to peek into
the internals of the components and use them as guidance for their own goals.

For this to work we needhigh-quality examples. Students today, having
lived most of their lives in a world awash in the visual and auditive marvels of
software-powered multimedia, expect to see and build more than small
academic programs of the “Compute the 7-th Fibonacci number” kind. We
must meet these expectations of the “Nintendo Generation”[3], without of
course letting technological dazzle push aside the teaching of timeless skills.

A variant of this issue is what we may call the “Google-and-paste” phenomenon,
the name I use for what colleagues (generally using Java or C++ as the teaching
language) report as follows: you give an exercise that calls for, say, a 100-line
program solution. Internet-savvy students quickly find on the Web some Java code
that does the job, except that it does much more as part of, maybe, a 10,000-line
program. Now it doesn’t take long for beginners to hit upon a key piece of
programming wisdom from the ages: that if you see a program that works you
mess with it as little as you can. You hold your breath when coming anywhere
close to it. Following this insight, the student will just switch off (rather than
remove) the parts he or she doesn’t need, through a minimal set of changes. So the
teacher gets a 10,000-line solution to an elementary question. Of course one may
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impose, if not a full prohibition of Web use (which in a computer science
curriculum would sound bizarre), precise rules that would exclude such a
“solution”. But how exactly? “Google-and-paste” is, after all, a form of reuse, even
if not exactly the kind advocated by software engineeering textbooks.

The approach used in this book goes one step further. Not only do we encourage
reuse, we actually provide a large amount of code (150,000 lines of Eiffel at the
time of writing, and growing) for reuse, and also for imitation since it is available
in source form and explicitly designed as a model of good design and
implementation. Reuse is from the beginning one of the “best practices” promoted
by the course; but it’s a form of reuse in line with principles of software
engineering, based on abstract interfaces and contracts.

These questions contribute to the next issue on our list:introducing the real
challenges of professional software development. In a university-level
computer science or software engineering program, we can’t just teach
programming in the small. We have to prepare students for what matters to
professionals: programming in the large. Not all techniques that work well for
small programs will scale up. The very nature of an academic environment,
especially at an introductory level, makes it hard to introduce students to the
actual challenges of today’s industrial software: software developed by many
people, expanding to many lines of code, adapted to many categories of uses
and users, maintained over many years, undergoing many changes.

This concern for scalability gives particular urgency to the last issue:
introducing methodology and formal reasoning without disconnecting
from the students. Methodological advice — to use abstraction, information
hiding, contracts and software engineering principles in general — can sound
preachy and unnecessary. Introducing some formal (mathematically-based)
techniques, such as the notion of loop invariant, can widen this potential gap
between teacher and student. Paradoxically, the students who have already
programmed a bit and stand to benefit most from such admonitions and
techniques may be most tempted to discard them since they know from
experience that it is possible — on small programs! — to reach an acceptable
result without strict rules.

The best way to instill a methodological principle is pragmatic: to show
that it empowers you to do something that would otherwise be unthinkable,
such as building impressive programs with graphics and animation. Our
reliance on powerful libraries of reusable components is an example: students
can, right from the beginning of the course, produce significant applications,
visual and all, thanks to these components; but they would never proceed
beyond a few classes if as a prerequisite they had to read the code. The only
reuse that works here is through abstract interfaces.

Rather than pontificating on abstraction, information hiding and
contracts, it is better to let the students use these techniques and discover that
they work. If an idea has saved you from drowning, you won’t discard it as
futile theoretical advice.
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OUTSIDE-IN: THE INVERTED CURRICULUM

The order of topics in programming courses has traditionally been bottom-up:
start with the building blocks of programs such as variables and assignment;
continue with control and data structures; move on if time permits — which it
often doesn’t in an intro course — to principles of modular design and
techniques for structuring large programs.

This approach gives the students a good practical understanding of the
fabric of programs. But it may not always teach the system construction
concepts that software engineers must master to be successful in professional
development. Being able to produce programs is not sufficient any more
today; many people who are not professional software developers can do this
honorably. What distinguishes the genuine professional is the mastery of
system skills for the development and maintenance of possibly large and
complex programs, open for adaptation to new needs and for reuse of some of
their components. Starting from the nuts and bolts, as in the traditional “CS1”
curriculum, may not be the best way to teach these skills.

Rather than bottom-up — or top-down — the order of this book is
outside-in. It relies on the assumption that the most effective way to learn
programming is to use good existing software, where “good” covers both the
quality of the code — since so much learning happens through imitation of
proven models — and, almost more importantly, the quality of itsinterfaces,
in the sense of program interfaces (APIs).

From the outset we provide the student with powerful software: a set of
sophisticated libraries, called Traffic, where the top layers have been produced
specially for this book, and the basic layers on which they rely (data structures,
graphics, GUI, time and date, multimedia, animation…) are widely used in
commercial applications. All this library code is available in source form,
providing a repository of high-quality models to imitate; but in practice the
only way to use them for one’s own programs, especially at the beginning, is
through API specifications, also known ascontract views, which provide the
essential information abstracted from the actual code. By relying on contract
views, students are able right from the start to produce interesting applications,
even if the part they write originally consists of just a few calls to library
routines. As they progress, they learn to build more elaborate programs, and
to understand the libraries from the inside: to “open up the black boxes”. The
hope is that at the end of the course they will be able, if needed, to produce
such libraries by themselves.

This Outside-In strategy results in an “Inverted Curriculum” where the
student starts as aconsumerof reusable components and learns to become a
producer. It does not ignore the teaching of standard low-level concepts and
skills, since at the end we want students who can take care of everything a
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program requires, from the big picture to the lowest details. What differs is the
order of concepts and particularly the emphasis on architectural skills, often
neglected in the bottom-up curriculum.

The approach is intended to educate students so that they will master the
key concepts of software engineering, in particularabstraction. In my career
in industry I have repeatedly observed that the main quality that distinguishes
good software developers is their ability to abstract: to separate the essential
from the accessory, the durable from the temporary, the specification from the
implementation. All good introductory textbooks duly advocate abstraction,
but the result of such exhortations is limited if all the student knows of
programming is the usual collection of small algorithmic examples. I can
lecture on abstraction too, but in the end the most effective way to convey the
concepts is by example; by showing to the student how he or she can produce
impressive applications through the reuse of existing software. That software
is large at least by academic standards; trying to reuse it by reading the source
code would take months of study. Yet students can, in the first week of the
course, produce impressive results by reusing it through the contract views.

Here abstraction is not just a nice idea that we ask our students to heed,
another parental incitation to be good and do right. It’s the only way to survive
when faced with an ambitious goal that you can’t reach except by standing on
someone else’s shoulders. Students who have gone early and often through
this experience of building a powerful application through contract-based
reuse of libraries do not need much more haranguing about abstraction and
reuse; for them these concepts become a second nature.

Teaching is better than preaching, and if something is better than teaching
it must be the demonstration — carried out by the students themselves — of
the principles at work, and the resulting “Wow!”.

THE SUPPORTING SOFTWARE

Central to the Outside-In approach of this book is the accompanying Traffic
software,available for free download. The choice of application area for the
library required some care:

• The problem domain should be immediately familiar to any student, so
that we can spend our time studying software issues and solutions, not the
problem domain. (It might be fun to take, say, astronomy, but then we’d
end up discussing comets and galaxies rather than inheritance structures
and class invariants.)

Fromtouch.ethz.ch.

http://touch.ethz.ch
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• The area should provide a large stock of interesting algorithm and data
structure examples, applications of fundamental computer science
concepts, and new exercises that each instructor can devise beyond those
in the book. This should extend beyond the introductory course, to enable
our colleagues teaching algorithms, distributed systems, artificial
intelligence and other computer science topics to take advantage of the
software if they wish.

• The chosen theme should call for graphics and multimedia development
as well as advanced graphical user interfaces.

• Unlike many video games, it must not involve violence and aggression,
which would be inappropriate in a university setting (and also would not
help correct the gender imbalance which plagues our field).

The application area that we retained istransportation in a city: modeling,
planning, simulation, display, statistics. The supporting Traffic software is not
just an application, doing a particular job, but alibrary, providing reusable
components from which students and instructors can build applications.
Although still modest, it has the basic elements of a Geographical Information
System and the supporting graphical display mechanisms.

For its examples the book uses Paris, with its streets and transportation
networks; since the city’s description comes from XML files, it is possible to
retarget the example to any other city. (In the first session of the course at ETH
a few students spontaneously provided a file representing the Zurich
transportation network, which we have been using ever since.)

The very first application that the student produces takes up four lines of
code. Its execution displays a map, highlights the Paris Metro network on the
map, retrieves a predefined route, and shows a visitor traveling that route
through video-game-style graphical animation. The code is:

class PREVIEWinherit
TOURISM

feature
exploreis

-- Show city info and route.
do

Paris.display
Louvre.spotlight
Metro.highlight
Route1.animate

end
end
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The algorithm takes up four lines of code, and yet its effect is impressive
thanks to the underlying Traffic mechanisms.

In spite of the reliance on an extensive body of existing software, I stay
away from giving any impression of “magic”. It’s indeed possible to explain
everything, at an appropriate level of abstraction. I never say “just do as you’re
told, you’ll understand when you grow up”. This attitude is no better at
educating students than it is at raising your children. In the first example as
shown above, even theinherit clause can be explained in a simple fashion: I
don’t go into the theory of inheritance, of course, but simply tell the student
that classTOURISMis a helper class introducing predefined objects such as
Paris, Louvre, MetroandRoute1, and that a new class can “inherit” from such
an existing class to gain access to its features. They’re also told that they don’t
need to look up the details of classTOURISM, but may do so if they feel the
engineer’s urge to know “how things work”.

The rule, allowing our students to approach the topics progressively, is
always to abstract and never to lie.

From programming to software engineering

Programming is at the heart of software engineering, but is not all of it.
Software engineering concerns itself with the production of systems that may
be large, are developed over a long time, undergo many changes, and meet
strong constraints of quality, timeliness and cost. Although the corresponding
techniques are usually not taught to beginners, it’s really important to provide
at least a first introduction. The topics include debugging and testing (even
with the best of modern programming methodology, this will account for a
good deal of the time spent on the job), quality in general, lifecycle models,
requirements analysis (the programmers we are educating shouldn’t just be
techies focused on the machinery but should also be able to talk to users and
understand their customers’ needs), GUI design.

Terminology

Lucid thinking includes lucid use of words. I have devoted particular attention
to consistent and precisely defined terminology. The most important
definitions appear in call-out boxes, others in the main body of the text.

At the end of each chapter a “New vocabulary” section lists all the terms
introduced, and the first exercise asks the student to provide precise definitions
of each. This is an opportunity to test one’s understanding of the ideas
introduced in the chapter.
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TECHNOLOGY CHOICES

The book relies on a combination of technologies: an object-oriented
approach, Design by Contract, Eiffel as the design and programming
language. It is important to justify these choices and explain why some others,
such as Java as a programming language, were not retained.

Object technology

Many introductory courses now use an object-oriented language, but not
necessarily in an object-oriented way; few people have managed to blend
genuine O-O thinking into the elementary part of the curriculum. Too often,
for example, the first programs rely on static functions (in the C++ and Java
sense of routines not needing a target object). There sometimes seems to be an
implicit view that before being admitted to the inner chambers of modern
technology students must suffer through the same set of steps that their
teachers had to travel in their time. This approach continues the traditional
bottom-up order of concept introduction, reaching classes and objects only as
a reward to the students for having patiently climbed theGradus ad
Parnassumof classical programming constructs.

There’s no good reason for being so coy about O-O. After all, part of the
pitch for the method is that it lets us build software systems as clear and natural
modelsof the concepts and objects with which they deal. If it’s so good, it
should be good for everyone, beginners included. Or to borrow a slogan from
the waiters’ T-shirts at Anna’s Bakery in Santa Barbara, whose coffee played
its part in fueling the writing of this book:Life is uncertain — Eat dessert first!

Classes and objects appear indeed at the very outset and serve as the basis
for the entire book. I have found that beginners adopt object technology
enthusiastically provided the concepts are introduced, without any
reservations or excuses, as the normal, modern way to program.

One of the principal consequences of the central role of object technology
in this presentation is that the notion ofmodelguides the student throughout.
The emergence of “model-driven architecture” reflects the growing
recognition of an idea central to object technology: that successful software
development relies on the construction of models of physical and conceptual
systems. Classes, objects, inheritance and the associated techniques provide
an excellent basis to teach effective modeling techniques.

Object technology is not exclusive of the traditional approach. Rather, it
subsumes it, much as relativity yields classical mechanics as a special case: an
O-O program is made of classes, and its execution operates on objects, but the
classes contain routines, and the objects contain fields on which programs may
operate as they would with traditional variables. So both thestaticarchitecture
of programs and thedynamicstructure of computations cover the traditional
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concepts. We absolutely want the students to master the traditional techniques
such as algorithmic reasoning, variables and assignment, control structures,
procedures and recursion, and to be able to build entire programs from scratch.

Eiffel and Design by Contract

We rely on Eiffel and the EiffelStudio environment which students can
download for free fromwww.eiffel.com. Universities can also install this free
version (and purchase support if desired). This choice directly supports the
pedagogical concepts of this book:
• The Eiffel language is uncompromisingly object-oriented.
• Eiffel provides a strong basis to learn other programming languages such

as C#, Java, Smalltalk or C++.
• Eiffel is easy to learn for a beginner. The concepts can be introduced

progressively, without interference between basic constructs and those not
yet studied.

• The EiffelStudio development environment uses a modern, intuitive GUI,
with advanced facilities including sophisticated browsing, editing,
debugging, automatic documentation (HTML or otherwise), even
software metrics. It produces architectural diagrams automatically from
the code and, the other way around, lets a user draw diagrams from which
the environment will produce the code, with round-trip capabilities.

• EiffelStudio is available on many platforms including Windows, Linux,
Solaris, Microsoft .NET, Mac OS X.

• EiffelStudio includes a set of carefully written libraries, which support
the reuse concepts of this book, and serve as the basis of the Traffic
library written specifically for it. The most relevant areEiffelBase, which
by implementing the fundamental structures of computer science
supports the study of algorithms and data structures in partIII , EiffelTime
for date and time,EiffelVision, an advanced portable graphical library,
andEiffelMedia for multimedia and animation facilities.

• Unlike tools designed for education only, Eiffel is used commercially for
large mission-critical applications handling billions of dollars of
investment, managing health care, performing civil and military
simulations, and tackling other problems across a broad range of
application areas. This is in my opinion essential to effective teaching of
programming; a tool that is really good should be good for professionals
as well as for novices.

• The Eiffel language is specified by a standard of the International
Standards Organization. For the teacher relying on a programming
language, an international standard, especially an ISO standard, is a
guarantee of sustainability and precise definition.

For the text of the stan-
dard seetinyurl.com/
y5abdx or the ECMA
version(samecontents)
at tinyurl.com/cq8gw..

http: //www.eiffel.com
http://tinyurl.com/y5abdx
http://tinyurl.com/y5abdx
http://tinyurl.com/cq8gw
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• Eiffel is not just a programming language but amethodwhose primary
aim — beyond expressing algorithms for the computer — is to support
thinking about problems and their solutions. It enables us to teach a
seamless approachthat extends across the software lifecycle, from
analysis and design to implementation and maintenance. This concept of
seamless development, supported by the round-trip Diagram Tool of
EiffelStudio, is in line with the modeling benefits of object technology.

To support these goals, Eiffel directly implements the concepts ofDesign by
Contract, which were developed together with Eiffel and are closely tied to
both the method and the language. By equipping classes with preconditions,
postconditions and class invariants, we let students use a much more
systematic approach than is currently the norm, and prepare them to become
successful professional developers able to deliver bug-free systems.

One should also not underestimate the role of syntax, for beginners as
well as for experienced programmers. Eiffel’s syntax — illustrated by the
short example above — facilitates learning, enhances program readability, and
fights mistakes:

• The language avoids cryptic symbols.

• Every reserved word is a simple English word, unabbreviated
(INTEGER, notint).

• The equal sign=, rather than doing violence to hundreds of years of
mathematical tradition, means the same thing as in math.

• In most of today’s languages, program texts are peppered with
semicolons terminating declarations and instructions. Most of the time
there is no reason for these pockmarks; even when not consciously
noticed, they affect readability. Being required in some places and illegal
in others, for reasons not always clear to beginners, they can be a source
of errors. In Eiffel the semicolon as separator is optional, regardless of
program layout. This leads to a neat program appearance, as you may see
by picking any example in the book.

Encouraging such cleanliness in program texts should be part of the teacher’s
pedagogical goals. Eiffel includes precise style rules, explained along the way
to show students that good programming requires attention to both the
high-level concepts of architecture and the low-level details of syntax and
style: quality in the large and quality in the small.

More generally, a good language should let its users focus on the
concepts rather than the notation. This is one of the goals of using Eiffel for
teaching: that students should think about their problems, not about Eiffel



INSTRUCTOR_PREFACExxvi

Why not Java?

Since courses in recent years have often used Java, or a Java variant such as
C#, it is appropriate to explain why we don’t follow this practice. Java is useful
for computer scientists to know — indeed the book provides an appendix that
introduces the basics of Java, and others on C#, C++ and C — but not
appropriate as a first teaching language. There is simply too much baggage to
be learned before the student can start to thing about the problems. This is
apparent from the first program attempts; a Java “Hello World” reads

This is full of irrelevant concepts, each an obstacle to learning. Why “public”,
“static”, “ void”? (Sure, I’ll make my programpublic if you insist, but do you
mean my efforts arevoid of any value?) These keywords have nothing to do
with the purpose of the program, and the student won’t begin to understand
what they mean for a few months at least, yet he or she must include them, like
magic incantations, for their programs to work. For the teacher this means
engaging far too often in injunctions to use certain constructions without
understanding what they mean. As noted above this “You’ll understand when
you grow up” style is not good pedagogy. Eiffel protects us from it: we can
explain every programming language construct that we use, right from the first
program example.

The object-oriented nature of Eiffel and the simplicity of the language
play a role. It is ironic that every Java program, starting with the simplest
example as shown above, uses as main program astaticfunction, that is to say
a departure from the object-oriented style of programming. There are of
course people who don’t like the idea of using an O-O approach for the first
programming course; but if you do go for objects, you should use them all the
way. Trying to explain the O-O style to students cannot be very effective if you
have to reveal to them — when they progress enough to understand the first
thing they had to write, and repeated in every subsequent example — that this
key part of all Java programs is not object-oriented after all.

Syntax, as noted, matters. In this first example the student must master
strange symbol accumulations, like the final “"); } } ” above, disconcerting to
the eye and with no obvious role. In this accumulation the precise order of the
symbols is essential, but is hard to explain and to remember. (Why a semicolon
between a closing parenthesis and a brace? Is there a space after that
semicolon and if so how important is it?) Such aspects are troubling to

class First {
    public static void main(String args[])
    { System.out.println("Hello World!"); } }
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beginners; inevitably, much time and effort are consumed learning them and
recovering from trivial mistakes with mysterious results, just when the student
should be concentrating on the concepts of programming.

Another source of confusion is the use of “=” for assignment, inherited
from Fortran through C and hard to justify in the twenty-first century. How
many students starting with Java have wondered what valuea must have for
a = a + 1 to make sense, and, as noted by Wirth[13], whya = b doesn’t mean
the same asb = a ?

Inconsistencies are troubling: why, along with full words like “static”,
abbreviations such as “args” and “println”? Students will retain from that first
exposure to programming that it’s not necessary to be consistent, and that
saving keystrokes is more important than choosing clear names. (The feature
that goes to the next line in the basic I/O Eiffel library is calledput_new_line.)
If indeed at some later stage we introduce programming methodology advice
about choosing clear and consistent names, we can hardly expect the students
to take us seriously. “Do as I say, not as I do” is another example of a dubious
pedagogical technique.

To cite another example, whendescribing the need for a mechanism for
treating operations as objects, like Eiffel’s agents or the closures of other
languages, I had to explain how one addresses the issue in a language such as
Java that doesn’t have these mechanisms. Since I used iterators as one of the
motivating examples I was at first happy to find that the Sunpage describing
Java’s “inner classes” also has code for an iterator design, which it would have
been nice to use as a model. But then it includes declarations such as

I can perhaps try to justify this to seasoned programmers, but there is no way I
can explain it to someone who is just beginning — and I admire anyone who can.
Why doesStepThroughappear three times? Does it denote the same thing each
time? What does the whole thing mean anyway? Very quickly the introductory
programming course turns intoexegesis of the programming language, with little
time left for real concepts. In Alan Perlis’swords, “A programming language is
low-level when its programs require attention to the irrelevant”.

Also contributing to the difficulties of using Java in an introductory
course are the liberties that the language takes with object-oriented principles.
For example:

public StepThrough stepThrough() {
                  return new StepThrough();
          }

→ Chapter19.

java.sun.com/docs/boo
ks/tutorial/java/jav-
aOO/innerclasses.html,
as of September 2006.

Epigram #8, available
at www-pu.informa-
tik.uni-tuebin-
gen.de/users/klaeren/ep
igrams.html as of Sep-
tember 2006.

http://java.sun.com/docs/books/tutorial/java/javaOO/innerclasses.html
http://java.sun.com/docs/books/tutorial/java/javaOO/innerclasses.html
http://www-pu.informatik.uni-tuebingen.de/users/klaeren/epigrams.html
http://www-pu.informatik.uni-tuebingen.de/users/klaeren/epigrams.html
http://www-pu.informatik.uni-tuebingen.de/users/klaeren/epigrams.html
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• If x denotes an object anda one of the attributes of the corresponding
class, you may by default write the assignmentx.a = v to assign a new
value to thea field of the object. This violates information hiding and
other design principles. To rule it out, you must shadow every attribute
with a “getter” function, a tedious and unnecessary task. For the teacher,
the choice is between forcing students early on to add considerable noise
to their programs, or let them acquire bad design habits which are then
difficult to unlearn.

• The Java notion of interface, separate from classes, forces a choice
between fully abstract modules (interfaces) and fully implemented ones
(classes). One of the benefits of the class mechanism, available as early
as Simula 67, is to offer the full spectrum between these extremes. This
is particularly useful to teach design: the first time you identify a notion
you can express it through a fully deferred (abstract) class, which can
then be refined through inheritance into a fully effective one. This is at the
core of teaching the object-oriented method. The problem in Java is
compounded by the inability to combine two or more abstractions
through inheritance unless all but at most one are interfaces.

There are many more examples of such influences of Java on the teaching
process; a new Eiffel user expressed a typical reaction by writing on a mailing
list that “I have written a lot of C++ and Java; all my brain power went on
learning loads of nerdy computer stuff. With Eiffel I do not notice the
programming and spend my time thinking about the problem.”

A reason often invoked for using Java or C++ in introductory
programming is the market demand for programmers in these languages. This
is a valid concern, but it applies to the computer science curriculum as a whole,
not to the first course. Programming at the level required of a CS graduate
today is hard enough; we should use the best pedagogical tools. If market
demand had been the determinant, we would never in the past have used Pascal
(for many years the introductory language of choice), even less Scheme.
Following the trends reflected in the latest ads for programmers we would in
turn have imposed Fortran, Cobol, PL/I, Visual Basic, maybe C — and trained
programmers who, a few years after graduation, would have found their skills
obsolete when the great wheel of fashion turned. Our duty is to train
problem-solvers who can quickly adapt to the evolutions of our discipline.

We should not let short-term market considerations damage pedagogical
principles. In other words: if you think Java or C++ are ideal teaching tools,
use them by all means; you probably won’t like this book very much. But if
you agree with its approach, don’t be scared that some student or parent will
complain that you use an “academic” approach. Explain to them that you are
teaching programming in the best way you know, that someone who
understands programming will retain that skill for life, and that any
half-decent software engineer can pick up a new programming language at
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breakfast — in case he or she hasn’t already picked it up from other courses
of your curriculum. As to the “academic” qualification (assuming that, in a
university context, it is meant as derogatory!), point them toeiffel.comand its
long list of mission-critical systems in Eiffel, successfully deployed by major
companies, often after attempts in other languages had failed.

Java, C#, C++ and C are, for the next few years, an important part of any
software engineer’s baggage. Making sure the students know them is unrelated
to the question of what techniques to use in the introductory course. Students
will most likely be exposed to these languages at some point; it would be a rare
curriculum these days where no course uses at least one of them. In any case
no intro course that I know coversall of them, so students need to learn more
regardless of the initial teaching language. This book goes further than
standard textbooks in providing introductions to all of the languages cited.

Programming languages and the programming culture associated with
each of them are interesting objects of study. My team at ETH, which teaches
introductory programming in Eiffel, has introduced courses for the third year
and beyond, each devoted to the detailed study of a specific language: “Java in
Depth”, “C# in Depth” etc.

Students who know programming are well prepared to master the
intricacies of specific languages. Eiffel is a benefit here too: as many people
have noted, having learned Eiffel and its object model helps you become a
better C++ or Java programmer.

As a potential employer in both academia and industry I see dozens of CVs every
month. They all cite the same skills, including C++ and Java. Other than as
checkboxes to be ticked, this will not impress anyone. What recruiters do watch
for is any skill that sets out an applicant from the hordes of others with similar
backgrounds. An example of such a distinctive advantage is that the applicant
knows a fully object-oriented approach with support for software engineering, as
evidenced by a curriculum using Eiffel and Design by Contract. It is possible to
survive a C++-based curriculum without ever understanding O-O concepts in any
depth; with Eiffel that’s more unlikely. Competent employers know that what
counts, beyond immediate skills, is depth of understanding of software issues and
aptitude for long-term professional development. All the effort deployed through
this book and the use of Eiffel is directed at these goals.

It may be appropriate here tocite Alan Perlis again:A language that doesn’t
affect the way you think about programming is not worth knowing.

Epigram #19.

http://eiffel.com
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HOW FORMAL?

One of the benefits of the Design by Contract approach is to expose the
students to a gentle dose of “formal” (mathematically-based) methods of
software development.

The software world needs, among other advances, more use of formal
methods. Any serious software curriculum should devote at least one course
entirely to mathematics-based software development, based on a
mathematical specification language. In addition — although not as a
substitute for such a course — the ideas should influence the entire software
curriculum, even if though (as discussed below) it is not desirable today to
subject beginners to a fully formal approach. The challenge is not only to
include an introduction to formal reasoning along with practical skills, but to
present the two aspects as complementary, closely related, and both
indispensable. The techniques of Design by Contract, tightly woven into the
fabric of object-oriented program structures, permit this.

Teaching Design by Contract awakens students to the idea of
mathematics-based software development. Almost from thefirst examples of
interface specifications, routines possess preconditions and postconditions,
and classes possess invariants. These concepts are introduced in the proper
context, treated — as they should, although many programmers still fear them,
and most programming languages offer no support for contracts — as the
normal, obvious way to reason about programs. Without intimidating students
with a heavy-duty formal approach, we open the way for the introduction of
formal methods, which they will fully appreciate when they have acquired
more experience with programming.

In no way does the use of a mathematical basis imply a stiff or
intimidating manner. Some formality in the concepts goes well with a
practical, hands-on approach. For example the text introduces loops as an
approximationmechanism, to compute a solution on successively larger
subsets of the data; in this view the notion ofloop invariantcomes naturally,
at the very beginning of the discussion of loops, as a key property expressing
the approximation obtained at every stage.

This emphasis on practicality distinguishes Design by Contract from the
fully formal approaches used in some introductory courses, whose teachers
hold that students should first learn programming as a mathematical
discipline. Sometimes they go so far as to keep them away from the computer
for a semester or a full year. The risk of such dogmatism is that it may produce
the reverse of its intended effect.

Students, in particular those who have programmed before, realize that
they can produce a program — not a perfect program, but a program —
without a heavy mathematical apparatus; if you tell them that it’s not possible

→ In chapter4.
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they will just disconnect, and may from then on reject any formal technique as
irrelevant, including simple ideas that can help them now and more advanced
ones when they reach higher levels of expertise. As Leslie Lamport — not one
to be suspected of lack of enthusiasm for methods — points out[6]:

[In American universities] there is a complete separation between
mathematics and engineering. I know of one highly regarded
American university in which students in their first programming
course must prove the correctness of every tiny program they write.
In their second programming course, mathematics is completely
forgotten and they just learn how to write C programs. There is no
attempt to apply what they learned in the first course to the writing
of real programs.

My experience confirms this. First-year students, who react well to Design by
Contract, are not ready for a fully formal approach. To develop a real
appreciation for its benefits you must have encountered the difficulties of
industrial software development. On the other hand, it also doesn’t work to let
students develop a totally informal approach first and, years later, suddenly
reveal that there’s more to programming than hacking. The appropriate
technique, I believe, is incremental: introduce Design by Contract techniques
right from the start, with the associated idea that programming is based on a
mathematical style of reasoning, but without overwhelming students with
concepts beyond their reach; let them master the practice of software
development on the basis of this moderately formal approach; later in the
curriculum, bring in courses on such topics as formal development and
programming language semantics. This cycle can be repeated, as theory and
practice reinforce each other.

Such an approach helps turn out students for whom correctness concerns
are not an academic chimera but a natural, ever-present component of the
software construction process.

OTHER APPROACHES

Looking around at university curricula, talking to teachers and examining
textbooks leads to identifying four main approaches in use today for
introductory programming:
• Language-focused.
• Functional (in the sense of functional programming).
• Formal.
• Structured, Pascal or Ada-style.
It is important to understand the benefits of these various styles — indeed we
retain something from each of them — and their limitations.
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The first approach is probably nowadays the most common. It focuses on
a particular programming language, often Java or C++. This has the advantage
of practicali ty, and of easily produced exercises (subject to the
Google-and-Paste risk), but gives too much weight to the study of the chosen
language, at the expense of fundamental conceptual skills. Relying on Eiffel
helps us teach the concepts, not the specifics of a language.

The second approach is illustrated in particular by the famous MIT
course based on the Scheme functional programming language[1], which has
set the standard for high-level curricula. It is strong on teaching the logical
reasoning skills essential to a programmer. We strive to retain these benefits,
as well as the relationship to mathematics, present here through logic and
Design by Contract. But in my opinion object technology provides students
with a better grasp of the issues of program construction. Not only is an O-O
approach in line with the practices of the modern software industry, which has
shown little interest in functional programming; more importantly for our
pedagogical goals, it emphasizes system building skills and software
architecture, which should be at the center of computer science education.

While, as noted, the curriculum should not be a slave to the dominant
technologies just because they are dominant, we have a duty of realism. Using
techniques too far removed from practice subjects us to the previously
mentioned risk of disconnecting from the students, especially the most
advanced ones, if they see no connection between what they’re being taught
and what their incipient knowledge of the discipline tells them. (Alan Perlis
put this less nicely:Purely applicative languages are poorly applicable.)

I would argue further that the operational, imperative aspects of software
development, downplayed by functional programming, are not just an
implementation nuisance but a fundamental component of the discipline of
programming, without which many of the most difficult issues disappear. If
this view is correct, we are not particularly helping students by protecting
them from these aspects at the beginning of their education, presumably
abandoning them to their own resources when they encounter them later.

It’s useful to point out that O-O programming is as mathematically respectable —
through the theory of abstract data types on which it rests and, in Eiffel, the
reliance on contracts — and as full of intellectual challenges as any other
approach. Recursion, one of the most fascinating tools of functional programming,
receives extensivecoverage in the present book.

Some of the comments on functional programming also apply to the next
approach, reliance on formal methods. As argued above, a fully formal
approach is, at the introductory programming level, premature. The practical
effect may be to convince students that academic computer science has
nothing to do with the practice of software engineering, and causing them to
adopt a blasé, method-less approach to programming.

→ Chapter16.
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The fourth commonly used approach, pioneered at ETH, draws its roots
in the structured programming work of the seventies, and is still widespread.
It emphasizes program structure and systematic development, often top-down.
The supporting programming language is typically Pascal, or one of its
successors such as Modula-2, Oberon or Ada. The approach of this book is
heir to that tradition, with object technology viewed as a natural extension of
structured programming, and a focus on programming-in-the-large to meet the
challenges of programming in the new century.

TOPICS COVERED

The book is divided into five parts.

PartI introduces the basics. It defines the building blocks of programs,
from objects and classes to interfaces, control structures and assignment. It
puts a particular emphasis on the notion of contract, teaching students to rely
on abstract yet precise descriptions of the modules they use and, as a
consequence, to apply the same care to defining the interface of the modules
they will produce. Achapter on “Just Enough Logic” introduces the key
elements of propositional calculus and predicate calculus, both essential for
the rest of the discussion. Back to programming, subsequent chapters deal
with object creation and the object structure; they emphasize the modeling
power of objects and the need for our object models to reflect the structure of
the external systems being modeled. Assignment is introduced, together with
references, only after program structuring concepts.

Part II, entitled “How things work”, presents the internal perspective:
basics of computer organization, programming languages, programming
tools. It is an essential part of the abstraction-focused approach to make sure
that students also master theconcreteaspects of hardware and software, which
define the context of system development. Programmers who focus on the
low-level, machine-oriented, fine-control details are sometimes derided as
“hackers” in the older sense (not the more recent one of computer vandal).
There’s nothing wrong with that form of hacking when it’s the natural
hands-on, details-oriented complement to the higher-level concepts of
software architecture. Students must understand the constraints that computer
technology puts on our imagination, especially orders of magnitude: how fast
we can transmit data, how many objects we can store in primary and secondary
memories, the ratio of access times for these two kinds.

Part I I I examines some of the fundamental “Algorithms and data
structures” of computer science, from arrays and trees to sorting and some
advanced examples. Here too the approach is object-oriented and
library-based. It makes no attempt at

→ Chapter5.
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PartIV considers some more specialized object-oriented techniques such
as inheritance, deferred features and constrained genericity, event-driven
design, and a taste of concurrency.

Part V adds the final dimension, beyond mere programming, by
introducing concepts of software engineering for large, long-term projects,
with chapters on such topics as project management, requirements
engineering and quality assurance.

Appendices provide an introduction to various programming languages
of which the students should have a general understanding: C#, Java, C —
described in some more detail since it’s an important tool for accessing
low-level details of the operating system and the hardware — and C++, a
bridge between the C and O-O worlds.
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PART I:

Basics

We start with the essentials of programming: objects, classes, interfaces and
contracts, and supporting concepts including logic and some elements about
hardware.
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1

The industry of pure ideas

1.1 THEIR MACHINES AND OURS

Engineers design and build machines. A car is a machine for traveling; an
electronic circuit is a machine for transforming signals; a bridge is a machine
for crossing a river. Programmers — “software engineers” — design and build
machines too. We call our machinesprograms or systems.

There’s a difference between our machines and theirs. If you drop one of
their machines, it will hurt your feet. Ours don’t.

Programs are immaterial. This makes them closer, in some respects, to a
mathematician’s theorems or a philosopher’s proposition than to an airplane
or a vacuum cleaner. And yet, unlike theorems and propositions, they are
engineering devices: you can operate a program, like you operate vacuum
cleaners or planes, and get results.

Since one can’t operate a pure idea you will need some tangible, material
support to operate programs or, using the more common terms, torun or
executethem. That support is another machine: acomputer. Computers and
related devices are calledhardware, indicating that — although they’re
getting ever lighter — computers are the kind of machine that will hurt your
feet. Programs and all that relates to them are by contrast calledsoftware, a
word made up in the 1950s when programs emerged as topic of interest.

Here is how things work. You dream up a machine, big or small, and
describe your dream in the form of a program. The program can then be fed
into a computer for execution. The computer by itself is a general-purpose
machine, but when equipped with your program it becomes a specialized
machine, a material realization of the immaterial machine that you defined
through your program.
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The person who writes the program — “you” in the previous paragraph
— is predictably called aprogrammer. Others, whom we callusers, can then
run your program on your computer, or theirs.

If you have ever used a computer, you’ve run some program, for example to
browse the Web or play a DVD, so you’re already a user. This book should
help you make it to the next step: programmer.

Cynics in the software industry pronounce “user” as “loser”. It’s one of the goals
of this book that users of your programs will pronounce themselves winners.

The immaterial nature of the machines we build is part of what makes
programming so fascinating. Given a powerful enough computer you can
define any machine you want, whose operation will require billions upon
billions of individual steps, and the computer will run it for you. You don’t
need wood or clay or iron or anything that could wear you out carrying it up
the stairs, burn you, or damage your clothes. State what you want, and you’ll
have it. The only limit is your imagination.

Well, OK, that’s one oftwo limits; we don’t like to mention the other in
genteel company, but you’ll likely encounter it before long. It’s your own
fallibility. Nothing personal: if you are like the rest of us, you make mistakes.
Lots of mistakes. In ordinary life they are not all harmful, as most human
activities are remarkably error-tolerant. You can press your fork a little too
intensely, drink your water a little too fast, push the accelerator a little too
hard, use the wrong word; this happens all the time and in most cases doesn’t

Computer.

A writes a
Program

User

which a

runs on a

programmer

From idea to
results
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prevent you from achieving what you wanted: eat, drink, drive, communicate.
But programming is different! At a dazzling speed — hundreds of millions of
basic operations per second — the computer will run your machine
description, your program, exactly as you prepared it. The computer doesn’t
“understand” your program, it just runs it; the slightest mistake will be
faithfully carried out by the machinery. What you wrote is what you get!

As you learn about programming in the following chapters, this is
perhaps the most important property of computers to keep in mind. You might
still believe otherwise: because computer programs do things that seem so
sophisticated — like finding, in less than a second, your ideal vacation rental
from millions of offers available on the World-Wide Web — we may easily
succumb to the impression that computers are smart. Wrong. Although some
programs may embody considerable human intelligence, the computer that
runs them is like a devoted and unsufferable servant: infinitely faithful, almost
infinitely fast, and definitely stupid. It will carry out your instructions exactly
as you give them, never taking any initiative to correct mistakes, even those
which a human being would find obvious and benign. The challenge for you,
the programmer, is to feed this obedient brute with flawless instructions
representing — in an execution of any significant program — billions of
elementary operations.

If you’ve used computers you will know that they don’t always react the
way you like. It doesn’t take very long to experience a “crash”, that state in
which it seems everything goes away and execution stops. But, except for the
infrequent case of a hardware malfunction, it’s not the computer that crashed;
it’s a program that didn’t do the right thing, and behind the program it’s a
programmer who didn’t foresee all possible execution scenarios.

You can’t learn programming without going through this experience of
programs — yours, or someone else’s — that do not work as they should; and
you can’t become a professional programmer without learning the techniques
that will let you build programs thatdo work as you want.

The good news is that it is possible to produce such programs, provided
you use the proper tools and maintain a lot of discipline, attention to the big
picture as well as the details, and dedication.
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1.2 THE OVERALL SETUP

In the next chapters we are going to jump right into program development.
Initially we won’t need too much detailed knowledge about computers, but
let’s see their fundamental properties, as they set the context for the
construction of software.

The tasks of computers

Computers — “automatic stored-program digital computers” if we want to be
precise — are machines that can store and retrieve information, perform
operations on that information, and exchange information with other devices.

This definition highlights the major capabilities of computers:

Storage and retrievalcapabilities are a prerequisite for everything else:
computers must be able to keep information somewhere before they can apply
operations to it, or communicate it. Such a “somewhere” is called amemory.

Operationsinclude comparisons (“Are these two values the same?”),
replacement (“Replace this value by that one”), arithmetic (“Find the sum of
these two values”) and others. These operations are primitive; what makes
computers able to perform amazing feats is not the intrinsic power of their
basic mechanisms, but thespeedat which they can carry them out and the
ingenuity of thehumans— that’s you! — who write programs that will
execute millions of them.

Communicationallows us to enter information into computers, and
retrieve information from them (the original information, or information that
has been modified or produced by the computer’s operations). It also enables
computers to communicate with other computers and with devices such as
sensors, telephones, displays and many others.

What computers do

• Storage and retrieval
• Operations
• Communication

→ A more precise
definition of “memory”
appears below:
page12.
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General organization

The previous definition yields the basic schematic diagram for computers:

The memories hold the information. We talk of memories in the plural
because most computers have more than one storage device, of more than one
kind, differing by size, speed of access to information andpersistence
(whether or not a memory retains information when power is switched off).

Theprocessorsperform the operations. Again there usually are several
of them. Occasionally you’ll still see a processor called aCPU, an acronym
for the older termCentral Processing Unit.

Thecommunication devicesprovide means of interacting with the rest
of the world. The figure shows the communication devices as interfacing with
the processors rather than the memories; indeed, when exchanging
information between a memory and the outside world, you will usually need
to go through some operations of a processor. A communication device
supportsinput (outside world to computer),output (the other way around), or
sometimes both. Examples include:

• A keyboard, through which a person enters text (input).

• A video display or “terminal” (output).

• A mouse or joystick, enabling you to designate points on the terminal
screen (input).

• A sensor, regularly sending measurements of temperature or humidity to
a computer in a factory (input).

• A network connection to communicate with other computers and devices
(input and output).

The abbreviationI/O covers both input and output. The words “input” and
“output” are also used as verbs, as in “you must input this text”.

Processors

Memories

Communication

Rest

world

devices
Components of
a computer
system

of the
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Information and data

The key word in the above definition of computers is “information”: what you
would like to store into memories and retrieve from them, process through the
processors’ operations, and exchange through the communication devices.

This is the human view. Strictly speaking, computers do not directly
manipulate information, they manipulatedata representing that information:

Some people will tell you that “data” should only be used in the plural, because it’s
originally the plural of “datum”. Thank them for the kindness of their advice and
disregard it cheerfully; unless they intend to continue the conversation in Latin,
their linguistic data is obsolete.

Information iswhat youwant: news fromaWebsite, a friend’spicture, background
on someone you’ll be meeting. Data is how it’s encoded for the computer.

As an example, the MP3 audio format, which you may have used to listen
to music with the help of a computer, is a way to encode enoughinformation
about a piece of music intodata that can be stored in a computer, exchanged
across a network, and sent to an audio device so that it will replay the music.

The data will be stored in memory. It’s the task of the communication
devices to produce data from information coming from the world out there, store
it in memory, and when the processors transform this data or produce new data,
to send it out to the world so that it will understand it as information. In terms of
the functions performed the previous picture looks like this:

The right-to-left arrow suggests that the process is not just one-way but repetitive,
with information being repeatedly fed back to yield new results.

Definitions: Data, information
Collections of symbols held in a computer are calleddata.

Any interpretation of data for human purposes is calledinformation.

Process

Output

Information
and data
processing

Input

Information

Data

Information

Data Data



§1.2 THE OVERALL SETUP 11

Computers everywhere

The familiar picture of a computer is the “desktop” or “laptop” computer,
whose processor and memory components are hosted in a box of a size
somewhere between a textbook like this one and a big dictionary; the terminal
is often the biggest part. All this is at human size. Athandsize we find the
“PDA” (Personal Digital Assistant), supposedly useful for such tasks as
calendar tracking, which are just computers with reduced human-interaction
devices. At the higher end computers used for large scientific computations
(physics, weather prediction...) can reachroomsize. This is of course nothing
compared to computers of a generation ago, which took upbuilding size for
much less power.

Reduced to their central processor and memory components, computers can
be much smaller than any of this. Increasingly, “the computer” is a device
included — the technical term isembedded— in products or other devices.
Today’s cars include dozens of small computers, controlling fuel delivery,
braking, even windows. The printer connected to your desktop computer is not
just a printing engine, it’s itself a computer, able to produce fonts, smooth
images, restart on the next page after a paper jam. Electric razors include
computers;manualrazors might include one some day. (The more expensive
razorbladesalready contain electronic tracking tags to fight theft.) Washing
machines contain computers, and in the futureclothesmay have their own
computers, helping to tune the washing process.

Computers:
desktop (a);
laptop (b); PDA
(c); processor to
be embedded
(d).

(a)

(b)

(c)

(d)
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The computers you will use for exercises of this book are still of the
keyboard-mouse-terminal-box kind, but keep in mind that software techniques
have to cover a broader scope. Software for embedded systems must satisfy
very high quality requirements: malfunctions in (for example) brake-control
software can have terrible consequences, and you cannot fix them — as you
would for a program running on your laptop — by stopping execution,
correcting the error, and starting again.

The stored-program computer

A computer, as noted, is a universal machine: it can execute any program that
you input into it.

For this input process you’ll use communication devices, typically a keyboard and
mouse. Text will appear on your terminal screen as you type it, seemingly as a
direct result, but this is an illusion. The keyboard is an input device, the terminal a
distinct output device; echoing the input text on the screen requires a special
program, atext editor, to obtain this input, process it and display it. Thanks to the
speed of computers, this usually happens fast enough to give the illusion of a direct
keyboard-screen connection; but if the computer responds more slowly, perhaps
because it’s running many programs at the same time, you may notice a delay
between typing characters and seeing them displayed.

When you input the program, where does it go?Memoriesare available to host
it. That’s why we talk ofstored-programcomputers: to become a specific
machine ready to carry out the specific tasks that you (as the programmer)
have assigned to it, the computer will read its orders from its own memory.

This property of computers explains why we haven’t seen a proper
definition of “memory” yet. We could have said that a memory is a device for
storing and retrieving data; that’s correct if we interpret the notion of
stored-program computer to imply that programs are data. It’s clearer,
however, to mention programs explicitly:

This ability of computers to treat programs as data —executabledata —
explains their remarkable flexibility. At the dawn of the computer age, it led to
visions ofself-modifyingprograms (since a program can modify data, it can
modify programs, including itself) and to some grandiose philosophizing
about how programs were going, through successive self-modifications, to
become ever more “intelligent” and take over the world. Closer to us, it’s also
the reason why email users are told to be careful about opening email
attachments, since the data they contain could be a maliciously written
program, whose execution will destroy other data.

Definition: Memory
A memory is a device for storing and retrieving data and programs.
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For programmers, the stored-program property has a more immediate
consequence: it makes programs amenable, like any other kinds of data, to
various transformations through computer operations. In particular, the
program you write is usually not the program you run. Codes that a processor
can execute are designed for machines, not humans; using them directly to
construct your programs would be tedious and error-prone. Instead you will:

• Write programs in notations designed for human consumption, called
programming languages. This form of a program is called itssourcetext
(or source form, or just source).

• Rely on special programs calledcompilers to transform such
human-readable program texts into a form (itstarget form) appropriate
for processor execution.

We’ll often encounter the following terms reflecting this division of tasks:

The details of all this — processor codes, programming languages, compilers,
examples of static and dynamic properties — appear in later chapters. What
matters for the moment is knowing that the programs you are going to write,
starting with the next chapter, are meant not only executed by a computer
(after suitable transformations) but alsounderstood by people.

This human aspect of programming is central to the engineering of
software. When you program you are not just talking to your computer but also
to other people: whoever will be reading the program later, for example to add
new functions or correct a mistake. That’s a good reason to worry about
program readability; and it’s not just a matter of being nice to others, since that
“whoever” might beyou, a few months older, trying to decipher what in the
world you had in mind when writing the original version.

Throughout this book we’ll emphasize, along with practices that make
your programs good for the computer — for example, designing programs so
that they will run fast enough — practices that make them good for your fellow
programmers. Program texts should be understandable; programs should be
extendible(easy to change); program elements should bereusable, so that
when you’re faced later on with a similar problem you don’t have to reinvent
the solution; programs should berobust, protecting themselves against
unexpected input and abnormal circumstances; most importantly, they should
becorrect, producing the expected results.

Definitions: Static, Dynamic

Static properties of a program are properties of its source text, which can
be analyzed by a compiler.Dynamic properties are those characterizing its
individual executions.

→Or “machinecode”,
or “object form”, see ...
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1.3 KEY CONCEPTS LEARNED IN THIS CHAPTER
• Computersare general-purpose machines. Providing a computer with a

program turns it into a special-purpose machine.
• Computer programs process, store and communicatedata representing

information of interest to people.
• A computer consists ofprocessors, memoriesandcommunication devices.

These material devices together make uphardware.
• Programs and associated intellectual value are calledsoftware. Software

is an engineering product of a purely intellectual nature.
• Programs must be stored in memory prior to execution. They may have

several forms, some readable and intended for human use, others directly
processable for execution by computers.

Touch of history:
It’s all in the holes

Aerospace industry old-timers tell the story of the staff engineer who, in an
early rocket project, was in charge of tracking the weight of everything that
would get on board. He kept pestering the programmers about how much
the control software would weigh. The reply, invariably, was that the
software would weigh nothing at all; but he refused to accept it.
One day he came into the head programmers’ office, waving a deck of
punched cards (the input medium of the time, see the picture): “This is the
software”, he said, “Didn’t I tell you it had a weight like everything else!”.
The chief programmer seized the deck of cards from him: “See these holes?
They are the software.”

A deck of cards
ready to be
punched
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• Computers appear in many different guises; many areembeddedin
products and devices.

• Programs must be written to facilitate understanding, extension and
reuse. They must be correct and robust.

New vocabulary
At the end of every chapter you’ll find such a list. Check (this is the first exercise
in the chapter) that you know the meaning of each term listed; if not, find its
definition, as you’ll need all terms in subsequent chapters. To find a definition, look
up the Index, where definition pages appear in bold.

1-E EXERCISES

1-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

1-E.2 Data and information

For each of the following statements, say whether it characterizes data,
information or both (explain):

1 • “You can find the flight details on the Web.”

2 • “When typing into that field, use no more than 60 characters per line.”

3 • “Your password must be at least 6 characters long.”

4 • “We have no trace of your payment.”

5 • “You can’t really appreciate her site without the Macromedia Flash
plug-in.”

6 • “It was nice to point me to your Web page, but I can’t read Italian!”

7 • “It was nice to point me to your Web page and I’d like to read the part in
Russian, but my browser displays Cyrillic as garbage.”

Communication device Compiler Computer
Correct CPU Data
Dynamic Embedded Extendible
Hardware Information Input
Output Memory Persistence
Processor Programmer Programming language
Reusable Robust Software
Source Static Target
Terminal User



THE INDUSTRY OF PURE IDEAS §1-E16

1-E.3 Defining precisely something that you’ve always known

You know about alphabetical order: the order in which words are listed in a
dictionary or other “alphabetical” list. Alphabetical order specifies, of two
different words, which is “before” the other. For example the wordsofa is
beforesoft, which itself is beforesoftware.

The question you are asked in this exercise is simply:

That is to say, define alphabetical order. This is a notion that you undoubtedly
know to apply in practice, for example to look up your name in a list of
candidates to an exam; what the exercise requests is aprecisedefinition of this
intuitive knowledge, of the kind you might need for a mathematical notion —
or for a concept to be implemented in a program.

To construct your definition you may assume that:

• A word is a sequence of one or more letters. (It’s also OK to use “zeroor
more letters”, that is to say accept the possiblity of empty words, if you
find this more convenient. Say which version you are using.)

• A letter is one among a finite number of possibilities.

• The exact set of letters doesn’t matter but for any two letters it is known
which one is “smaller” than the other. For example, with letters of the
Roman alphabet,a is smaller thanb, b is smaller thanc and so on.

If you prefer a fully specified set of letters, just take it to include the twenty-six
used in common English words, lower-case only, no accents or other diacritical
marks:a b c d e f g h i j k l m n o p q r s t u v w x y z, each “smaller” than the next.

The problem calls for a definition, not a recipe. For example, an answer of the
form “You first compare the first letters of the two words; if the first word’s
first letter is smaller than the second word’s first letter then the first word is
before the second, otherwise...” etc. isnot acceptable since it is the beginning
of a recipe, not a definition. A proper definition might start: “A word w1 is
before a wordw2 if and only if any of the following conditions holds: ...”.

Make sure that your definition covers all possible cases, and respects the
intuitive properties of alphabetical ordering; for example it is not possible to
have bothw1 beforew2 andw2 beforew1.

About this exercise: The purpose is to apply the kind of precise, non-operational
reasoning essential in good software construction. The idea is borrowed from a
comment of Edsger Dijkstra, a famous Dutch computer scientist.

Define under what exact conditions a word is alphabetically “before” another.



Draft 16.06, 3 December 06 17:35 (Zürich)

2

Dealing with objects

You are now going to write and execute your first program and successive
variants. You must be able to use the basic functions of a computer and find
your way through its directories and files.

Also, EiffelStudio must be installed on your computer. Everything else
you’ll learn here.

In case something goes wrong at any time, remember this:

2.1 A CLASS TEXT

Start EiffelStudio and open the project calledTraffic. The precise details of
how to do this are given in the EiffelStudioappendix:

Touch of practice: If you mess up
It’s possible, especially if you are not too experienced with computers, to
make a mistake that will take you off the track carefully charted below. Try
to avoid getting into that situation — that is to say, follow the instructions
precisely — but if it happens don’t panic; we’ve provided a recovery
mechanism to let you restart on the right foot. Just go to“RECOVERING
FROM “FUBAR””,  page 576.

Touch of practice: Using EiffelStudio
Since this book focuses on principles of software construction, the details
of how to use the EiffelStudio tools to run the examples all appear in
appendixA: “Using theEiffelStudioenvironment”, page573. To set up and
run any example, turn to the corresponding section of that appendix. Be
sure to read first its opening section, “EIFFELSTUDIO BASICS”.

→ See“SETTING UP
THE PROJECT”,  A.3,
page 575.
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You will be looking at program texts both in this book and on your screen.
You’ll notice a few differences, since paper and screen have different
requirements. In the book, you will note the following convention:

Bring up the text of the “class” calledPREVIEW. That text — once you’ve
adapted it to your needs — will be the core of your first program. What you
will see on the screen (with different font and color conventions) is:

The first line says you are looking at a “class”, one of the little immaterial
machines out of which we build programs; it calls itPREVIEW, as indeed the
class describes a small preview of a city tour.

The first two lines also state thatPREVIEWwill inherit from an existing
class called (second line)TOURISM; this means thatPREVIEWextends
TOURISM, which already has lots of useful facilities, so all you have to do is
add your own programming ideas in the new classPREVIEW. The class names
reflect this relationship:TOURISMdescribes a general notion of touring the
city; PREVIEWcovers a particular kind of tour, not a real visit but a preview
from the comfort of your desk.

Touch of style:
Program text and explanation text

In this book, everything that’s part of a program text appears inthis blue
(sometimesbold or italics according to precise conventions). Everything
else is the book’s explanations. So you should never confuse elements of the
programs with observations about these programs.

class PREVIEWinherit

end

→Seeagain:A.3,page
575on how to bring up
the class.

TOURISM
feature

exploreis
-- Show city info and route.

do

end
The part you’ll fill in

Declaration of
the featureexplore
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The text of a class describes a set offeaturesor operations. Here there’s only
one, calledexplore. The part of the class that describes it is called the
declaration of the feature. It consists of:

• The feature’s name, hereexplore.

• The wordis, akeyword.

• “ -- Show city info and route.”, a comment.

• The actual content of the feature, enclosed in the keywordsdo andend,
but empty for the moment: that’s what you are going to fill in.

A keyword is a special word that has a reserved meaning; you may not use it
for naming your own classes and features. To make keywords stand out we’ll
always show them inbold (blue, of course, since they’re part of the color for
program text). Here the keywords areclass, inherit , feature, is, do andend.
(With just these six you can already go quite a way!)

A comment, such as- - Show city info and route, is explanatory text that has
no effect on the program execution but helpspeopleunderstand the program
text. Wherever you see “--” (two consecutive “minus” signs), it signals a
comment, extending to the rest of the line. When you write a feature
declaration you shouldalways, as a matter of good style, include a comment
after theis as here, to explain what the feature is about.

Magic?
ClassTOURISMis part of supporting software prepared specially for this
book. By piggybacking on these predefined facilities, rather than building
everything from scratch, you can learn the concepts one by one and
immediately practice them by writing example programs.
So if it seems like magic that your first programs will work at all, it’s not:
the supporting software — the apparent “magic” — uses the same
techniques that you will be learning throughout the book. Little by little
we’ll remove pieces of the magic, and at the end there won’t be any left;
you’ll be able to reconstruct everything by yourself if you wish.
Even now, nothing prevents you from looking at the supporting software,
for example classTOURISM; it’s all in the open. Just don’t expect to
understand everything yet.
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2.2 OBJECTS AND CALLS

Your first program will let you prepare a trip through a city that looks
remarkably like Paris, which may be the reason why the program text calls it
Paris. As this is your first trip let’s play it safe. All we want our program to do
is some display on the screen:

• First, display a map of Paris, including a map of the Metro (the
underground train network).

• Next, spotlight, on the map, the position of the Louvre museum (you have
heard about it, or maybe it’s the only local name that you can pronounce
at the moment).

• Next, highlight, on the Metro map, one of the metro lines — Line 8.

• Finally, since your ever thoughtful travel agent has prepared a route for
your first trip through the city, animate that route by showing a picture of
a little traveler hopping through the stops.

Editing the text

Here’s what you should do. Edit the text of the classPREVIEWand modify the
featureexplore so that it reads like this:

Programming time!
Your first program

In this section you are asked to fill in your first program text, and then to run
the program.

exploreis
-- Show some city info.

do
Paris.display
Louvre.spotlight
Line8.highlight
Route1.animate

end

The text you should type in
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To avoid any confusion note the following about how to type in the text:

• The text of each line starts some distance away from the left margin; this

is known asindentation and serves to show the structure of the text. As

it has no effect on program execution, you could have everything

left-aligned if you wanted to; but it has an effect on program

understandability (and probably on your grade when you submit

programs), so please observe it carefully. You’ll get general indentation

rules in a later chapter.

• To achieve the indentation, don’t use repeated spaces, which could make

it messy to align text; use the character markedTab on your keyboard.

Tabs automatically align to equally spaced positions.

• In Paris.display and similar notations on subsequent lines you see a

period “.” between successive words. Unlike the period that terminates a

sentence in written English, it doesn’t need to be followed by a space.

Since it’s an important element it’s shown as a big blue dot, “.”, but on

your keyboard it’s just the plain period character.

• More generally, the typographical variations — boldface, italics, color…
— don’t affect how you type the text, only how youread it, in this book

and on the screen as displayed by EiffelStudio.

Running your first program

So much for the “cosmetics”, as programmers say — meaning superficial

aspects of a program’s textual appearance.

You can run the program now bypressing the Compile and Run buttons

of the EiffelStudio environment.

→ See details in
“SETTING UP THE
PROJECT”, A.3,page
575.
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Do this now; you’ll see the following sequence of events:

1 • As a result of executing the first line,Paris.display, the city map
including the Metro network appears on the screen, like this:

2 • Nothing happens for five seconds, then as a result of the second line
Louvre.spotlightthe position of the Louvre palace and museum shows up
spotlighted on the map:
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3 • After another five seconds, Line 8 of the Metro network comes up

highlighted as a result of the third lineLine8.highlight:

4 • After another short delay, the fourth lineRoute1.animatecauses the plan

to show a figurine representing a person and move it through the

successive stops along the chosen route:
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Once ready a program can, of course, be executed as many times as you like,
so you can repeat the above process by pressing again the Run button.

Dissecting the program

The execution just described is the effect of the four lines that you inserted into
the text of the featureexplore. Let’s look at what they mean. The techniques
used in this simple program are fundamental; make sure that you understand
everything in the following explanation.

The first line,

Paris.display
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uses an object known in the program asParis and applies to it the feature
display. It’s an example of a fundamental program operation:

wherex denotes an object andf a feature (an operation). This simply means:

“Apply featuref to the object thatx denotes”

This mechanism, known asfeature call, applies a feature to an object. It is the
very basis of computation: over and again, that’s what our programs do.

In our example the target object is calledParis. As the name suggests it
represents a city. How much of the real city “Paris” does it really describe?
You don’t need to worry sinceParis has been predefined for you. Pretty soon
you will learn to define your own objects, but for the moment you have to rely
on those we have set up for this exercise. Recognizing them is easy thanks to
a basic convention:

Where are these “predefined” objects defined? You guessed it: in the class
TOURISM, which your classPREVIEWinherit s. This is where we put the “magic”
through which your program, simple as it is, can produce significant results.

One of the features applicable to an object representing a city, such asParis,
is display, which graphically displays the current state of the city.

After applyingdisplayto the objectParis, the program performs another
feature call:

x.f

Touch of style:
Names of predefined objects

Names of predefined objects always start with an upper-case letter, as in
Paris, Louvre, Line8andRoute1. New names, corresponding to the objects
that you define, will by default start with a lower-case letter.

Louvre.spotlight
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The target object here isLouvre, another predefined object (name starting with
a capitalL) denoting the Louvre museum. The feature isspotlightwhich will
spotlight the corresponding place on the map.

Then to highlight Line 8 we execute

using a featurehighlight that highlights the target object, hereLine8denoting
an object that represents line number 8 of the underground system.

The final step, again a feature call, is

where the target object isRoute1, representing a predefined route — we assume,
as noted, that it was all prepared by your travel agent — and the feature is
animate which will showcase the route by moving a figurine along it.

For the program to work as expected, the features used in this program —
display, spotlight, highlight, animate— must all do a little more than just
displaying something on the screen. The reason is that computers are fast,very
fast. So if the only effect of the first operation,Paris.display, was to display
the map of Paris, the next operation,Louvre.spotlight, would follow a fraction
of a second later; when you run the program you would never see the first
display, the one that shows the map without the Louvre. To avoid this, the
features all make sure, after displaying what they need to display, to pause
execution for five seconds.

It’s all taken care of in the text of these features, which we are not
showing you yet (although you can look at them if you want to).

Congratulations! You have now written and run your first program, and
you even understand what it does.

Line8.highlight

Route1.animate
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2.3 OBJECTS

Our example program works withobjects —four of them, calledParis,
Louvre, Line8andRoute1. Working with objects is what all our programs will
do; this notion of object is so fundamental that it gives its name to the whole
style of programming:Object-Oriented, often abbreviated as “O-O”.

Objects you can and can’t kick

What exactly should we understand from this word “object”? Here we are
using for technical purposes a term from ordinary language — very ordinary
language, since it’s hard to think of a more general notion than “object”.
Anyone can immediately relate to this word; that’s both appealing and
potentially confusing:

• It’s appealing because using “objects” for your programs lets you
organize them as models of real systems using real objects. If you do go
to Paris you’ll see that the Louvre is a real object; if its sight isn’t enough
to convince you of its reality, try kicking it with your foot. (Buying this
book doesn’t entitle you to a refund of medical expenses.) Our second
software object so far,Paris, also corresponds to a real object, an even
bigger one, the whole city.

• But this convenience of using software “objects” to represent physical
ones should never lead you to confuse the two kinds. The reality of a
software object doesn’t extend beyond an immaterial collection of data
stored in your computer; your program may have set it up so that
operations on it represent operations on a physical object — like
Bus48.start, representing the operation of making a bus move — but the
connection is all in your mind. Even though our program uses an object
calledParis, it’s not the real Paris. (“You can’t put Paris into a bottle”,
says, more or less, an old French proverb, and you can’t put Paris into a
program either.)

Never forget that the word “object” as used in this book denotes a software
notion. Some software objects represent things from the world out there, like
the Louvre, but as we move to more sophisticated programming techniques
that won’t always be the case.
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For example the last object we used, calledRoute1, represents a route —
a travel plan. The particular plan represented byRoute1enables you to go by
Metro (underground) from the Louvre to Notre-Dame. As the bold black line
shows on the figure, this route has three steps:

• Go from the “Louvre” station to “Châtelet” on line 7 (3 stops).

• Change lines

• Go from Châtelet to “Saint-Michel Notre-Dame” on line RER-1 (1 stop).

The “route” is this sequence of steps. It’s not a physical object that you can
kick, like the Louvre or your little brother; but it’s an object all the same.

Features, commands and queries

What makes an object isn’t that it has a physical counterpart or not; it’s that
we can manipulate it with our program through a set of well-defined
operations, which we callfeatures.

Some of the features applicable to a “route” object includequestionsthat
we may ask; for example:

Line 7

Line

A metro route

Line
RER-1
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• What is the starting point? What is the ending point? (For our example
Route1, as described above: Louvre and Notre-Dame.)

• What kind of route is it: walking, by bus, by car, by metro, some
combination of these? (ForRoute1the answer is: a metro route.)

• How many steps (legs) does it use? (ForRoute1: three of them, metro
from Louvre to Châtelet, changing lines at Châtelet, metro from Châtelet
to Notre-Dame.)

• What metro lines, if any, does it use? (ForRoute1: lines 7 and RER-1.)

• How many metro stations does it go through? (Here: four altogether.)

Such features, whose purpose is to obtain properties of an object, are called
queries.

There’s a second kind of feature, called acommand; a command enables
the program to change objects. We already used commands: in our first
program,Paris.displaychanges the image displayed on the screen, sodisplay
is a command. In fact all four operations of our first program were commands.

As another set of examples, we may want to define the following
commands on routes:

• Remove the first segment of the route, or the last segment, or any other
specified by its index.

• Append (add at the end) a new segment; it must start at the current
destination. For example we can append toRoute1a new segment
provided it starts at Notre-Dame, for example a metro segment from
Notre-Dame toJussieu, (4 stations, see map on the previous page); the
route will be changed to involve 3 segments, 3 metro lines, and 8 stations;
the result now starts at Louvre and ends at Jussieu.

• “Prepend” (add at the beginning) a new segment; it must end at the
current origin. For example we can makeRoute1start with a segment
going fromOpérato Louvre; this changes the number of stations but not
the set of metro lines since Opéra is already on line 7.

All these operations change the route, and hence they are commands.
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The tunnel signs that one encounters on a GermanAutobahn(freeway)
are a good illustration of the command-query distinction. The sign at the
entrance to a tunnel looks like this:

“ Licht ! ” , you are told in no uncertain terms. Switch on your lights!
Unmistakably a command.

When you exit the tone is more gentle:

“Licht ?”: did you remember to switch off your lights? Just a query.

Commandupon
entering a
tunnel

Query
upon leaving
a tunnel
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Objects as machines

Thefirst thing we learned about programs is that they are machines. Like any
complex machine, a program during its execution is made of many smaller
machines. Our objects are those machines.

Perhaps you find this hard to visualize: how can we see a travel route
across the Metro as amachine? But in fact we just saw the answer: what
characterizes a machine is the set of operations — commands and queries —
that it provides to its users. Think of a DVD player, with commands to start
playing, move to the next track, stop playing, and queries to display the number
of the track being played, the time elapsed etc. To our programs, theRoute1
object is exactly like the DVD player: a machine with commands and queries.

The figure evokes this correspondence, with rectangular buttons representing
commands and elliptic buttons queries.

When thinking about objects — such as the one denoted byRoute1— we now
have two perspectives:

1 • The object covers a certain collection of data in memory, describing, in
this case, all the information associated with a certain route — it has three
segments, it starts at the station “Louvre” etc.

2 • The object is a machine, providing certain commands and queries.

These two views are not contradictory, but easy to reconcile: the operations
that the machine provides (view2) access and modify the data collected in the
object (view1).

← “The industry of
pure ideas”,  1, page 5.

A “route”
object pictured
as a machineanimate

append

prepend

first last

count stations
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Objects: a definition

Summarizing this discussion of objects, here is the precise definition that
you’ll have to remember throughout this book:

In this definition and the rest of the discussion, to “access” data is to obtain the
answer to a question about the data, without modifying it. (One could also say
“consult” the data.)

It’s good to have a precise definition too for the various kinds of operation
that we apply to objects:

Examples of commands weredisplayfor a city such asParis, spotlightfor a
monument or location such asLouvre. Queries have been mentioned, for
example the starting point of a route, but we haven’t actually used one yet.

Queries and commands work on existing objects. This means we’ll need
a third kind of operation:creationoperations, to give us the objects in the first
place. You don’t have to worry about this for the moment because all the
objects you need in this chapter —Paris, Louvre, Route1… — are defined for
you as part of the “magic” of classTOURISM, and at execution time they have
already been created when your program needs to use them.Soon you’ll learn
to create your own objects as you please.

This will also explain why (as you will remember if you read carefully) the notion
of “machine” was used to characterize not only objects butalso classes.

Definition: Object
An object is a software machine allowing programs to access and modify a
collection of data.

Definitions: Feature, Query, Command
An operation that programs may apply to an object is called afeature, and:

• A feature thataccessesan object is called aquery.
• A feature that maymodify an object is called acommand.

→ Chapter6.

←After the firstversion
of classPREVIEW on
page18.
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2.4 FEATURES WITH ARGUMENTS

Queries are just as important as commands. Let’s see some examples of how
to use them. We may take for example the starting point — the origin — of a
route. It is given by a queryorigin, applicable to routes; its value for our
example routeRoute1 is written

which is a feature call such asRoute1. animateand the others we have seen,
but in this case since the feature is a query the call doesn’t “do” anything; it
simply yields a value, the origin ofRoute1. We could use this value in various
ways, like printing it on a piece of paper; let’s instead display it on the screen.

You will have noticed at the bottom of the display a little window
(rectangular area) marked “Console”; this is used to display information about
the state of our city-modeling system. In our program it is — guess what —
an object. You can manipulate it through the featureConsole; it’s one of those
predefined features, likeParis andRoute1, that our example classPREVIEW
“inherits” from TOURISM, our little “magic” class.

One of the commands applicable toConsoleis calledshow; its effect is
to display (show) a certain text in the console. Here we may use it to display
the name of the starting point of the route.

There are only two changes, as highlighted below: an update to the comment
— for explanation purposes only — and a new operation at the end:

Route1.origin

Programming time!
Displaying specific information

Youwill nowmodify thepreviousprogramtomake itdisplaynew information.

class PREVIEWinherit

end

←SeeclassPREVIEW,
page18.

TOURISM
feature

exploreis
-- Show city info, a route, and the route’s origin.

do
Paris.display
Louvre.spotlight
Line8.highlight
Route1.animate
Console.show(Route1.origin)

end
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Execute the resulting program; the origin of the route,Louvre, shows up in the
console window:

This is the effect of our new feature call,Console.show(Route1.origin).
Previous feature calls were all of the formsome_object.some_feature, but the
form of this one is new:

wheresome_argumentis a value that we pass to the feature because it needs it
to do its job. Featureshow, for example, needs to know what to “show’, so we
give it the corresponding value.

Such a value is known as anargument to the feature; the concept is the
same as for arguments to functions in mathematics, wherecos(x) denotes the
cosine ofx — the functioncos applied to the argumentx.

Some features will have more than one argument (separated by commas),
but we won’t need them for a while; in well-designed software the vast
majority of features typically have zero or one argument.

some_object.some_feature

Message in console

(some_argument)
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2.5 KEY CONCEPTS LEARNED IN THIS CHAPTER

• A program is a set of mechanisms to create, access and change
collections of information calledobjects.

• An object is a machine controlling a certain collection of data, providing
the program, at run time, with a set of operations, calledfeatures,
applicable to this data.

• Features are of two kinds:queries, which return information about an
object; andcommands, which can change the object.

• Some objects are software models of things from the physical world, like
a building; others are software models of concepts from the physical
world, like a travel route; others yet collect information that’s meaningful
to the software only.

• The basic operations performed by programs arefeature calls, each of
which applies a certain feature to a certain target object.

• A feature may havearguments, representing information it needs.

New vocabulary

“Class” awaits a more complete definition in thechapter on interfaces.

2-E EXERCISES

2-E.1 Vocabulary

Give a precise definition ofeach of the terms in the above vocabulary list.

2-E.2 Commands and queries

In software for creating, modifying and accessing documents, assume a class
WORDthat describes a notion of word, and a classPARAGRAPH, describing
a notion of paragraph. For each of the following possible features of class
PARAGRAPH, say whether it should be a command or a query:

1 • A featureword_count, used under the formMy_paragraph.word_count,
which gives the number of words in a paragraph.

2 • A featureremove_last, used under the formMy_paragraph.remove_last,
which removes the last word of a paragraph.

Argument Class Command
Construct Declaration Feature
Feature call Object Query

Chapter4.

The definition of
“class” may be less
precise than the others.
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3 • A feature justify, used under the formMy_paragraph.justify, which
“justifies” a paragraph (makes sure it’s aligned to both the left and right
margins, like the present paragraph and most others in this book, but not
the margin notes such as the one adjacent to exercise2-E.1).

4 • A featureextend, used under the formMy_paragraph.extend(My_word),
which takes an argument representing a word and adds it at the end of the
paragraph.

5 • A feature character_count, used under the form
My_paragraph.character_count(i), which takes an integer argument
representing the index of a word in a paragraph (i = 1 for the first word,
i = 2 for the second word etc.) and gives the number of characters in the
corresponding word (the word of indexi) in the paragraph.
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3

Program structure basics

The previous chapter gave us our first brush with programs. We are ready to
move on to new concepts of software design; to make this experience more
productive, let’s pause for a moment and take a closer look at some of the
program parts we have been using, so far without having names for them.

3.1 INSTRUCTIONS AND EXPRESSIONS

The basic operations that we instruct our computer to execute, like the five we
had in the latest version

are, naturally enough, calledinstructions. It is customary to write just one
instruction per line, as here, for program readability.

All of the instructions seen so far are feature calls. In subsequent chapters
we will encounter other kinds.

To do its work, an instruction will need somevalues, in the same way that
the mathematical function “cosine”, as incos(x), can only give you a result if
it knows the value ofx. For a feature call the needed values are:

• The target, an object, expressed asParis, Louvre etc.

• The arguments, if any, such asRoute1.origin in the last example.

Paris.display
Louvre.spotlight
Line8.highlight
Route1.animate
Console.show(Route1.origin)
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Such program elements denoting values are calledexpressions. Apart from
the forms illustrated here we will also encounter expressions of the standard
mathematical forms, such asa + b.

3.2 SYNTAX AND SEMANTICS

In the above definitions of “instruction” and “expression” the word “denotes”
is important. An expression such asRoute1.origin or a + b is not a value; it’s
a sequence of words in the program text. Itdenotesa value that will exist
during the program’s execution.

Similarly, an instruction such asParis.display is a certain sequence of
words, combined according to certain structural rules; itdenotesa certain
operation that will happen during execution.

This termdenotesreflects the distinction between two complementary
aspects of programs:

• The way you write a program, with certain words themselves made of
certain characters typed on a keyboard: for example the instruction
Paris.displayconsists of three parts, a word made of five charactersP, a,
r, i, s, then a period, then a word made of seven characters.

• The effect you expect the elements of these programs to have at
execution: the feature callParis.displaywill display a map on the screen.

The first kind of property characterizes thesyntaxof the programs, the second
theirsemantics. Here are the precise definitions:

It’s OK to use “semantics” as a singular, like other similar words: “Economics was
a big part of the minister’s speech, but if the politics was obvious, the semantics
was tortuous”.

Definitions: Instruction, Expression
In program texts:

• An instruction denotes a basic operation to be performed during the
program’s execution.

• An expressiondenotes a value used by an instruction for its execution.

Definitions: Syntax, Semantics
Thesyntax of a program is the structure and form of its text.
Thesemanticsof a program is the set of properties of its potential executions.
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Since we write programs to execute them and obtain certain effects, it’s the
semantics that counts in the end, but without syntax there would be no
program texts, hence no program execution and no semantics. So we’ll need
to devote our attention to both aspects.

Earlier on we had another distinction:commandsversusqueries.
Commands areprescriptive: they instruct the computer, when executing the
program, to do something for us, which may change objects. Queries are
descriptive: they tell the computer to give the program some information about
its objects, without changing these objects. Combining this distinction with
the syntax-semantics division yields four cases:

In the bottom-right entry we have two semantic concepts: aqueryis a program
mechanism to obtain some information; that information itself, obtained by
the program by executing queries, is made ofvalues.

3.3 PROGRAMMING LANGUAGES, NATURAL LANGUAGES

The notation that defines the syntax and semantics of programs is a
programming language. Various programming languages exist, serving
different purposes; the one we use in this book is Eiffel.

Programming languages are artificial notations. Calling them
“languages” suggests a comparison with thenatural languages, like English
or French, that we use for ordinary communication. Programming languages
do share some characteristics with their natural cousins:

• The overall organization of a text as a sequence ofwordsandsymbols: a
period “.” is a symbol;PREVIEWin Eiffel or “The” in English is a word.

• The distinction betweensyntax, defining the structure of texts, and
semantics, defining their meaning.

• The availability both of words with a predefined meaning, such as “the”
in English anddo in Eiffel, and of ways to define your own words — as
Lewis Carroll inAlice in Wonderland: “Twas brillig, and the slithy
toves…”, and also as we just did by calling our first classPREVIEW, a
name that means nothing special in Eiffel.

Syntax Semantics

Prescriptive Instruction Command

Descriptive Expression
Query
Value
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Word creation is far more common and open-ended with programming languages
than with human ones. In English or French you don’t invent new words all the
time, unless you are a poet, or a little child, or maybe an Amazon botanist. In
programming, people who’ve never seen a flower, even less one from South
America, and outwardly appear adult, even possibly sane, might on a good day
make up several dozen new names.

• Eiffel reinforces the human language flavor by drawing its keywords
from English;every keyword of Eiffel is in fact a single and commonly
used English word.

Some other programming languages use abbreviations, such asint for INTEGER,
but we prefer full words for clarity.

• It’s also recommended that, whenever possible, you use words from
English or your own language for the names you define, as we did in the
examples so far:PREVIEW, display, or route1 (with a digit).

All these similarities between programming languages and human languages
are good, because they help people understand programs. But they shouldn’t
fool you: programming languages are very different from human languages.
They areartificial notations, designed for a specific purpose. This is both a
loss and a gain:

• The power of expression of a programming language is ridiculously poor
compared to the realm of possibilities available in any human language,
even to a four-year old child. Programming languages can’t express
feelings or even thoughts: they define objects to be represented on a
computer and tasks to be performed on these objects.

• What they miss in expressiveness, programming languages make up for
in precision. Human texts are notorious for their ambiguity and
openness to many interpretations, which are even part of their charm;
when we tell computers what to do, we can’t afford approximation. The
syntax and semantics of a programming language must accordingly be
defined very precisely.

Touch of Style:
Putting some English into your programs

Natural language has a place in programs: incomments. We saw that any
program text element that starts with two dashes “--” is, up to the end of the
line, a comment. Unlike the rest of program texts, comments don’t follow
any precise rules of syntax, but that’s because they have no effect on
execution — no semantics. They’re just explanations, helping people
understand your programs.

With one exception:
elseif, which agglomer-
atestwoEnglish words.
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In the end, to call our notations “languages” is to do them a favor they don’t
quite deserve. Rather than scaled-down versions of the languages that people
use to address each other, they are slightly scaled-up versions of the
mathematical notations that scientists and engineers use to express formulas.

The termcode, meaning “text in some programming language”, reflects this. It’s
used in the expression “Line of code”, as in “Windows XP contains more than 40
million lines of code”. It’s also used as a verb: “to code” means to program, often
with an emphasis on the lower-level aspects rather than the design effort, as in
“ they think all the ideas are there and all there remains to do is coding”. “Coder”
is a somewhat derogatory term for “programmer”.

Still, programming languages have a beauty of their own, which I hope you
will learn to appreciate. When you start thinking of your love life as
relationship.is_durable, or sending your mom an SMS that reads
Me.account.wire (month.allowance +(month+1).allowance + 1500, Immediately),
it will be a sign that either or both: (1) the concepts are starting to seep in; (2)
it’s time to put this book aside and take the week-end off.

3.4 GRAMMAR, CONSTRUCTS AND SPECIMENS

To describe the syntax of a human language — meaning, as we have just seen,
the structure of the corresponding texts — a linguist will propose agrammar
for that language. For the simple English sentence

a typical grammar would tell us that this is a case (we’ll say aspecimen) of a
certain “construct”, maybe called “simple verbal sentence” in the grammar,
with three component, each a specimen of some construct:

• The subject of the action:Isabelle, a specimen of the construct “Noun“.

• The action described by the sentence:calls, a specimen of the construct
“Verb”.

• The object of the action:friends, another specimen ofNoun.

Exactly the same concepts will apply to the syntax description of
programming languages. For example:

• A constructof the Eiffel grammar isClass, describing all the class texts
that anyone can possibly write.

• A particular class text, such as the text of classPREVIEWor class
TOURISM, is aspecimen of the constructClass.

Isabelle calls friends



PROGRAM STRUCTURE BASICS §3.544

A futurechapter discusses in detail how to describe syntax, so for the moment
we only need the basic definitions:

Be sure to note the relationship between constructs and specimens. A
construct is a type of syntactical element; a specimen is an instance — a
specific example — of that type. So:

• In a grammar for English, we may have the constructsNoun andVerb;
thenElizabethis a specimen ofNoun, andrabbitsis a specimen ofNoun.

• The standard grammar of Eiffel has the constructsClassandFeature; a
particular class text is a specimen ofClass, and any particular feature text
is a specimen ofFeature.

As these examples indicate, construct names will always appear in
This_green, with an upper-case first letter. They are not program elements, but
ways todescribecertain categories of program elements, for example classes
and features. Specimens are program elements, and so will appear, like all
program text, inthis_blue.

3.5 NESTING AND THE SYNTAX STRUCTURE

The syntax structure of a software text can involve several levels of specimens
(syntactic elements). A class is a specimen; so is an instruction, or a feature
name likedisplay.

As these examples indicate, specimens can be embedded within other
specimens or, as the technical term goes,nested.

Here is the nesting structure of specimens in our example class (retaining
only two instructions for simplicity, and with a new namePREVIEW1to
distinguish it from the full version):

Definitions: Grammar, Construct, Specimen

A grammar for a programming language is a description of its syntax.
A construct is an element of a grammar describing a certain category of
possible syntax elements in the corresponding language.
A specimen of a construct is a syntactical element.

→ Chapter13.

→ “Grammar” will
have a more detailed
definition on page328.
A justification for using
the term “specimen”
appears on page332.
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The embedding of the colored rectangles highlights the nesting of the
specimens: the outermost rectangle covers the class declaration; it contains,
among other specimens, a feature declaration; the feature declaration contains
a “feature body” (the part that appears between the keywordsdo andend); the
feature body contains two instructions; and so on.

Some elements of the syntax — keywords likeclass, do, end, and the
period in feature calls — serve purely as delimiters and do not carry any
semantic value of their own. We don’t consider them specimens.

Make sure you understand the syntactical structure as illustrated above.

3.6 ABSTRACT SYNTAX TREES

For larger program texts, another representation of such a structure is more
convenient. It relies on the notion oftree, as used for example to represent the
organizational chart of a company — and inspired from nature’s own trees
with their branches and leaves, althoughour trees tend to grow top-down or
left-to-right. A tree has a “root” which branches out to other “nodes” that may
branch further. Trees serve to represent hierarchical structures as here:

class inherit

feature

is
-- Show city info including a monument..

do

Paris

end

end

display

Louvre spotlight

TOURISM

Two feature names

A comment

PREVIEW1

Two feature names (denoting predefined objects)

A feature
declaration

A class
declaration

Two
instructions

explore

A feature name

Two class names

A feature body

An example
syntactical
structure

.
.
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This is known as anabstract syntax tree; it’s “abstract” because it doesn’t
include the elements playing a delimiting role only, like the keywordsdo and
end. We could also draw a “concrete syntax tree” that retains them.

A tree includes nodes and branches. Each branch connects a node to
another. Any number of branches — including none at all — can leave out of
any given node, but at most one branch may lead into it. A node with no
incoming branch is aroot; a node with no outgoing branch is aleaf; a node
that is neither a root nor a leaf is aninternal node.

A tree has exactly one root. (A structure made of zero, one or more
disjoint trees, having any number of roots, is called aforest.) Trees are
important structures of computer science and you will encounter them in many
contexts. Here we are looking at a tree representing the syntax structure of a
program element, a class. It represents the nesting of specimens, with the three
kinds of node:

Class declaration

Class
name Inheritance Features of the class

Feature declaration

Feature
name

Header
comment

Feature
body

InstructionInstruction
(feature call) (feature call)

Target Feature Target Feature

Paris display Louvre spotlight

explore Show city info ...

PREVIEW1 Class
name

TOURISM

An abstract
syntax tree

Root
Internal node
(Nonterminal)
Leaf
(Terminal)
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• The root represents the overall structure — the outermost rectangle on the
earlier figure.

• Internal nodes represent substructures that contain further specimens; for
example a feature call contains a target and a feature name. In the earlier
figure, these were the rectangles containing other rectangles.

• Leaves represent specimens with no further nesting, such as the name of
a feature or class.

For an abstract syntax tree, the leaves are also calledterminals; a root or
internal node is called anonterminal.

Every specimen is of a specific kind: the topmost node represents a class;
others represent a class name, an “inheritance” clause, a set of feature
declarations etc. Each such kind of specimen is called aconstruct. The above
syntax tree shows, for each node, the corresponding construct name.
Depending on the specimens it represents, a construct is either a “terminal
construct” or a “non-terminal construct”: the figure shows “Feature
declaration” as a non-terminal and “Feature name” as a terminal.

A construct is a general notion, for example the notion of a class; a
particular instance of that notion, such as a particular class, is a specimen of
that construct. As another example, the particular feature callParis.displayis
a specimen of the construct “feature call”.

The syntax of a programming language is defined by a set of constructs
and the structure of these constructs.

3.7 TOKENS AND THE LEXICAL STRUCTURE

The basic constituents of the syntax structure include terminals, keywords,
and special symbols such as the period “.” of feature calls. These basic
elements are calledtokens.

Tokens are similar to the words and symbols of ordinary languages. For example
the sentence in the margin has nine words (“This”, “is” etc.) and three symbols
(two hyphens and the final period)

Token categories

We may divide tokens into two kinds:
• Terminals correspond, as we have seen, to leaves of the abstract syntax

tree; each carries some semantic information. They include names such
asParisor display, calledidentifiers, and chosen by each programmer to
represent semantic elements such as objects (Paris) and features
(display). Other examples areoperators such as+ and<= which will
appear in expressions such asa + b, and constants denoting
self-explanatory values, such as the integer34.

← Page45.

This is a nine-word and
three-symbol sentence.
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• Delimiters, the second major category of tokens, do not directly carry
any semantics but serve a purely syntactical role. They include the 65 or
sokeywordsof the language, such asclass, inherit , feature, andspecial
symbolssuch as the period “.” of feature calls and the colon “:”.

Levels of language description

The form of tokens defines thelexical structure of the language. The syntax
level comes above the lexical level, and semantics above syntax:
• Lexical rules define how to make up tokens out of characters.
• Syntax rules define how to make up specimens out of tokens satisfying

the lexical rules.
• Semantic rules define the effect of programs satisfying the syntax rules.

Identifiers

For the moment we need only one lexical rule, governing identifiers:

Route1 was an example of identifier including a digit.
You may define your own identifiers as you please based on this rule,

except that you may not pick a keyword since it’s already reserved for a
specific purpose. (Of course you don’t know all the keywords yet, but if you
mistakenly reuse one of them you’ll get a clear error message.)

Syntax:
Identifiers

An identifier starts with a letter, followed by zero or more characters, each
of which may be:

• A letter.
• A digit (0 to 9).
• An underscore character “_”.

Lexical rules

Syntactic rules

Semantic rules

Rely on

Rely on

classC inherit  ...

Levels of
language
description
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In other programs you may encounter, for multi-word identifiers, the use of an
upper-case letter in the middle of an identifier:myRoute, PublicTransport. Stay
away from this convention, as it’s far less readable than using underscores.

Breaks and indentation

The lexical structure consists of successive tokens. To separate adjacent tokens
you may use abreak, which is a sequence of one or more of the following:

• Space.
• Tabcharacter (which shows up as a sequence of spaces to reach aligned

positions, but internally is just one character).
• Return to the next line.
Breaks only serve to separate tokens. It makes no difference to the syntax and
semantics whether you go to the next line or use one space, one or more tabs
(typically at the beginning of a line, for indentation), or several spaces (seldom
useful). This is what allows you to devise the text layout that will best reflect
the program’s structure — especially by highlighting its syntax nesting — to
help readability, as in the examples of this book.

Your program is stored in a file, which contains a sequence of characters such as
letters, digits, tabs and symbols. In that file a return to the next line is — inmost
file formats used today — simply represented by a particular character, known as
“New Line”. You will also encounter references to the “Carriage Return” character,
a delightful reminder of the time when we typed our programs on typewriters; the
print head was lodged in a little mechanical “carriage”, which at the end of a line
we would “return” to the leftmost position to start typing the next line.

A break is usually not required between an identifier and a symbol: you may
write a+b without spaces, since this is not ambiguous. The style rules suggest
including the break anyway for clarity:a + b.

Touch of Style:
Choosing your identifiers

For program readability, always choose identifiers that clearly identify the
intended role; except in special cases (which we’ll see), use full names, not
abbreviations:Route1, notR1 or Rte1.
There’s no tax on keystrokes, and the fractions of seconds that you might
save by omitting a letter will be more than offset by the time that you or
someone else trying to understand your program will waste, later on, trying
to figure out what you meant.
For identifiers denoting complex notions, use underscores to separate
successive words, as inMy_routeor bus_station. This also works for class
names, always in upper case:PUBLIC_TRANSPORT. Don’t overdo it: for
most identifiers, a single word, or two words separated by an underscore,
are enough. Clear doesn’t mean verbose.

On the Windows oper-
ating system, a line
return is actually
encoded by two charac-
ters, a Carriage Return
followed by a New Line.
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3.8 KEY CONCEPTS LEARNED IN THIS CHAPTER

• Programs are expressed in aprogramming language.
• A program has alexical structure, defining the form of a program’s basic

elements (tokensseparated bybreakssuch as spaces, tabs and line
returns); asyntax, defining its hierarchical decomposition into elements
(specimens) built out of tokens; and asemanticsdefining the
execution-time effect of each specimen and of the whole program.

• The syntax structure usually involves nesting and may be described as a
tree, known as anabstract syntax tree.

New vocabulary

3-E EXERCISES

3-E.1 Vocabulary

Give a precise definition ofeach of the terms in the above vocabulary list.

3-E.2 Syntax and semantics

For each of the following statements, say whether it characterizes syntax,
semantics, both, or neither (explain):
1 • “In a feature call, you must separate the target object from the feature

name by a period.”
2 • “In a feature callx.f, there’s no need to put spaces before or after the

period, although they wouldn’t hurt.”
3 • “Every feature call applies a feature to a certain object, the ‘target’ of the call.”
4 • “If there is an argument, it must be in parentheses.”
5 • “If you have two or more arguments, separate them by commas.”

Abstract syntax tree Break Carriage return
Code Construct Delimiter
Expression Identifier Indentation
Instruction Internal node Leaf
Lexical Natural language Nesting
New line Node Nonterminal
Operator Root Semantics
Special symbol Specimen Syntax
Terminal Token Tree
Value

The definition of
“class” may be less
precise than the others.
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The interface of a class

In the previous chapters we have learned to build some software relying on
existing elements. We are going to do more of this now by seeing how we can
use previously writtenclasses. This will also be an opportunity to gain new
insights into this notion of class, fundamental to everything we do in
programming, and to discover the concepts ofinterface andcontract.

4.1 INTERFACES

Many of the key decisions about building and using software systems
involve the notion of interface. We may define it in relation to the notions,
useful on their own, of client and supplier:

Informally, then, an interface for a piece of software is the description of how
the rest of the world may “talk to” the software.

The definition speaks of “An interface”, not “The interface”. There are
indeed several kinds of interface, and a software element may offer more than
one interface, of the same or different kinds. The two principal kinds are:
• A user interface, where the clients are people using a software system.
• A program interface, where clients are themselves software elements.
As an example of auser interface, consider a Web browser as shown (top part
only) on the next page. Its user interface is the description of what people can
do with the browser; it includes:

Definitions: Client, Supplier, Interface
A client of a software mechanism is a system of any kind — such as a
software element, a non-software system, or a human user — that uses it.
For its clients, the mechanism is asupplier.
An interface of a set of software mechanisms is the description of
techniques enabling clients to use these mechanisms.
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• The specifications of the fields into which users may type their own texts,
such as the Address field at the top.

• The properties of buttons (“Back” etc.) that users may click to obtain
certain effects.

• The conventions for hyperlinks (left-click will lead to a new page,
right-click opens a page in a different window, etc.).

• More generally the set of rules that govern the interaction between the
browser and its users.

Such a user interface isgraphical, meaning that it involves pictures and other
two-dimensional elements. The computing profession, which has a crush on
acronyms, calls this aGUI — Graphical User Interface — pronounced “Gooey”.

Other user interfaces involve no graphics but only text, as on older cell
phones; they are called “text interfaces” or “command-line interfaces”.

A user
interface
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If in previous dealings with computer systems you have encountered
less-than-perfectly-friendly user interfaces, you’ll probably agree that GUI
design is an important part of software design. We’ll learn some principles
later in this book but for the moment what’s more fundamental is the second
kind of interface cited,program interfaces. Here too you have to learn a TLA
(Three-Letter-Acronym):API , for “Abstract Program Interface” (the A is also
understood as meaning “Application”).

In the rest of this chapter we’ll learn how APIs look for a particularly
important kind of software element: the class. Since for the moment we are not
concerned any more with user interfaces, we’ll say indifferently “API”,
“program interface” or even just “interface” to mean exactly the same thing.

4.2 CLASSES

A previous discussiondefined an object as “a software machine allowing
programs to access and modify a collection of data”. Such collections of data
might represent, to stick to the examples we have seen:

• A city, where the “access and modify” operations may include finding out
about current traffic conditions and adding some vehicles to the traffic.
We have usedParis as an example but of course we may have objects
representing any other city provided we have the relevant information.

• A travel route. Again we may have many such routes, not justRoute1as
used in the original example.

• A list of cars waiting at a red light. Many possible objects again.

• Closer to the computer, an element of the GUI such as a button or a
window on the screen. Of these too we’ll have many.

There is a strong similarity between objects of every such “kind”: the
operations applicable to a city objet such asParis would also apply to other
city objects, sayNew_Yorkor Tokyo. They don’t apply to a travel route object
such asRoute1, but operations applicable toRoute1, such as adding a new
segment to a route, would also apply to other routes.

What this tells us is that the objects our programs manipulate naturally
classify themselves into certain kinds, orclasses: the class of objects
representing cities, the class of objects representing travel routes, the class of
objects representing buttons on the screen...

“Class” is indeed the technical term. What characterizes objects of a
given class is a common set of applicable operations — orfeaturesin the
terminology introduced in the discussion of objects. Hence the definition:

← Page33.
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In program texts, classes will stand out by always having names in all upper
case, such asCITY, ROUTE, CAR_LIST, WINDOW. The names representing
objects are in lower case, or, in the case of predefined objects such asParis,
with only the first letter in upper case.

A class represents a category of things; an object represents one of these
things. The following terms express precisely this relationship between
classes and objects:

CITY is a class, representing all possible cities (as we’ve decided to model
them in our program);Paris denotes an object, an instance of that class.

This relationship between classes and objects is the usual one between a
category and members of that category: “Human” is a category, “Socrates” is
one of its members. If these were software notions we would say there’s a class
HUMAN and one of its instances is the object calledSocrates.

In software the difference goes further:

• Classes exist only in the software text. As the definition of “class” says,
a class is adescription; it will be given by aclass text, a software element
describing the properties of the associated objects (instances of the class).
In fact a program is just a collection of class texts.

• Objects — “collections of data” — exist only during the software’s
execution; you don’t see them in the program text, although you will see
there some namessuch asParis andRoute1denoting objects that will
appear during execution.

As a consequence, the term “run-time object” appearing in the definition of “class”
is redundant, since objects by definition exist only during program execution (“run
time”). From now on we’ll say just “object”.

Finding appropriate classes is a central part of the task of softwaredesign,
devoted to organizing the essential structure, orarchitecture, of a program —
as opposed to writing down the details, orimplementation.

Definition: Class
A class is the description of a set of possible run-time objects to which the
same features are applicable.

Definitions: Instance, Generating class
If an objectO is one of the objects described by a classC, thenO is an
instance of C, andC is thegenerating classof O.
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4.3 USING A CLASS

You are now going to learn what a class looks like and how you can use it to
build new classes —client classes — for your own programs.

The classes that we’ll examine have been written to cover properties and
operations relative to a metro network like the Paris metro. (Of course, for
generality, everything should be tailorable to any other city.) Below for
reference is part of the Metro plan.

Defining what makes up a good class

Assume we had to devise a software model for the Metro as seen by
passengers. As in any software design problem, the key question will be:What
are the classes? To find good classes answering this question, we search the
problem domain for concepts that:

• Describe sets of objects (their future instances).

• Can be explained clearly.

• Can be characterized in terms of clearly definedfeatures, including both
queriesandcommands, applicable to the corresponding objects.

Metro plan

← “Features, com-
mands and queries”,
page 29.
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A mini-requirements document

Can we find classes and their features to make up a software model of the
Metro? Often a first step to design is simply to express in clear, simple
language what the problem domain is about. Let’s try:

This is probably more pompous than what you would tell a visitor who’s not
used the Metro before, but still far less precise and complete than what we
expect from the “requirements document” of a software project in industry. It’s
good enough for our purposes of discovering a few classes.

First class ideas

As usual in requirements documents, many details are irrelevant for our
immediate needs, for example that the network runs “mostly underground”.
The word “network” itself is not that useful. But without much hesitation we
can spot four concepts likely to yield classes:

• METRO_STATION. The Metro is made of stations; people travel from a
station to a station, going through other stations. This seems like an
inevitable notion for our software.

• METRO_LINE: the Metro consists of a set of lines, each connecting a
number of stations that the line traverses in a set order.

• ROUTE: a description of how to go from a given station to another.

• SEGMENT: a set of contiguous stations on a line.

Touch of Paris:Welcome to the Metro
The Metro is a train network, mostly underground, enabling people to travel
through the city quickly and conveniently.
The network is made of “lines”; each line connects a set of “stations”, two
of which are its “end stations”. Trains on a line travel from one of the end
stations to the other, stopping at each station along the way, and then back
in the same manner.
Some stations belong to two or more lines; they are called “exchanges” and
allow passengers to connect from one line to another.
To go to a certain destination using the Metro you’ll first identify the
stations closest to where you are and to where you want to go, then you’ll
find a Metro route between them; the route is made of a number of
segments, each consisting of successive stations on a single line; successive
segments connect through exchange stations.
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Close relations exist between these notions: a line is made of stations; a
segment, also made of stations, is part of a line; a route is made of segments.

You indeed have at your disposal, in the TRAFFIC software, a set of
classes covering these notions, and we may now take a look at some of their
properties. Even though the classes are available as part of the material for this
book, we’ll work initially as if we had to design the corresponding classes,
starting from the basic concepts of line, segment, station and route.

What characterizes a metro line

Let’s start by understanding the interface (in the sense of program interface, or
API) of a class representing lines. You can use the EiffelStudio environment
to see the interface of any available class, also known as itscontract view for
reasons that will become clear as we go.

Let’s first look at a simplified form of classMETRO_LINE, called
SIMPLE_LINE. Bring up the contract view of this class (the EiffelStudio
appendix gives theinstructions). The result looks like as follows:

→ “BRINGING UP A
CONTRACT VIEW”,
A.4, page 575.

A class
interface
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The contract view shows the features — commands and queries — applicable
to an instance of a classSIMPLE_LINE, representing a line of the metro. We’ll
study them in the next two sections.

When you have read the discussion of these features, go back to the preceding
picture (or display again the corresponding contract view on your computer) and
make sure you understandall that it shows.

To follow the discussion of queries and commands you need to remember that
the class describes a set of possible objects, its instances (themselves
representing individual lines of the metro). The features are defined in the
class, but each defines an operation applicable to any such object. For example
the class will have a querysw_endgiving one of its two end stations (the one
to the South or to the West of the other); this means that we may apply this
query to any of its instance. IfLine8denotes an instance ofSIMPLE_LINE,
thenLine8.sw_enddenotes its end station. We commonly say things like “A
SIMPLE_LINE” to talk about a typical instance of the class, representing a
typical line.

SIMPLE_LINErepresents a slightly simplified version of the final class
METRO_LINE; the discussion applies to both classes. We’ll look at the
queries first, then the commands.

4.4 QUERIES

How long is this line?

One of the first things we may need to know about a line is the number of its
stations. This is provided by a querycount. The specification of that feature in
the contract view appears as

The second line is, as you know, a comment, more precisely aheader
comment that should come with every feature. It’s always useful to give a
plain language explanation of what a feature is about. Among other things this
avoids misunderstandings. Here for example, we could have chosen to count
the number of segments (elementary segments, those from a station to the
next) rather than stations; the result would always be one fewer, as illustrated
on this little line with four stations and three elementary segments:

count: INTEGER
-- Number of stations in this line
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The comment clarifies our convention: for classSIMPLE_LINEthecountof a
line is the number of its stations.

In the comment, note the expression “in this line”. The class describes the
general notion of line, but when a feature likecountis applied to a particular
line, as in the feature callLine8.count, it will give us the station count of that
line. So in the end the class always talks about a particular line, even though
in the class we don’t know what it is. That’s what “this line” means: whatever
line object to which we will apply the featurecount.

The query declaration starts with:count: INTEGER. This simply
introduces the name of the query,count, and the type of the result it returns,
INTEGER. A query is there to provide information on an object (here an
instance ofSIMPLE_LINE), so the interface of the class must say what type of
information that is.

INTEGERis such a type, denoting integer values, zero, positive or
negative. The names of types, like classes, will always be written all in upper
case. Other types encountered later in this chapter include:

• STRING, for values that are sequences of characters, such as"ABCDE".

• BOOLEAN, for “truth values” that can only be eitherTrue or False.

• Classes themselves, such asMETRO_STATION or SEGMENT.

More on types soon. For the momentINTEGER suffices.

Experimenting with queries

As you encounter features in this chapter, you can try them out.

Programming time!
Length of a line

The first programming exercise of this chapter, detailed below, lets you find
the length of Line 8 of the Metro.

Four stations,
three segments

Station1

Station2

Station3

Station4
Segment1 Segment2

Segment3
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A system calledMetrohas been set up as part of the TRAFFIC software. Start
EiffelStudio now on that system and bring up the text of its classQUERIES
(seeinstructions in the EiffelStudio appendix). This is just a playground for
trying out the concepts of this chapter; to achieve this you can, as you go along,
fill in with various feature calls the part highlighted below.You’ll be able to
execute the resulting system and see the effects in each case.

The Metro Line 8 is defined, in the context set up for you by classTOUR, by
a feature calledLine8. Enter, into the “fill-in” part, the instruction

This calls the just described featurecount on Line8, and then uses the
commandshowon Consoleto display the result in the console window. Now
you know how many stations Line 8 has.

As in the discussion of objects there’s still a little “magic” involved since you are
relying onConsoleand onLine8 (denoting an instance ofSIMPLE_LINE), both
prebuilt for you in classTOUR. There will be a little more such magic in this
chapter; we need it to let you concentrate on the new concepts you are learning.
The goal, of course, is to remove the magic, and pretty soon you’ll be able to define
everything you need.

From the terminology of the chapter on objects you will remember that
Line8.count, denoting the result of applying a query to an object, is an
expression. Every expression has a type; here, because the querycounthas
been declared to return anINTEGERresult, the type of the expression is also
INTEGER, as appropriate since it denotes a number of stations.

class QUERIESinherit

end

Console.show(Line8.count)

→ “BRINGING UP A
CONTRACT VIEW”,
A.4, page 575.

TOUR
feature

makeis
-- Try out queries and commands on lines.

do

end
The part you’ll fill in
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The stations of a line

Our next queries tell us exactly what stations are on a line. Remember the
explanation in our little requirements statement:

Although we need to complement this imperfect specification with our
intuitive understanding of a transportation network, it clearly implies that a
line contains asequenceof stations: first end station; a station; another station;
and so on up to the other end station. A simple way to represent this is the
following query of classSIMPLE_LINE:

The namei_th comes from the common way of referring to an item by its position
in a series: “thei-th element”, as in “the 25-th element”. We couldn’t call the query
i-th because hyphens “-” are notpermitted in identifiers, but underscores “_” are.

The queryi_th, like showfor Console, takes anargument, representing the
number, or “index” of the stop we want, starting at 1 for the first end station,
then 2 for the first stop after it and so on. So if we again take Line 8 as an
example, and refer to this map extract:

then we can use, in our program text, the expression

representing the station called “Balard” on the above map);Line8.i_th (2) is
“Lourmel” and so on.Line8has been predefined for us as part of the “magic”.

For consistency we take the (arbitrary) convention of starting the
numbering of stations, for every line, at the South or West end.

... each line connects a set of “stations”, two of which are its “end stations”...

i_th (i: INTEGER): METRO_STATION
-- The station of indexi on this line

Line8. i_th (1)

← “Syntax: Identifiers”,
page 48.

← “FEATURESWITH
ARGUMENTS”,  2.4,
page 34.

Start of line 8

To know all about Line
8 of the Metro:

www.chez.com/jefx/lig
nes/ligne8.htm

http://www.chez.com/jefx/lignes/ligne8.htm
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ClassSIMPLE_LINEhas the following two queries denoting the ends of a line

Properties of start and end lines

To express more precisely our decision to start numbering at the Southwest
end, we note that any linel will satisfy the following properties:

Don’t eventhinkof reading any further unless you understand these two lines
perfectly. Each states a property ofl, an equality, similar to equalities you have
seen in mathematics, such ascos2 (x) + sin2 (x) = 1 for any numberx:

• The first equality says that the querysw_endwill always return the same
result as the queryi_th applied to the same metro line with the argument
1; in other words, it states our convention that station numbering on a line
starts at the Southwest end.

• The second equality gives the corresponding equality at the other end.
Sincel.countdenotes the number of stations on the line, the expression
l.i_th (l.count) denotes the last station.

This also gives us the answer to the little quiz above: the expression denoting
the end station of Line 8 isLine8.i_th (Line8.count).

Quiz time: The other end
Line8.i_th (1) is an expression of typeMETRO_STATIONdenoting the
station at the Southwest end of Line 8. Without looking up the number of
stations on that line or the names of individual stations (or the answer to this
quiz, which appears a few paragraphs down), write another expression that
denotes the object representing the station at theotherend of the line.Hint:
use another query already introduced.

sw_end: METRO_STATION
-- End station on South or West side

ne_end: METRO_STATION
-- End station on North or East side

l.sw_end= l. i_th (1)
l.ne_end= l. i_th (l.count)

← Querysw_end was
mentioned on page58.
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4.5 COMMANDS

So far we have accessed properties of existing lines, using queries. It’s time
now to look at the other category of features: commands, which enable us to
change an object.

Building a line

What can we do to a line that will change it? The most obvious operation is to
add a station to it, for example at the end.

If you are thinking: “This is nonsense: a program cannot create a Metro
station, and the Metro lines already exist anyway!”, you should probably read
again thesection that explained that our objects aresoftwareartefacts, not the
real thing. We will need the ability to change lines, if only to set up our object
structure at the beginning of an execution once we get rid of the magic of class
TOUR which at the moment creates the structure for us.

To set up the object structure ourselves we might get the information from some
external description of the Metro structure (in afile or database), then use it to
create all the objects we need such as stations and lines.

Let’s indeed rebuild line 8. From classTOURwe may assume the following:
predefined features such asStation_Balard, Station_Lourmeletc. are available
for every station; the name of the feature for station “xxx” isStation_Xxx.
(Multiple words, as with the station “Félix Faure” of Line 8, are separated by
underscores in the identifier, and for simplicity all letters in the identifiers are
unaccented:Station_Felix_Faure.)

Of courseLine8is itself predefined fromTOUR, so the first thing we need
to do is to empty it out of its stations. In the above interface of class
SIMPLE_LINE the following command will do the job:

Our client program will use it under the form

remove_all_segments
-- Remove all stations except the South-West end.

Line8.remove_all_segments

← “Objectsyoucanand
can’t kick”,  page 28.
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Note that by convention our lines will always have at least one station, the
Southwest end; when it’s the only one, for example after a call to
remove_all_segments, it will be the value of bothsw_end andne_end.

Now we are ready to add stations. The relevant command in this case is,
in contract view:

This means that ifli denotes a line you may add a stationstat its end through

Indeed, you may now try the following new class:.

To check that your reasoning is correct,run this example now.

extend(s: METRO_STATION)
-- Add s at end of line.

li.extend(st)

class COMMANDSinherit
TOUR

feature
makeis

-- Recreate a partial version of Line 8
do

Line8.remove_all_segments
-- No need to addStation_Balard, since
-- remove_all_segments retains the SW end.

Line8.extend(Station_Lourmel)
Line8.extend(Station_Boucicaut)
Line8.extend(Station_Felix_Faure)

-- We stop adding stations, to display some results:
Console.show(Line8.count)
Console.show(Line8.ne_end.name)

end
end

Quiz time: The last name shown
As you may guess from the last instruction, classMETRO_STATION(the
type ofne_end) has a queryname, which gives the name of a station. What
name should this last instruction display in the console window? → For instructions, see

“RUNNINGQUERIES
ON A SYSTEM”,  A.5,
page 575.
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4.6 CONTRACTS

One of the reasons that the “line” classSIMPLE_LINEused so far is not the
finalMETRO_LINEclass is that it misses a fundamental property that we can’t
ignore if we are to write serious software: that not all features are applicable
to every possible argument and instance. Interfaces will need to be more
precise about what is permitted.

Preconditions

The interface for the queryi_th in classSIMPLE_LINE, as shown earlier

doesn’t mention that not every value fori makes sense: the value must be
between 1 and the number of stations on the line,count. If Line 8 has 20
stations [CHECK NUMBER] then it would make no sense to useLine8.i_th
(300), orLine8.i_th (0), orLine8.i_th (–1).

You may try such an out-of-bounds value on the computer if you wish, and see
what happens.

A programmer who is trying to understand what the class is about — a
potential “client programmer” — needs this kind of information. That’s
precisely what interfaces are about: telling client programmers what classes
can do for them.

We could of course add the information to the header comment, as in

which is better than nothing, but not good enough. Such usage properties are
so common, and so critical for the proper use of classes and their features, that
they must be treated as an integral part of the program, at the same level as the
instructions and expressions. They will be calledcontracts. For i_th we have
our first form of contract, theprecondition. A precondition is a property that
a feature imposes on all its clients; here, it’s that the argument must be within
a certain range.

i_th (i: INTEGER): METRO_STATION
-- Thei-th station on this line

i_th (i: INTEGER): METRO_STATION
-- Thei-th station on this line

NOT RECOM-
MENDED STYLE
see next..

-- (Warning: use only withi between 1 andcount, inclusive.)
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The interface of a feature will show the contract using the keyword
require. So the contract view of classMETRO_LINEactually describesi_th
in this way:

The precondition clause is made of two separate elements calledassertions.
Each expresses a property:i ≥ 1 in the first assertion andi ≤ countin the second
one. Note that because of the limitations of computer keyboards we can’t use
the mathematician’s symbols≥ and≤; programming languages let us use
instead 2-character symbols>= and<=. Also, the namesnot_too_smalland
not_too_big, calledassertion tags, serve to clarify the purpose of the
assertions, but the real meaning is in the expressions that follow,i >= 1 and
i <= count. We may omit the assertion tags and colons, as in

without changing the meaning of the precondition, but it’s clearer with the tags.
When present, the tags appear inromanto stand out from the program elements
in italics.

Expressions likei >= 1 andi <= countdenoteconditionsthat, at any time
during program execution, may be either true or false.Earlier examples
involved equality, asl.sw_end= l.i_th (1) for a line l. An expression that can
take the values true and false — written in Eiffel asTrue andFalse, with a
capital first letter since they are predefined values — is known asboolean:

i_th (i: INTEGER): METRO_STATION
-- Thei-th station on this line

require

Definition: Boolean value
A boolean value is one of:True andFalse.

require
not_too_small: i >= 1
not_too_big: i <= count

i >= 1
i <= count

← Page62.
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The corresponding type is calledBOOLEAN; it’s one of thetypes we have at
our disposal, along withINTEGER, STRINGand class names. Most other types
have many values — we’ll see for example that typically the representation for
an integer value on a computer supports some four billion possibilities — but
BOOLEANprovides only two. The purpose is clearly to represent the notion
of condition, similar to non-programming uses of this concept: in “You can go
skiing only if there is enough snow”, the property “there is enough snow” is a
condition — a boolean expression. As usual, our boolean expressions in
software must be more precisely defined, like in mathematics:i >= 1 is
unambiguously true or false once we know the value of the integeri, whereas
how much snow is “enough snow” is subject to human judgment.

Boolean values lie at the heart oflogic, the art of reasoning; the next
chapter is devoted to this topic. Preconditions and the other forms of contract
will use boolean expressions to state conditions that clients and suppliers must
satisfy. Here the precondition ofi_th, as it appears in the interface

is essential information for the client.

A client that doesnot satisfy that property, for example if it has a call

is faulty software, orbuggyaccording to habitual terminology, where a “bug”
is simply an error.

We may express this observation as a general principle:

Whenever you consider using a feature, you will see its specification in the
contract view of the corresponding class, including its precondition if any, as
in the example ofi_th above. It is then your responsibility, as the client
programmer, to make sure that any call to the feature satisfies the precondition.

require
not_too_small: i >= 1
not_too_big: i <= count

Line8.i_th (1000)

Touch of Methodology: Precondition Principle
A client calling a feature must make sure that the precondition holds before
the call.

← The notion of type
was introduced in
“How long is this
line?”,  page 58.
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Some features are always applicable; they do not have arequire clause.
By convention this means the same as if they had one of the form

defining a precondition that is always satisfied.

Contracts for debugging

One way that preconditions and other contracts will help you during
software development is that the tools will check them when you execute
your program. So if one of the contracts does not hold, revealing a bug, you
will get a precise message telling you what happened; the message lists the
tag (such asnot_too_small) of the violated assertion, so that you know what
exactly went wrong.

When a program is ready for distribution, you should have corrected all
the bugs, and can change the options to stop checking contracts at run time.

Contracts for interface documentation

The better approach to software correctness is, of course, to avoid bugs in the
first place (rather than make mistakes and then correct them); systematic use
of contracts helps. In particular, the documentation of a software mechanism,
as given by its interface, should always list the completepreconditionthat
defines under what circumstances it is legitimate to use the mechanism.

This style — illustrated by the interface fori_th as shown above — will
be the standard form of interface description for the rest of this book.

Postconditions

In describing the interface that a feature presents to its potential clients,
preconditions address only one side: what a feature expects from the clients
before a call. For the clients, a precondition is anobligation. As in any good
relationship, the clients will want to know whatbenefitsthey will get after a
call. The feature’s interface can express this through apostcondition.

Unlike with preconditions, we won’t always be able in postconditions to
express all relevant properties, but often we can say something interesting anyway.
Here for example is the interface forremove_all_segments in classROUTE:

require
always_OK: True
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Here there is no precondition sinceremove_all_segmentsis always applicable
to a route. The keywordensure introduces a postcondition. Here the feature
guarantees two things to its client when it has done its job:
• The number of stations,count, is equal to 1.
• The two end stations,sw_end andne_end, are now the same station.
Similarly, here is the interface (precondition omitted) forextend, the command
that adds a station at the end of a line:

The first postcondition clause uses the queryi_th: it states that after a call to
extend, if we ask what is the station at positioncount, that is to say the last
station, the answer will bes, the station that we have asked the command
extendto add. This states precisely the intent ofextend; if the command does
its job properly — that is to say, if its program text doesn’t have any bugs —
this property will always hold as a result of an execution of the command.

The second clause expresses thatne_endwill also be equal tos. The
invariant, to be seen in the next section, will tell us thatne_endmust be equal
to i_th (count), so this clause is in fact redundant, but it doesn’t hurt.

The third clause tells us that the routine increasescountby one. It uses a
keyword that we haven’t encountered yet,old. A postcondition clause states a
property that will hold when a routine call terminates; it often needs to relate
the value an expression then has to the value it had onentry to the procedure.
Hence the usefulness of an “Old expression”, of the form

which means: “The value ofsome_expression, captured at the beginning of the
routine’s execution”. Here the postcondition clause

remove_all_segments
-- Remove all stations except the South-West end.

extend(s: METRO_STATION)
-- Add s at end of line.

old some_expression

ensure
only_one_left: count= 1
both_ends_same: sw_end= ne_end

ensure
new_station_added: i_th (count) = s
added_at_NE: ne_end= s
one_more: count= old count + 1
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states that the routine must increase the number of stations,count, by one.

Old expressions, and theold keyword, may only appear in postconditions.

When you write a feature in a class, you may assume that the
precondition holds at the beginning, but it is your responsibility to ensure that
the postcondition holds at the end of the feature’s execution:

Class invariants

Preconditions and postconditions are logical properties of your software, each
associated with a particularfeature, such asi_th, remove_all_segmentsand
extend in the examples we’ve seen.

We also use logical properties to characterize an entireclass, above the
level of its individual features. Such a property, known as aclass invariant,
expresses relationships between the different queries of a class. As an example
we saw earl i er that if l is a line thenl.sw_end= l.i_th (1) and
l.ne_end= l.i_th (l.count). These are of course properties not of any
particularl but of the class as a whole; indeed they figure in the class invariant,
which appears at the end of the text of classMETRO_LINE:

This is typical of the role of class invariants: expressing consistency
requirements between the queries of a class. We see here that in class
METRO_LINEthere is a certain redundancy between these queries:sw_end
andne_endprovide information that one can also get throughi_th, applied to
arguments1 andcount.

count= old count + 1

Touch of Methodology: Postcondition Principle
A feature must make sure that, if its precondition held at the beginning of
its execution, its postcondition will hold at the end.

invariant
southwest_is_first: sw_end= i_th (1)
northeast_is_last: ne_end= i_th (count)

← “Pr operties of start
and end lines”,  page
62.
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Another example is a classCAR_TRIPproviding queries such as
i n i t i a l_odometer_ read ing, t r i p_ t ime, average_speed and
final_odometer_reading, with roles implied by their names (“odometer
reading” is the total number of kilometers or miles traveled). There is again a
certain redundancy which you may capture through a class invariant (where∗
denotes multiplication:

There is nothing wrong in principle with including such redundant queries
when you design a class: they may all be relevant to the clients, even if they
are derived from some of the same internal information about the
corresponding objects. But without the invariant, the redundancy might cause
confusion or errors. The invariant expresses clearly and precisely how the
different queries may be related.

We saw earlier that a precondition must hold at the beginning of a feature
call, and a postcondition at the end. An invariant — which applies to all the
features of a class, not just a specific one — must hold at both points:

Contracts: a definition

We have seen various kinds of contract — preconditions, postconditions, class
invariants — from which a general definition now emerges:

We will use contracts throughout the software to make it clear what each
element — class or feature — is about. As noted, they serve for documenting
software, especially libraries of components meant (like the TRAFFIC
software) for reuse by many different applications; they help in debugging;
and they help us avoid bugs in the first place by writing correct software.

invariant
consistent: final_odometer_reading= initial_odometer_reading +

trip_time∗ average_speed

Touch of Methodology: Invariant Principle
A class invariant must hold as soon as an object is created, then before and
after the execution of any of the features of the class available to clients.

Definition: Contract
A contract is a specification of properties of a software element that affect
its use by potential clients.
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4.7 KEY CONCEPTS LEARNED IN THIS CHAPTER

• A software element presents to the rest of the world one or more interface.
• Classes exist only in the software text; objects exist only during the

execution of the software.
• A class describes a category of possible objects.
• Every query returns a result of a type specified in the query’s declaration.
• We may specify the interface of a class through a “contract view” which

lists all the features of the class — commands and queries — and, for
each of them, the properties relevant toclients (other classes that use it).

• A feature may have a precondition, specifying initial properties under
which it is legitimate to call the feature, and a postcondition, specifying
final properties that it guarantees when it terminates.

• A class may have a class invariant, specifying consistency conditions that
connect the values of its queries.

• Preconditions, postconditions and class invariants are examples of contracts.
• Among other applications, contracts help for software design, for

documentation, and for debugging.

4-E.8 New vocabulary

4-E EXERCISES
4-E.1 Vocabulary
Give a precise definition of each of the terms in the above vocabulary list.

4-E.2 Violating a contract
1 • Write a simple program that uses the queryi_th of classMETRO_LINE.

Run it, using a knownMETRO_LINE object, for exampleLine8.
2 • Change the argument toi_th so that it’s out of bounds (less than one, or

larger than the number of stations). Run the program again. What
happens? Explain the messages that you get.

API Assertion Assertion tag
Boolean Bug Buggy Class
invariant Client Client Programmer
Contract Design Generating class
GUI Implementation Instance Interface
Postcondition Precondition Program interface
Supplier Type User interface
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5

JustEnough Logic

Programming is, for a large part, reasoning. We use computers to perform
certain combinations of basic tasks, executed at rates beyond direct human
comprehension; to get the results that we need, we must be able to understand
the program’s possible run-time behaviors, which are nothing but
consequences and ramifications of the effects prescribed by our programs, if
often very indirect consequences and many ramifications. All can, in principle,
be deduced from the program text through mere reasoning. It would help us
considerably if there were a science of reasoning.

We’re in luck, because thereis such a science: Logic. Logic is the
machinery behind the human aptitude to reason. The laws of logic enable us,
when told that Socrates is human, and that all humans are mortal, to deduce
without blinking that Socrates, then, must be mortal. When someone
announces that whenever the temperature in the city rises above 30 degrees a
pollution alert will result, so because the temperature today is only 28 degrees
there won’t be a pollution alert, you’ll say that his logic is flawed.

Logic is the basis of mathematics; mathematicians will believe a 5-line or
60-page proof only because they accept that each step proceeds according to
the rules of logic.

Logic is also at the basis of software development. Already in the last
chapter we encounteredconditionsin the contracts associated with our classes
and features, for example the precondition “i must be between 1 andcount”.
We will also use conditions in expressing the actions of a program, for
example “Ifi is positive, then execute this instruction”.
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We’ve seen in the study of contracts how such conditions appear in our
programs in the form of “boolean expressions”. A boolean expression may be
complex, involving operators such as “not”, “ and”, “ or”, “ implies”; this
mirrors modes of reasoning familiar in ordinary language: “If it’s already 20
minutes past the time for our dateand she didnot call or send an SMS, it
impliesshe won’t show up at all”. We all intuitively understand what this
means, and so far this informal understanding has been good enough for our
software conditions too.

No longer. Software development requires precise reasoning, and precise
reasoning requires the laws of logic. So before we can plunge back into the
delights of objects and classes we must familiarize ourselves with these laws.

Logic — mathematicallogic as it is more precisely called —is a
discipline of its own, and even just “Logic for Computer Science” is the topic
of many textbooks and courses; I hope that you will take such a course or have
already taken it. This chapter introduces some essential elements of logic
needed to understand programming. More precisely, even though logic in its
full glory is the science of reasoning, we need it, just now, for a more limited
goal: understanding the part of reasoning having to do withconditions. Logic
will give us a solid basis for expressing and understanding conditions as they
appear in contracts and elsewhere in programs.

5.1 BOOLEAN OPERATIONS

A condition in logic as well as in programming languages is expressed as a
boolean expression, built out of boolean variables and operators, and
representing possible boolean values.

Boolean values, variables, operators and expressions

There are twoboolean values, also called “truth values”; wewrite them as
True andFalse for compatibility with our programming language, although
logicians often use justT andF. In electrical engineering, which relies on logic
for circuit design, they are often called 1 and 0.

A boolean variableis an identifier denoting a boolean value. Typically
we use a boolean variable to express a property that might be either true or
false: to talk about the weather we might have the boolean variablerain_today
to stand for the property that we think rain will fall today.

→ True andFalseare
“reservedwords”of the
programming lan-
guage; see page219.
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Starting from boolean variables we may useboolean operatorsto make
up a boo lean express ion. Fo r example , i f ra in_ today and
cuckoo_sang_last_nightare boolean variables, then the following will be
boolean expressions according to the rules studied next:

• rain_today
-- A boolean variable, without operators: already a boolean
-- expression (the simplest form).

• not rain_today
-- Using the boolean operatornot.

• (not cuckoo_sang_last_night) implies rain_today
-- Using the operatorsnot andimplies, and parentheses
-- to delimit a subexpression.

Each boolean operator — such asnot, or, and, =, implies as defined below —
comes with rules defining the value of the resulting expression from the values
of the variables making it up.

For compatibility with the way we write programs, we express the
boolean operators through the corresponding programming language
keywords. In mathematical textbooks you will see them expressed as symbols,
most of which you couldn’t directly type on your keyboard. Here is
the correspondence:

Negation

The first operator isnot. To use it to form a boolean expression, apply it to
another existing expression, for example a single boolean variable, as in
not your_variable, or a more complicated one, such asnot (not a), or
not (a or b), wherea andb are boolean variables.

Eiffel keyword Common mathematical symbol

not ~ or ¬

or ∨

and ∧

= ⇔ or =

implies ⇒
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For an arbitrary boolean variablea, the value ofnot a is Falseif the value
of a is True, andTrue if the value ofa is False. We may also express this, the
defining property ofnot, through the following table:

This is called atruth table and is the standard way to specify the meaning of
a boolean operator: in the first columns, list all the possibilities for the values
of the variables involved in an expression that uses the operator; in the last
column, list the corresponding value of the expression in each case.

The operatornot representsnegation: replacing every boolean value by
its opposite, whereTrue is the opposite ofFalse and conversely.

From the truth table we note interesting properties of this operator:

Proof: by definition of a boolean expression,e can only have valueTrue or
False. The truth table shows that ife has valueTrue, thennot e has value
False; all four properties are consequences of this (and particularly the last two
directly from the first).

Disjunction

The operatoror uses two operands (rather than one fornot) If a andb are
boolean expressions, the boolean expressiona or b has valueTrue if and only
if at least one ofa andb has that value. Equivalently, it has valueFalseif and
only if the operands both have that value. The truth table expresses this:

a not a

True False

False True

Theorems:Negation properties
For any boolean expressione and any values of its variables:
1 • Exactly one ofe andnot e has valueTrue.

2 • Exactly one ofe andnot e has valueFalse.

3 • One of e and not e has valueTrue. (Principle of the Excluded
Middle .)

4 • Not both of e and not e have value True. (Principle of
Non-Contradiction.)
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The first two columns list all four possible combinations of values fora andb.

The word “or” is taken here from ordinary language in itsnon-exclusive
sense, as in “Whoever made this regulation must have been stupid or asleep”,
which doesn’t rule out that he might have been both.

In ordinary language “or” is also frequently used in anexclusivesense,
meaning that for the result to hold one of the conditions must hold, but not
both, as in “Shall we order red or white?”. This corresponds to a different
operator, “exclusive or” —xor in Eiffel — whose properties you areinvited
to study by yourself.

Theor operator, non-exclusive, is calleddisjunction. That’s not such a
good name, because it may misleadingly suggest an exclusive operator; but it
has the benefit of symmetry with “conjunction”, the name for our next
operator,and.

A disjunction has valueFalse in only one case out of the four possible
value combinations: the last row in the table. This provides an alternative,
often useful form of the definition:

The truth table shows that the operatoror is alsoCommutative: for anya and
b, the value ofa or b is the same as that ofb or a. This is also a consequence
of the Disjunction Principle.

Conjunction

Like or, the operatorand takes two operands. Ifa and b are boolean
expressions, then the boolean expressiona and b has valueTrue if and only
if both a andb have that value. Equivalently, it has valueFalseif and only if
at least one of the operands both have that value. In truth table form:

a b a or b

True True True

True False True

False True True

False False False

Theorem:Disjunction Principle
An or disjunction has valueTrue except if both operands have valueFalse.

→ This is exercise
5-E.10, page 106.
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The application ofand to two values is known as theirconjunction, as in the
conjunction of two events: “Only the conjunction of a full moon and Saturn’s
low orbit can bring true romance to a Sagittarius” (perhaps not, however, the
kind of example that directly influences mathematical logicians).

Studyingand andor reveals a close correspondence, orduality, between
the two operators: many interesting properties of either operator yield a
property of the other if we swapTrue andFalse. For example the Disjunction
Principle has a dual that applies to conjunction:

Like or, the operatorand is commutative: for anya andb, a and b has the
same value asb and a. This property can be seen on the truth table; it’s also a
consequence of the Conjunction Principle.

Complex expressions

You may use boolean operators — the three already introduced,not, or and
and, and the other two described next — to build a more complex boolean
expression, and deduce the truth table of the expression from the truth tables
defining the operators. Here for example is the truth table for the boolean
expressiona and (not b):

To derive this truth table, it suffices to replace, in the truth table forand, each
value ofb by the value ofnot b as obtained from the truth table fornot; a third
column has been added to shownot b.

a b a and b

True True True
True False False
False True False
False False False

Theorem:Conjunction Principle
An andconjunction has valueFalseexcept if both operands have valueTrue.

a b not b a and (not b)

True True False False
True False True True
False True False False
False False True False

← Page77.
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Truth assignment

A boolean variable represents a value that may be eitherTrue or False. The
value of a boolean expression depends on the value of its variables. For
example by building the truth table fora and (b and (not c)) you would see
that this expression has:

• ValueTrue if a has valueTrue, b also, andc has valueFalse.

• ValueFalse in all other cases.

The following notion helps express such properties:

So we can say thata and (b and (not c)) has valueTrue for exactly one truth
assignment of its variables (the one that choosesTrue for a, True for b, and
False for c) andFalsefor all other truth assignments.

Each row of the truth table for an expression corresponds, one to one, to
a truth assignment of its variables.

It is easy to see that for an expression involvingn variables there are 2n

possible truth assignments and hence 2n rows in the truth table. For example
the table fornot, with one operand, had 21 = 2 rows; foror, with two operand,
there were 22 = 4 rows. The number of columns isn + 1:

• The firstn columns of each row list the values of each of the variables for
the corresponding truth assignment.

• The last column gives the expression’s value for that truth assignment.

If an expression has valueTrue for a certain truth assignment (as reflected in
the last column for the corresponding row), we say that the truth assignment
satisfiesthe expression. For example the truth assignment cited —True for a,
True for b, False for c —satisfiesa and (b and (not c)), all others don’t.

Definition: Truth assignment
A truth assignment for a set of variables is a particular choice of values,
True or False in each case, for each one of the variables.



JUST ENOUGH LOGIC §5.180

Tautologies

We are often interested in expressions that have valueTrue for every truth
assignment of their variables. Consider

This states that for a variablea either (or both):

• a has valueTrue

• not a has valueTrue.

This is only an informal interpretation; to study the value of this expression we
may build its truth table, deduced from those foror and fornot:

The second column is not strictly part of the truth table but gives the value of
not a, coming from the table fornot. Combining this with the truth table for
or (which tells us that bothTrue or FalseandFalse or Truehave valueTrue)
yields the third column.

From that column we see that any truth assignment — meaning here,
since there’s only one variable, any value ofa, True or False— satisfies the
expression. Such expressions have a name:

The property thata or (not a) is a tautology was expressedearlier as thePrinciple
of the Excluded Middle.

Other simple tautologies, which you should now prove by writing their truth
tables, are:

• not (a and (not a)), expressing thePrinciple of Non-Contradiction.

• (a and b) or ((not a) or (not b))

a or (not a)

a not a a or (not a)

True False True

False True True

Definition: Tautology
A tautology is a boolean expression that has valueTrue for every possible
truth assignment of its variables.

← Page76.

← Also page76.
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Sometimes it’s also interesting to exhibit a property that isnever true:

For example (check the truth table again),a and (not a) is a contradiction; this
restates, more simply, the Principle of Non-Contradiction.

From these definitions and the truth table fornot it follows that a is a
tautology if and only ifnot a is a contradiction, and conversely.

An expression that has valueTrue for at least one truth assignment of its
variables is said to besatisfiable. Obviously:

• Any tautology is satisfiable.

• No contradiction is satisfiable.

There exist, however, satisfiable expressions that are neither tautologies nor
contradictions: they have valueTrue for at least one truth assignment, and
valueFalse for at least one other truth assignment. This is the case, for
example, witha and b and witha or b.

“a is not a tautology” isn’t the same as “not a is a tautology”. The second property
states that no truth assignment satisfiesa or, as just seen, thata is a contradiction.
The first property states that at least one truth assignment doesn’t satisfya; but then
some other truth assignments might still satisfya, in which casea is satisfiable but
neither a tautology nor a contradiction.

Equivalence

To prove or disprove tautologies, contradictions and satisfiability, we’re soon
going to get fed up with writing truth tables. With 2n rows forn variables, this
is tedious; to find thata and (b and (not c)) is satisfiable but neither a
tautology nor a contradiction we would have to consider 8 cases. We need a
better way. For example, you may have resented being asked to use a truth
table to show thata and (not a) is a contradiction if previously you had proved
thatnot (a and (not a)) is a tautology. It’s time for more general rules.

Definition: Contradiction
A contradiction is a boolean expression that has valueFalse for every
possible truth assignment of its variables.
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The equivalence operator helps in defining such rules. It uses the equal
symbol,=, and has the following table (the truth table to end all truth tables!)
stating thata = b has valueTrue if and only if a andb either have both the
valueTrue or both the valueFalse:

This operator is commutative (a = b always has the same value asb = a). It is
alsoreflexive, that is to say,a = a is a tautology for anya.

Although logicians usually use the symbol⇔ for equivalence, the
equality symbol= is appropriate becausea = b really expresses equality in the
usual sense, denoting an expression that has valueTrue if and only if a andb
have the same value. The following property extends this observation:

Proof sketch: ifu doesn’t occur ine, thene’ is the same expression ase, and we
have seen (reflexivity of=) thate = e is a tautology. Ifu does occur ine, we note
that the value of a boolean expression under any particular truth assignment is
entirely determined by the value of its sub-expressions under that assignment.
Heree’ differs fromeonly by having occurrences of the sub-expressionu replaced
by v. Under any particular truth assignment, sinceu = v is a tautology, these
sub-expressions will have the same value ine ande’; because the rest of the
expression is the same, the value of the entire expression will be the same,
implying that the truth assignment satisfiese = e’. Since this is the case for any
truth assignment,e= e’ is a tautology.

This rule is the key to proofs of non-trivial boolean properties. We do proofs
by truth tables for only the basic expressions; then we use equivalences to
replace expressions by simpler ones. For example, to prove that

a b a = b

True True True

True False False

False True False

False False True

Theorem:Substitution
For any boolean expressionsu, v ande, if u = v is a tautology ande’ is the
expression obtained frome by replacing every occurence ofu by v, then
e = e’ is a tautology.

(a and (not (not b))) = (a and b) /GOAL/

→ See exercise5-E.2,
page 104.
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is a tautology, you don’t need to write its truth table; you prove first that for
any expressionx the following general properties are both tautologies:

/T2/ is the reflexivity of=, proved from the truth table;/T1/ is easily proved in
the same way. We may use/T1/, applied to the expressionb, to replace
not (not b) by just b on the left-hand side of the property/GOAL/; then
applying/T2/ to a and b yields the desired property.

To express that two boolean values arenotequal, we will use the symbol
/= (the best approximation, with two characters available on all keyboards, of
the mathematical symbol≠). Its definition is thata /= b has the same value as
not (a = b).

De Morgan’s laws

Two tautologies are of particular interest in usingand, or andnot:

Proof: either write the truth tables, or better combine the Non-Contradiction,
Excluded Middle, Disjunction and Conjunction principles.

These properties make theand-or duality even more remarkable, by
expressing that if you negate either of the two operators you get the other by
negating the operands.

Informally interpreting — for example — the first one: “if we say that it’s
not true thata or b holds, it’s exactly the same as if we were saying that neither
a norb holds”. Of course we’re already at a stage where formal notations such
as those of logic, with their precision and concision, become vastly superior to
such natural-language statements.

not (not x) = x /T1/
x = x /T2/

Theorems:De Morgan’s Laws
The following two properties are tautologies:

• (not (a or b)) = ((not a) and (not b))
• (not (a and b)) = ((not a) or (not b))
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Another aspect of the close association between theor andand operators
is that each isdistributive with respect to the other, meaning that the
following two properties are tautologies:

(Compare to the distributivity of multiplication with respect to addition in
arithmetic: if+ is addition and∗ is multiplication, thenm∗ ( p + q) is the same
as(m ∗ p) + (m ∗ q) for any numbersm, p, q.) Distributivity is easy to prove,
for example from truth tables. It helps simplify complex boolean expressions.

Simplifying the notation

To avoid the accumulation of parentheses, it is customary to accept some
precedence rulesthat give a standard understanding for boolean expressions,
removing ambiguity even if some parentheses are missing. This is the same
idea that enables us to understandm + p∗ q, in arithmetic and in programming
languages, as meaningm + (p ∗ q ) rather than the other possible grouping. We
say that the operator∗ binds tighter, or hashigher precedence, than the
operator+: it “attracts” the neighboring operands before+  gets its chance.

For boolean operators we may use the same precedence as used by the
syntax of Eiffel; the order from highest precedence to lowest is:

• not binds tightest.

• Then comes equivalence:=.

• Then comesand.

• Thenor.

• Thenimplies (studied below).

Under these rules the expressiona = b or c and not d = e, with no parentheses,
is legal and means

It is desirable, however, to retain some parentheses to protect readers of your
programs from misunderstandings which might lead to errors.

Theorems:Distributivity of boolean operators
The following two properties are tautologies:

• (a and (b or c)) = ((a and b) or (a and c))
• (a or (b and c)) = ((a or b) and (a or c))

(a = b) or (c and ((not d) = e)))
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In the recommended style you shouldnot drop the parentheses that
separateor andand expressions since the precedence rule makingand bind
tighter thanor is arbitrary. It is also better to keep the parentheses around anot
subexpression used as operand of an equivalence, to avoid confusing
(not a) = b with not (a = b). You may, however, drop the parentheses around
a subexpression of the formx = y wherex andy are single variables. So for the
last example you would just write

The reason

Another property that simplifies the notation is theassociativity of certain
operators. In arithmetic we commonly writem + p + q even though it could
meanm + ( p + q) or (m + p) + q, because the choice doesn’t matter: these
two expressions have equal values, reflecting that addition is anassociative
operation. Multiplication is also associative:m∗ ( p ∗ q) always has the same
value as(m ∗ p) ∗ q. In boolean logic both operatorsand and or are
associative, as expressed by the following tautologies:

For the proofs: you may write truth tables but it’s easier to use previous rules. In
the first example, the left side is true, from the Conjunction Principle, if and only
if both a andb and c are true, that is to say — applying that Principle again — if
and only if all three ofa, b andc are true; but from the same reasoning this is also
the case with the right-hand side, so the two sides are equivalent (satisfied under
exactly the same truth assignments). For the second line the reasoning is the same,
using the Disjunction Principle.

This enables us to write expressions of the forma and b and c, or a or b or c,
without risk of confusion. To summarize:

a = b or (c and (not d) = e)

(a and (b and c)) = ((a and b) and c)
(a or (b or c) = ((a or b) or c)

Touch of Style:
Parentheses for boolean expressions

In writing subexpressions of a boolean expression, drop the parentheses:
• Around “a = b” if a andb are single variables.
• Around successive terms if they each involve a single boolean variable

and are separated by the same associative operators.
For clarity and to help avoid errors, retain other parentheses, without taking
advantage of precedence rules.
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5.2 IMPLICATION

One more basic operator — along withnot, or, and and equivalence —
belongs to the basic repertoire: implication. Although it’s similar to the others,
and in fact close toor, it requires some attention because its precise properties
initially seem, for some people, to contradict intuitive views of the concept of
implication in ordinary language.

Definition

The simplest way to define theimplies operator is in terms ofor andnot:

This gives the truth table (which could serve as an alternative definition):

It’s the same as thetable foror, with True andFalsevalues forb switched.
The result ofa implies b is true for all truth assignments except in one case,
the highlighted entry: whena is true andb false.

In a implies b the first operanda is called theantecedentof the
implication, and the second operandb is called itsconsequent.

The principles we saw for conjunction and especially disjunction have a
direct counterpart with implication:

Theorem:Implication
The value ofa implies b, for any boolean valuesa andb, is the value of

(not a) or b

a b a implies b

True True True

True False False

False True True

False False True

Theorem:Implication Principle
An implication has valueTrue except if its antecedent has valueTrue and
its consequent has valueFalse.
In particular, it always has valueTrue if the antecedent has valueFalse.

→ This definition will
be slightly generalized
on page96.

← Page77.
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Relating to inference

The name “implies” suggests that we can use the implication operator to infer
properties from others. This is indeed permitted by the following theorem:

Proof: To prove the first clause, consider a truth assignmentTA that satisfiesa.
If TA also satisfiesa implies b, then it must satisfyb, since otherwise under
row 2 of the truth table forimplies the value ofa implies b would beFalse.
To prove the second clause, note that ifa anda implies b are tautologies this
reasoning is valid for any truth assignmentTA.

This property legitimates the usual practice, when we want to prove a
propertyb, to identify a possibly “stronger” propertya, and prove separately that

• a holds.

• a implies b holds.

Then we may deduce thatb holds.

The term “stronger” used here is useful in the practice of reasoning with
contracts of programs, and deserves a precise definition:

The definitions assumea andb to be non-equivalent because it could be confusing
to say thata is stronger thanb if they might be the same. In such cases we’ll use
“stronger than or equal to” and “weaker than or equal to” (as with relations
between numbers: “greater than”, “ greater than or equal to”).

Theorem:Implication and deduction
• If a truth assignment satisfies botha anda implies b, it satisfiesb.
• If both a anda implies b are tautologies,b is a tautology.

Definitions: Stronger, weaker
For two non-equivalent expressionsa andb, we say that:

• “a is stronger thanb” if and only if a implies b is a tautology.
• “a is weaker thanb” if and only if b is stronger thana.

← The highlighted
entry on page86.
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Getting a practical feeling for implication

How does the definition ofimplies relate to the usual notion of implication,
expressed in ordinary language by such locutions as “If… then…”?

In such everyday use, implication often indicates causality: “If we get any
more sun,then this will be a vintage year for Bourgogne” suggests that one
event causes another. Theimplies of logic does not connote causality, it
simply states that whenever a certain property is true another one must be too.
The example just given can also be interpreted this way if we ignore any hint
of causality.

Another typical example is (at the Los Angeles airport, trying to check in
for Santa Barbara): “If your ticket says Flight 3035,thenyou’re not flying
tonight”, perhaps because the plane is grounded for mechanical problems and
all other flights are full. There is no causality here: what’s printed on the ticket
didn’t cause the plane to malfunction. It’s simply that for anyone for whom the
property “Reserved flight is 2096” holds, the property “can fly today” doesn’t
hold. Logic’simplies operator covers this.

What — surprisingly — surprises many people is the property stated at the
end of the Implication Principle and resulting from the last two rows of the truth
table: that whenevera is false the implicationa implies b is true, regardless of
the value ofb. In fact thisdoes correspond to the usual idea of implication:

1 • “If I am the Pope, two plus two equal five”

2 • “If two plus two equal five, then I am the Pope”

3 • “If two plus two equal five, then I am not the Pope”

4 • “If I am the Pope, two plus two equal four”

5 • “If I am the Pope, it will rain today”

6 • “If it rains today, I will not be elected Pope before the end of the year”

Given that I am not the Pope and don’t expect to run for the job this year, all
these implications are true — regardless, for the last two, of today’s weather.

All that “If a, thenb” tells us is that whenever the antecedenta holds, the
consequentb must hold too. So the only possibility for this implication to be
false is (second row, with highlighted entry, in the truth table) fora to be true
andb false. Cases in which the antecedent does not hold, and cases in which the
consequent holds, tell us nothing about the truth of the implication as a whole.
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From:
“Explorers on
the Moon” by
Hergé, Ameri-
can edition
1976 Little,
Brown & Co.

See exercise
5-E.7, page
105.

[Inclusion of pictures subject to pending request for permission.]
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Beginners sometimes have trouble with accepting that “a implies b” can
be true ifa is false; most of the trouble, I guess, comes from the case in which
a is false andb is true — such as1, 2 and possibly5 and6 above — although
there is nothing wrong with it. In fact, the trouble may come from a common
distortion of reasoning which leads some people, equipped with the
knowledge thata implies b, to infer happily that ifa doesn’t hold thenb must
not hold either! Typical examples:
F1 • “All professional politicians are corrupt. I am not a professional

politician, so I am not corrupt and you must vote for me”. If the premise
is true it tells us something about professional politicians, but nothing at
all about anyone else!

F2 • “Whenever I take my umbrella it doesn’t rain, so I’ll leave my umbrella
at home as we badly need some rain right now.” Joke of course, but
suggesting the same flawed reasoning.

F3 • “All recent buildings in this area have bad thermal isolation. This is an
older building, so it must be more comfortable in hot summers”.

In each of the cases there’s a propertya that implies anotherb, and it’s
erroneously deduced that the negation ofa implies the negation ofb. But we
can’t deduce any such thing. All we know is that ifa holds thenb will hold; if
a doesn’t hold, knowledge of the implication tells us nothing interesting.
Couched in the language of logic, the flaw is to believe that

is a tautology. Or perhaps it’s just imagining the slightly less powerful
(a implies b) ((not a) implies (not b)). Neither is a tautology, as
they both have valueFalsewhena has valueFalse andb has valueTrue.

Reversing an implication

Although the last two properties are not tautologies, there is an interesting
tautology of the same general style:

Proof: we just expand the definition ofimplies. For the left side, it gives
(not a) or b; for the right side,(not (not b)) or (not a). From aprevious
tautology, we know that(not (not b)) is b; from the commutativity ofor, the
right side has the same value as the left side for any truth assignment.

Alternatively, we may note in the truth table forimplies that swappinga andb then
negating both yields back the original table.

(a implies b) = ((not a) implies (not b))

(a implies b) = ((not ) implies (not a)) /REVERSE/

Warning: not a tautol-
ogy (see exercise )

implies

b

← /T1/, page83.
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This property,/REVERSE/, states that ifb holds whenevera does, then
from the knowledge thatb doesn’t hold we may infer thata doesn’t. (The
informal justification is clear: ifa were true, then the implication tells us that
b would be true; but we are precisely assuming thatb doesn’t hold.)

Using this rule we may replace the earlier flawed examples by logically
sound deductions:

S1 • “All professional politicians are corrupt. She is not corrupt, so she can’t
be a professional politician.”

S2 • “Whenever I take my umbrella it doesn’t rain: sinceweather.comsays it’s
going to rain, I might as well leave my umbrella at home.”

S3 • “Since all recent buildings in this area have bad isolation and this room
remains cool in spite of the heat outside, the house must be older.”

5.3 SEMISTRICT BOOLEAN OPERATORS

Computer programming fundamentally relies on mathematical logic, to the
point that some people consider programming to be just an extension of logic.
This is all the more remarkable that modern logic was established in the first
few decades of the twentieth century, before there was any hint of computers
in today’s sense.

Applying logic to programming brings up some issues often overlooked in
purely mathematical uses of logic. An example, important in programming
practice, is the need for non-commutative variants ofand andor.

Consider the following question, given a metro linel and an integern:

Touch of history:
The road to modern logic

Logic goes back to the Ancients, Aristotle in particular, who defined the
rules of “Rhetorics”, fixing some forms of deduction. In the eighteenth
century Leibniz stated that reasoning was just a form of mathematics. In the
nineteenth century the English mathematician George Boole defined the
calculus of truth values (hence “boolean”). The big push for logic in the
following century was the realization that mathematics as practiced until
then was shaky and could lead to contradictions; the goal pursued by the
creators of modern mathematical logic was to correct this situation by
giving mathematics a solid, rigorous basis.

“ Is the n-th station of line l an exchange?”

http://www.weather.com
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We might express it as the boolean-valued expression

whereis_exchangeis a boolean-valued query of classMETRO_STATION,
indicating whether a station is an exchange; the queryi_th, seen in the
previous chapter, delivers the stations of a line, each identified by an index,
heren.

The expression above, [1], appears to do the job:l denotes a line;
l.i_th (n), denotes itsn-th station, an instance ofMETRO_STATION; so
l.i_th (n).is_exchange, applying the queryis_exchangeto this station, tells us,
through a boolean value, whether it is an exchange station.

But we haven’t said anything about the value ofn. Sol.i_th (n) may not
be defined since the queryi_th had aprecondition:

In the absence of further information onn, it’s incorrect to use the expression
[1] since its result is not defined forn < 1 or n > l.count.

How can we write a correct expression with the intended meaning? If
n < 1 or n > l.count, it’s reasonable to consider that the answer to our informal
question, “Is then-th station of linel an exchange?”, cannot be “Yes”, as this
would imply that we certify that a certain station is an exchange, and we can’t
do this if no such station exists. Since in the boolean world there are only two
possibilities, the answer has to be “No!”, meaning formally that the boolean
expression should have valueFalse. To get this behavior we might try to
express the desired property not as [1] but as

l.i_th (n).is_exchange [L1]

i_th (i: INTEGER): METRO_STATION
-- Thei-th station on this line

(n >= 1) and (n <= count) and l.i_th (n).is_exchange [L2]

Not the correct form
(see[3] below).

← “The stations of a
line”,  page 61.

← Page66.

require
not_too_small: i >= 1
not_too_big: i <= count

Still not right(see[3]).
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But this is still not good enough. The problem is that ifn is out of bounds, for
examplen = 0, the last terml.i_th (n).is_exchangeis not defined. If we are
only interested in the value of [2], we might not care, because the Conjunction
Principle tells us this value can only beFalsesince the first term,n >= 1, has
valueFalse; the second and third terms don’t affect the result.

Assume however that the expression appears in a program and gets
evaluated during the program’s execution. The operatorand, as we have seen,
is commutative; it’s legitimate for the execution, when it needs to compute
a and b, to compute both operandsa andb and then combine their values
using the truth table forand. But then the computation of [2] will fail when it
tries to evaluate the last term.

If that evaluation were conceptually required, we could do nothing: a
computation that tries to evaluate an expression with undefined value should
fail. It’s like trying to evaluate the numerical expression1 / 0. But in this case
we may prefer that when the first term has valueFalse the evaluation will,
instead of failing, return the valueFalse, consistent with the definition ofand.

We cannot achieve this with the usual commutative boolean operators: we
can’t prevent their computer versions from evaluating both operands, and then
risking failure.

The case illustrated by this example — evaluating a condition that only
makes sense if another condition is also satisfied — occurs so frequently in
practice that we need a solution. There are three possible ways to go.

The first would be to try to recover from the failure. If an operand to a
boolean expression is undefined, so that its evaluation leads to failure, we
could have a mechanism that “catches” the failure and tries to see if other
terms suffice to determine a value for the expression as a whole. Such a
mechanism means that failure is not like real death but more like death in
video games, where you can get new lives (as long as you can continue
paying). The mechanism exists: it’s calledexception handlingand enables
you to plan for accidents of execution and try to recover. We’ll study it in a
later chapter. In the present case, however, it would be (if one dares use the
term) overkill. It requires far too much special programming for what is, after
all, a simple and common situation.

→ Chapter11.
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The second way would be to decide thatand as we understand it in
programming is not commutative any more (the same would, out of duality,
also hold ofor). In computinga and b, we would have the guarantee thatb
won’t be evaluated ifahas been evaluated toFalse, the result in that case being
False. The problem with this approach is that it’s unpleasant to make the
software version of a well-accepted mathematical concept depart from its
mathematical meaning. More pragmatically, the commutativity ofand andor
when both operands are defined can help make the computation faster, as it
may be advantageous to evaluate the second expression first, or even, if the
hardware includes several processors, to evaluate them in parallel.

Such improvement of execution speed, known asoptimization, is generally not
carried out not by programmers but by compilers (the tools that translate your
programs to machine code).

The third way — the one we retain — is to accept the usefulness of
non-commutative boolean operators but give them different names to avoid
any semantic confusion. The new variant ofand will be writtenand then; by
duality we also have a variant ofor, calledor else. In each case it’s a double
keyword, written with a space between the two constituent words. The
semantics follows from the previous discussion:

If you are wondering about the name: we say that an operator isstrict (as in “My
mother isstrict about having everyone at the table before any of us starts eating”)
if its insists, to produce its result, on having all operand values available, even those
that the evaluation may turn out not to need. An operator is “non-stricton an
operand if it may in some cases yield a meaningful result even that operand doesn’t
have a defined value. We calland then andor elsesemistrictbecause they are
strict on their first operand but not on the second.

Saying “non-commutative” would be acceptable for the operators seen so far, but
we’ll need semistrict variants of operators such asimplies, which is not
commutative in the first place.

Another way to define the semantics of the semistrict operators is to introduce
avariant of truth tables where every operand and result may have three values
rather than just two:True, False andUndefined.

Definitions: Semistrict boolean operators
Consider two expressionsa and b which may bedefinedor not, and if
defined have boolean values. Then

• a and thenb has the same value asa and b if both a andb are defined,
and in addition has valueFalse whenevera has valueFalse.

• a or elseb has the same value asa or b if both a andb are defined, and
in addition has valueTrue whenevera has valueTrue.

← This is the subject of
exercise5-E.13, page
108.



§5.3 SEMISTRICT BOOLEAN OPERATORS 95

Whenevera and b is defined,a and then b is defined and has the same
value, but the converse is not true. The same holds foror elserelative toor.

With this notation the correct way to express our example condition is

Version [2] had twoand operators, but only the second one needs to be turned
into anand then; between the first two terms, grouped here in parentheses for
clarity, a plainand is good enough since both will always be defined. This is
a general advice:

Our example, [3], corresponds to the last case.
In the first case it wouldn’t bewrong to use the semistrict version, but this would
needlessly prescribe a particular evaluation order; it’s preferable to avoid such
“overspecification” and stick instead to the operators with standard mathematical
properties. This also leaves compilers free to optimize the order of operand evaluation.

The notion of semistrict operator is applicable to more than mathematical
logic and software:

((n >= 1) and (n <= count))  l.i_th (n).is_exchange [L3]

Touch of Methodology:
Choosing between ordinary and semistrict boolean operators
In expressing contracts and other conditions:

• Use the ordinary boolean operators,or and and, when you can
guarantee that both operands are defined whenever the execution needs
to evaluate the condition.

• If a condition only makes sense when another is false, useor else.
• If a condition only makes sense when another is true, useand then.

Touch of Practice:
Semistrict operators and you

The semistrict operators reflect modes of reasoning that are common in
daily life.
Wherever you see the phrase “if any” you may suspect that semistrictness
is involved. A credit application form might stipulate that the spouse,if any,
must be a co-signer; we may understand this asis_single or else
spouse_must_sign or, in more programming-oriented terms:

(spouse= Void) or elsespouse.must_sign
whereVoid denotes the absence of an object. In either form the second
operand of theor elsewould not make sense with a strictor, since when the
first operand has valueFalse the notion of spouse is not defined.

and then

→ Studied in“VOID
REFERENCES”,  6.3,
page 113.
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Semistrict implication

Implication also has a semistrict variant. A routine with arguments
l: METRO_LINE andi: INTEGER might use the precondition

meaning: apply the routine only if thei-th station of linel, assuming it exists,
is an exchange.

This makes sense only with a semistrict interpretation ofimplies. Such a
scheme — an expression of the forma implies b whereb is defined only when
a is true — occurs so frequently that for this operator, which is not
commutative in the first place, the semistrict version seems appropriate in all
cases. Such a convention is also consistent with the Implication Principle and
its insistence thata implies b yields True, regardless ofb, whenevera has
valueFalse.

So we take the semistrict version as the definition ofimplies:

The “ordinary life” example of semistrictness cited above falls in this
category; we may now write it with semistrictimplies as

Many uses of “if any”, for example in legal texts, follow this form.

((i >= 1) and (i <= count))  l.i_th (i).is_exchange

Definition: Implication with possible undefinedness

The value ofa implies b, for anya andb whereb may not be defined, is the
value of

(not a) or elseb

(spouse/= Void) implies spouse.must_sign

implies
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5.4 PREDICATE CALCULUS

The concepts discussed so far in this chapter belong to a part of logic called
propositional calculus, meaning that it deals with basicpropositions, each
stating a single propertyp that might be true or false:n has a positive value,
I am the Pope, it’s full moon tonight. “Single property”, in these examples,
means thatp characterizes a single object — the numbern, me, the current
night — or a finite set of explicitly listed objects, as in “I am not the Pope and
it’s not a full moon tonight”.

Another theory is directly useful in programs and discussions of
programs:predicate calculus, which considers whether a property holds for
the elements, not necessarily specified individually, of aset of objects.

Generalizing “or” and “and”.

Given a set of objectsE and a propertyp of objects, predicate calculus deals
with two basic questions, generalizing “or” and “and”:

1 • Doesat least oneof the objects inE satisfyp?

2 • Doesevery one of the objects inE satisfyp?

For example, we have seen that a Metro line contains stations, and that some
stations are exchanges (they belong to two or more lines). We may ask, taking
an arbitrary line as example:

L1 • Is at least one of the stations of Line 8 an exchange?

L2 • Are all of the stations of Line 8 exchanges?

If you know all the stations by name you can express these questions as
boolean expressions.L1 is anor expression andL2 is anand expression:

using the boolean-valued queryis_exchangeof classMETRO_STATIONto tell
us if a station is an exchange. You would have to complete the expressions by
including a term for each station of the line.

L1 •Station_Balard.is_exchange  Station_Lourmel.is_exchange
Station_Boucicaut.is_exchange … [Include all stations on line]…

L2 •Station_Balard.is_exchange Station_Lourmel.is_exchange
Station_Boucicaut.is_exchange … [Include all stations on line]…

or or
or

and and
and
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You can avoid naming the line’s stations by using the queryi_th of class
METRO_LINEwhich, as seen in the preceding chapter, gives us thei-th station
of a line for any applicablei:

but that is still inconvenient as you must explicitly list all stations. In particular
you can’t write, for either question, an expression that would make sense for
any line, since different lines have different numbers of stations.

Predicate calculus addresses such cases by introducingquantifier
expressions that describe the application of a property to a set of objects,
letting you specify only that set, for example a Metro Line, rather than every
object individually — every station. There are two quantifiers:

• Theexistential quantifier, exists, or in mathematical notation, stating
thatat least one member of the set satisfies the property.

• The universal quantifier, “for_all” , or in mathematical notation,
stating thatevery member of the set satisfies the property.

When you would need boolean operations on an arbitrary number of operands,
existsgeneralizesor, andfor_all generalizesand. If Stations8denotes a list of
stations, the mathematical notations are:

which you may read aloud respectively as:

• There exists ans in Stations8 such thats.is_exchange is true.

• For all s in Stations8, thens.is_exchange is true.

Rather than using a bar “|” as above to separate the property, heres.is_exchange,
from the specification of the set of objects across which it will range,
mathematicians often use a period “.” or a comma “,” ; but for us this would be
ambiguous since, as you know, we need these symbols for other purposes.

Q1 andQ2 are mathematical notations, not programming notations. We’ll see
shortly how to express such properties in a program.

I1 •Line8.i_th .is_exchangeor Line8.i_th ).is_exchangeor
… [Include all values from 1 toLine8.count]

I2 •Line8.i_th .is_exchangeand Line8.i_th ).is_exchangeand
… [Include all values from 1 toLine8.count]

Q1 • ∃ s: Stations8| s.is_exchange

Q2 • ∀ s: Stations8| s.is_exchange

(1) (2)

(1) (2)

∃

∀
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Precise definition: existentially quantified expression

The notations using existential and universal quantifiers, as just illustrated, are
new forms of boolean expression, complementing the expressions of
propositional calculus seen earlier in this chapter.

The definition of the existential quantifier is straightforward:

For example letX be the set of integers{3, 7, 9, 11, 13, 15}(that is to say, the
set consisting of the integers listed) and for any integern let n.is_oddbe the
property thatn is odd,n.is_eventhe property that it’s even, andn.is_primethe
property that it is a prime number. Then:

• ∃ n: X | n.is_odd means that at least one member ofX is odd; the
expression has valueTrue since we can take, for example,3 as evidence
that there is one such member. In this case we may take any other member
of the set as evidence since they are all odd.

• ∃ n: X | n.is_primemeans that at least one member ofX is prime; this
expression also has valueTrue since we may take, for example,3 again
as evidence. It doesn’t matter that some other member or members, such
as 9, don’t satisfy the property since the truth of an existentially
quantified expression only requires one example.

• ∃ n: X | n.is_evenmeans that at least one member ofX is even; this
expression has valueFalsesince no element ofX is even.

These examples illustrate how you may prove or disprove an existentially
quantified expression∃ s: SOME_SET| s.some_property:

E1 • To prove that it is true, it suffices to exhibitoneelement ofSOME_SET
that satisfies the property. Once you have found such an element, others
have no influence on the result. This means in particular that you may not
need to investigate all elements of the set.

E2 • To prove that it is false, you must prove thatno element ofSOME_SET
satisfies the property. Thatsomedon’t satisfy it is not enough to determine
the result. This means in particular that youmustconsider all the elements.

Definition: Existentially quantified expression
The value of the expression

 s: SOME_SET| s.some_property
is True if and only if at least one member of the given setSOME_SET
satisfies the given propertysome_property.

∃
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Precise definition: universally quantified expression

For an expression using a universal quantifier

the informal definition of its value is that it’sTrue if and only if every element
of SOME_SETsatisfiessome_property. This is not quite precise enough,
however, for reasons having to do with the case of an empty set. A better
approach is base the definition on what has just been specified forexistentially
quantified expressions:

This says that the∀ expression has valueTrue if and only if there isno
member of the given set that doesnotsatisfy the given property. It sounds like
a rather contorted way of expressing what we want: that every element satisfies
the property. In your writing classes you were probably told to avoid double
negation, replacing “There’s no course I don’t like in this great university!” by
“I like all courses here”. The reason for the double negation here is that we
must be careful about the case ofemptysets. Before examining this case, let’s
consider again our example set of integersX made of the elements3, 7, 911,
13 and15, and those only:

• ∀ n: X | n.is_oddmeans that all members ofX are odd; the expression has
valueTrue since3, 7, 9, 11, 13 and15are all odd numbers.

• ∀ n: X | n.is_primemeans that all members ofx are prime numbers; this
expression has valueFalsesince we can take, for example,9 as evidence
that at least one member is not prime. We could also use another
non-prime member as evidence — the other possibility is15 — but one
is enough to prove that the universally quantified expression is false.

• ∀ n: X |n.is_evenmeans that all members ofXare even; this expression has
valueFalsesince, for example,3 is not even. Hereanyother member of the
set could serve as evidence since none is even, but again one is enough.

 s: SOME_SET| s.some_property

Definition: Universally quantified expression
The value of the expression

 s: SOME_SET| s.some_property
is the value of

(  s: SOME_SET|  s.some_property)

∀

∀

not ∃ not
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These examples illustrate how you may prove or disprove a universally
quantified expression∀ s: SOME_SET|s.some_property(compare with those
for existential quantification,E2 andE1above):

U1 •To prove that it is true, you must prove thateveryelement ofSOME_SET,
if any, satisfiesthe property. Thatsomesatisfy it is not enough to
determine the result. This means in particular that youmust consider all
the elements.

U2 •To prove that it is false, it suffices to exhibitoneelement ofSOME_SET
thatdoes not satisfythe property. Once you have found such an element,
others have no influence on the result. This means in particular that you
may not need to investigate all elements of the set.

The relationship between the existential and universal quantifiers generalizes
the duality betweenor andand. In particular the following two properties
generalizeDe Morgan’s Laws:

The first property follows from the definition of∀; the second property follows
from applying the first tonot P and negating both sides.

The case of empty sets

The setSOME_SETof possible values considered in a quantified expression
might be empty. The effect on the two quantifiers reflects their duality:

• ∃ s: SOME_SET| s.some_propertyis true, according to its definition, if
and only if some member ofSOME_SETsatisfiessome_property. If
SOME_SETis empty, it has no member, and hence no member satisfying
the property. So the value of the expression in this case isFalse.

• ∀ s: SOME_SET| s.some_propertyis false if and only if some member
of SOME_SETdoesnot satisfysome_property. If SOME_SETis empty,
there won’t be any such “counter-example” member since there is no
member at all. So the value of the expression in this case isTrue.

The second case can also be seen as a result of thedefinition of the universal
quantified expression∀ s: SOME_SET| s.some_propertyin terms of the
existentially quantified one, as

not (∃ s: E | P) = ∀ s: E | not P
not (∀ s: E | P) = ∃ s: E | not P

not (∃ s: SOME_SET| not s.some_property)

← Page83.

← Page100.
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By the previous convention, the whole(∃ s: SOME_SET| …) expression in
parentheses has valueFalse if SOME_SETis empty, so the∀ expression,
deduced from it by applyingnot, has valueTrue.

Concretely, this simply means that we may consider every statement of
the form “Every object of such-and-such a kind satisfies this property” as true
if there is no object of the given kind. So I can say “I promise to you that every
blond student in this room will be elected Pope before the end of the year”, and
even back this with “if not, I’ll pay every one of you a million euros on January
1st”, if I have (carefully) checked that everyone in the room has black hair. The
statement “Every blond student in this room will be elected Pope” is indeed
true because it is of the form∀ s: SOME_SET| … for an emptySOME_SET,
which is true regarding of what comes after the “|”.

Having studied logic, however, you should never promise anything like
“A blond student in this room will be elected Pope” because it makes you
responsible for identifying a fair-haired studentand rigging the election.

As a result of these observations, the official name of the universal
quantifier, “For all”, is not so good because “all” suggests, at least informally,
that there are some elements to be talked about. Better names would be “For
all, if any”, or just “For any”. They wouldn’t absolutely preclude confusion
anyway, so we’ll continue saying “For all” like everyone else, but you have to
remember that this is just an informal name and that the mathematical
interpretation gives aTrue answer if there are no elements to be probed for the
property. For “Exists”, the answer in this case isFalse.

Another way to express this property is that if we consider an existential
quantification on a set of values to meana1 or a2 or … or an, and the universal
quantification to meana1 and a2 and … and an, then asn goes to zero the
disjunction will yield false and the conjunction will yield true. This is in line with
earlier observations thata or b is true if and only if at least one ofa andb is true,
anda and b is false if and only if at least one ofa andb is false.

Yet another informal interpretation relates this property to the earlier discussion of
how “implies” always yieldsTrue when the antecedent isFalse. We might
understand∀ s: SOME_SET| s.some_propertyas a way of saying that “s is a
member ofSOME_SET” implies s.some_property. If SOME_SETis empty the
antecedent isFalse for every possiblex, so the implication is true.
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5.5 FURTHER READING

The material in this chapter is introductory; as part of a computer science
curriculum you will most likely take a course specifically devoted to logic. A
standard textbook on the topic, which requires a solid background in general
mathematics but defines all the concepts it uses, is

Elliot Mendelson: Introduction to Mathematical Logic, fourth
edition, Chapman& Hall/CRC, 1997.

5.6 KEY CONCEPTS LEARNED IN THIS CHAPTER

• Logic provides the techniques for reasoning in a precise and rigorous
ways. It provides the basis of both mathematics and programming.

• Propositional calculusdefines operations on “boolean variables” that can
take either of the valuesTrue andFalse. The basic “boolean operations”
are negation (not), non-exclusive disjunction (or) and conjunction (and).

• Disjunction and conjunction are “dual” of each other: replacing either of
them by the other one, negating the operands and negating the result
yields a property of the other. This is expressed in particular by “De
Morgan’s Laws”.

• Disjunction and conjunction can be generalized to any number of
operands through the quantifiers∃ and∀ of predicate calculus, which
apply to the members of a given set.

• Implication can be defined simply in terms of disjunction:a implies b is
the same as(not a) or b. Implication can be used to deduce new
properties from previously proven ones; it does not connote causality.

• In their application to programming, the boolean operations have
semistrictversions that yield a value even in some cases for which the
second operand is not defined. The semistrict variants ofor andand are
or elseandand then; implies is defined as semistrict.
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New vocabulary

5-E EXERCISES

5-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

5-E.2 Properties of boolean operators

(Prove your answers.)

1 • Isand reflexive?

2 • Isor reflexive?

3 • Is equivalence associative?

5-E.3 Twisted logic

“Whenever the temperature in the city raises above 30 degrees a pollution
alert will result, so because the temperature today is only 28 degrees there
won’t be a pollution alert.”

1 • Informally, what’s wrong with this statement?

2 • Introducing the appropriate boolean variables, express this statement as a
boolean expression.

3 • Prove that it is not a tautology. (Hint: give a set of variable assignments
that makes it false).

4 • Is it a contradiction? (Prove your answer.)

Antecedent Boolean value Boolean expression
Boolean operator Boolean variable Conjunction
Consequent Contradiction Disjunction
Existential quantifier Implication Logic
Negation Opposite Predicate calculus
Propositional calculus Quantifier Satisfiable
Satisfies Strict Stronger
Tautology Truth assignment Truth table
Universal quantifier Weaker
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5-E.4 Appropriate warning?

A sign at the entrance to a computer center once read: “Entrance is prohibited
to people who are not authorized or accompanied.” We accept that there is no
ambiguity as to what “authorized” means (someone who been granted the
appropriate credentials), and that “accompanied” means “accompanied by an
authorized person”.

1 • Introducing appropriate boolean variables, express this rule as a
boolean expression.

2 • Explain why the expression doesn’t capture the interdiction that the
sign’s author probably intended. (Hint : Use De Morgan’s Laws.)

3 • Write the expression reflecting the rule that was most likely intended.

4 • Using this expression as a guide, propose an improved rewrite of the
English text for the sign.

5-E.5 Inequality

Write the truth table for the inequalityoperator/=.

5-E.6 Associativity and implication

Is theimplies operator associative? (Prove your answer.)

5-E.7 Police logic

Are Thomson and Thompson, the two policemen in the Tintinextract, justified
in accepting Captain Haddock’s final explanation?

5-E.8 Implication and negation

The discussion of implicationnoted that

is not a tautology. By simplifying this expression — through theorems
introduced in this chapter, not truth tables — show under conditions (e.g.
which truth assignments) it holds.

(a implies b) = ((not a) implies (not b))

← Introduced on
page83.

← Page89.

← Page90.
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5-E.9 Implication

1 • Prove that for any boolean expressionsaandb the following is a tautology:

2 • The sign shown on the right, spotted in Zurich near the ETH,
reads: “Reasonable drivers don’t park here. For others, it’s
forbidden!”. Using appropriate boolean variables, including
is_reasonable, parks_here, parking_prohibited, express this
injunction as one boolean expression.

3 • Prove that if this expression is a tautology, and drivers obey
parking prohibitions, thenparks_here is a contradiction.

5-E.10 “Exclusive or” as a germ of all things boolean

“Exclusive or”, writtenxor, is a boolean operator of two operands such that
a xor b is true if and only if eithera or b, but not both, is true. We may state
this property by defininga xor b as

1 • Write the truth table forxor.
2 • If a is a boolean variable, what is the value ofaxor a? (Prove your answer

from either the definition or the truth table.)
3 • Prove thata xor b always has the same value asnot (a = b)
For each of the following boolean expressions (with zero, one or two operands),
give another boolean expression that for any value of the operands yields the
same value as the given expression, and involves nothing else than the operands,
True andxor (in particular, no other operator); prove your answers.
4 • False
5 • not a
6 • a = b
7 • a and b
8 • a or b
9 • a implies b
(The existence of anxor equivalent for every boolean operation makesxor a
particular interesting operator, holding the germ of all others. Designers of
electronic circuits based on boolean logic have taken advantage of this property.)

((a implies b) and ((not a) implies b)) implies b

(a or b) and (not (a and b)) [L4]
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5-E.11 Properties of “exclusive or”

Based on the above definition [4] of xor, the “exclusive or” operator, prove or
disprove the following properties :

1 • xor is commutative.

2 • xor is associative.

3 • x xor (a xor x) = x for anya and x.

5-E.12 The blue hats and the red hats

A hundred persons are standing in line, each wearing a hat that is either blue
or red. They can each see the hat colors of those ahead in the line, but neither
their own nor those of people behind.

Starting with the back of the line — the person who sees all others — they
will each, in turn, shout a color name, “Red!” or “Blue!”, which all can hear.

You are asked to devise a strategy, which they will all adopt beforehand,
to maximize the number of people who — regardless of the distribution of hat
colors, about which you know nothing — are guaranteed to shout the color of
their own hats.

Noting the following properties will help:

• A simple strategy is for the first person, the third, the fifth and so on to
shout the color of the person immediately ahead (the second, the fourth,
the sixth and so on), who then repeats that color, guaranteed to be correct.
This gives a lower bound: a good strategy should guaranteeat least50
correct results.

• No strategy can guarantee that the first shouter, who doesn’t see his or her
color, will be correct. This gives an upper bound: a strategy can guarantee
at most99 correct results. We may restate the problem as asking how
close you can get to this theoretical maximum.

• There is nothing probabilistic about the problem. Even if we had some
information about the distribution of colors, it wouldn’t help since the
strategy must maximize the number of answersguaranteedcorrect, not
some probability of correct answers.

Hint : the preceding exercise helps.
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5-E.13 Truth tables with undefinedness: semistrict boolean operators

Assume an extension of propositional calculus with three values instead of
two: True, False, andUndefined. For examplel.i_th (i) has valueUndefined
if i doesn’t satisfy the precondition ofi_th.

Considering that each ofa, b and the resulting expression may take on
any of these three values, write the truth tables (each with nine entries) for:
1 • a or else b
2 • a and then b

5-E.14 Truth tables with undefinedness: ordinary boolean operators

As in the preceding exercise, assume that boolean values includeTrue, False,
andUndefined. Explaining the reason for your answer, propose truth tables for:
1 • a or b
2 • a and b
(Here more than one set of truth tables may make sense, so what’s interesting
is how you justify your proposed solution.)
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6

Creating objects and executing
systems

After our excursion into the mathematical foundation we are back to the
techniques of programming.

In earlier examples we have used names such asParis, andRoute1to
access objects that someone else creates for us — mysteriously so far. It’s time
to see how we can, in our own programs, create our own objects ourselves.

We’ll create a fictitious line of the metro,fancy_line, connecting some
real stations. Contrary to our previous examples such asLine8, the line
fancy_lineis not predefined; we have to build it ourselves. In doing so we’ll
have to create other objects, such as those representing stops on the line.

Our fancy_linewill connect three stations as shown (people living in the
area would really appreciate it):

Fancy line
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6.1 OVERALL SETUP

Our system for this chapter is calledFancy. Bring it up now, using the same
techniques as in previous chapters. Bring up the class of interest for the present
discussion,LINE_BUILDING, which initially looks just like this:

The line-- “Create new line and fill in its stations”starts with two hyphens and
hence is a comment, but of a special kind known aspseudocode, meaning that
it stands for actual program text (alsoknown as “code”) which we intend to fill
in later, as we develop the program:

We will use pseudocode (rather than a margin notesuchas “The part you’ll fill
in”) to give an informal English description of program elements that we are
not expressing as actual program text yet, either because we can’t or because
this would force us to go into a specific aspect of the program and lose track
of the big picture.

This technique will become essential as we start writing more complex
software. It is part oftop-down design discussed in a later chapter.

Pseudocode will use the convention illustrated by the example:

class LINE_BUILDINGinherit

end

Definition: Pseudocode
Pseudocode is informal text standing for program elements to be added later.

Touch of Style: Highlighting pseudocode

Write pseudocode elements as comments, with their text enclosed in quotes
and (if color is available) appearing inred.

TOUR
feature

build_a_lineis
-- Build an imaginary line and highlight it on the map.

do
Paris.display
Metro.highlight
-- “Create new line and fill in its stations”
fancy_line.illuminate

end

← Page43.

← Like for example on
page18.
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By using comments for pseudocode you ensure that your program, even if not
complete, is syntactically correct; it may not be interesting yet to execute it,
but you can compile it, so that the compiler will find any errors that you let slip
through, such as incorrect use of types. It’s a basic methodological rule that
programs should be compilable at all stages of their development.

Marking these comments in a special way (quotes and, in printed text,
color) reminds you that they are not just ordinary comments annotating
existing code, but placeholders for code that you must add at some point.

6.2 ENTITIES AND OBJECTS

The first thing we need in our class is a feature representing the line to be built.
We call it fancy_line. This is also an opportunity to make the pseudocode
comment more precise, part of the top-down development process:

In pseudocode, any actual program elements, such asfancy_line, will appear in
their usual blue to signal that there’s nothing “pseudo” about them.

Once the procedurebuild_a_linehas been executed,fancy_linewill denote an
object representing a Metro line. Within the class text, theidentifierfancy_line
will indeed denote, at run time, an instance of classMETRO_LINE.

class LINE_BUILDINGinherit

end

TOUR
feature

build_a_lineis
-- Build an imaginary line and highlight it on the map.

do
Paris.display
Metro.highlight
-- “Createfancy_line and fill in its stations”
fancy_line.illuminate

end

fancy_line: METRO_LINE
-- An imaginary line of the Paris Metro

← The notion of identi-
fier was introduced on
page47.
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Identifiers may denote many things: they can be names of classes, like
METRO_STATION, or of features, likei_th. An identifier such asfancy_line
whose role is to denote run-time values, such as objects, is called anentity.
(You will also encounter the termvariable, as in mathematics; we’ll use it too,
for entities whose value may change, but it’s too restrictive here since some of
our entities we need actually haveconstantvalues.) In this case the entity
fancy_line is the name of a feature, but we’ll encounter other kinds of entity.

If, at some instant of the execution, the value of an entity represents an
object, we say that the entity isattached to the object.

The following picture helps visualize the notion of entity and attached
run-time object:

This shows the relationship: the entity is a name in the program and at run time
it will denote, through a “reference”, an object in memory. The notion of
reference expresses the association and will be defined more precisely in a
laterchapter. The object, as definedearlier, is a collection of data; it is made
more precisely, as suggested by the picture, of a set offields each holding a
data unit (for example an integer or boolean value). The data that our programs
manipulate during execution isentirely made of such objects, each with its
fields. The fields of aMETRO_STATIONobject might, for example, include
the station’s coordinates on the map, the name of the station etc.

Note the conventions in diagrams such as the above giving a snapshot of
the object structure, or part of it, during execution:

• An object is represented as arectangle, with its fields represented as
sub-rectangles.

• Next to each object, usually below, you’ll see in parentheses the name of its
generatingclass — the class of which it is an instance, here(METRO_LINE).

OBJECT
During
execution:
entity and
attached object

ENTITY

fancy_line

(METRO_LINE)

reference

Fields

→ “REFERENCE
ASSIGNMENT”,  9.5,
page 23447.

← Definition of
“object” : page33.

← Definition of “gen-
erating class”: page54.
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6.3 VOID REFERENCES

In considering the execution ofbuild_a_lineand the value offancy_linewe
must pay particular attention to references and their relation to objects.

The initial state of a reference

Assume we have an instance ofLINE_BUILDING. You might think that
because the class declares a queryfancy_lineof typeMETRO_LINE, we may
always assume that its instance contains a reference to an instance of
METRO_LINE as suggested above:

Not so. We do have one object, the one on the left in the figure, an instance of
LINE_BUILDING, with only one field corresponding to the queryfancy_line.
Let’s assume this object has just been created; this is the result of a “creation
instruction”, which we will shortly see how to write. The instruction only
gives us theLINE_BUILDING object. If you need any other, your program
will have to create it explicitly. So the true state of program execution after
creation of an instance ofLINE_BUILDING looks like this:

The field forfancy_linecontains a reference. But because no instruction has
been executed yet to create other objects, that reference isvoid, meaning that
it is not attached to any object; the figure shows the convention for void
references, reminiscent of the “grounded” symbol in electricity.

This is one of the two possible states for a reference:

Definition: States of a reference
At any time during execution, the value of an entity denoting a reference is
one of:

• Attached to a certain object.
• Void.

OBJECT Line entity and
attached
METRO_LINE
object

OBJECT

(METRO_LINE)

referencefancy_line

(LINE_BUILDING)

Objectstructure
at the beginning
of execution

(LINE_BUILDING)

void referencefancy_line

OBJECT
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The predefined featureVoid denotes a void reference. So at any time during
execution, ifx denotes a reference, the condition

has valueTrue if and only if if the value ofx is a void reference, and

if and only if it is attached to an object.

The trouble with void references

The basic mechanism of computation wasintroduced asfeature call, of the
form x.f, or x.f (a, ...) with arguments. This applies featuref to the object to
whichx is attached. But now with void references we have the possibility that,
at some time during execution, ifx = Void holds, the reference thatx denotes
is not attached to any object. The feature call is erroneous in that case.

To see the effect of such a bug, try to execute the system as it stands,
leaving the line of pseudocode as a comment:

x = Void

x /= Void

class LINE_BUILDINGinherit

end

← /= is inequality; see
page83.

← “Dissectingthepro-
gram”,  page 25.

TOUR
feature

build_a_lineis
-- Build an imaginary line and highlight it on the map.

do
Paris.display
Metro.highlight

-- The next line should have been replaced by code!
-- “Createfancy_line and fill in its stations”

fancy_line.illuminate
end

fancy_line: METRO_LINE
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After the initial calls (Paris.displayandMetro.higlight)executionstopsabruptly,
displaying a message in EiffelStudio stating that anexception has occurred:

An exception is an abnormal event occurring during program execution.
Sometimes you can plan for exceptions and write program element that will
try to recover, using techniques seen in a later chapter; otherwise, an exception
will just cause erroneous program termination, orfailure , as happens here.

Another example of exception, “arithmetic underflow”, is an attempt to
compute the divisiona / b whereb has value zero, or a non-zero value that’s
too small for the computer’s number representation system.. Every kind of
exception has a name, such as “Arithmetic underflow” or, “Feature call on void
reference”, which appears in the EiffelStudio failure message.

The EiffelStudio message indicates what the exception was here:
“Feature call on void reference”.

Not every declaration should create an object

To avoid the exception in our last example, we may change the creation
procedurebuild_a_lineso that before the callfancy_line.illuminate it will
have created an object and attached it tofancy_line. We’ll do this shortly. You
may, however, question the behavior. Why have void references at all and
hence create the resulting risk of void call exceptions? In other words
shouldn’t we be able to assume that a declaration such as

will at run time have the effect of creating an object — an instance of
METRO_LINE— and attach it tofancy_line?

fancy_line: METRO_LINE

Abnormal
terminationand
the resulting
message
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The answer is no. Several reasons justify the convention that references
are initialized to void, and that you get objects only by creating them explicitly
through your program.

The basic reason is that some objects simply don’t exist. That’s true in the
non-software world: a personmayhave a spouse, but not everyone is married.
So it should also be true in software that models that world: in a class
PERSON, appearing for example in tax management software, you may want
to include a feature

for which the possibility of a void reference is essential: it will represent the
case of an unmarried person. Even if we assumed everyone is married, it
would still make no sense to create an object forspouseevery time we create
an object of typePERSON: then it too would have itsspousereference, for
which we would have to create another instance of the class, starting an infinite
chain. So the reasonable solution is to initialize the field to a void reference,
and let the program create an object when appropriate.

Let’s look at the example a little more in depth. When a person does have
aspouse, there is a constraint: the spouse is also married, and has, as a spouse,
the original person. A picture shows this better than words:

and a formula says it even better than a picture: the invariant of classSPOUSE
should have a clause that reads

Current, used in relation to an object,denotes the object itself. The clause says
that if a person has a spouse, then that spouse’s spouse is the original person.

As we’ll see,Currentis never void since it denotes an object. So from this invariant
clause we may deduce another:(spouse/= Void) implies (spouse.spouse/= Void):
if you are a married person, your spouse is married too. Don’t underestimate the
benefit of expressing such seeming banalities: software development involves
clarifying the intuitive knowledge that we may have about a problem domain, and
then formalizing it using the tools of logic, for example in class invariants.

spouse: PERSON

(spouse/= Void) implies (spouse.spouse= Current)

Monogamy

(PERSON)(PERSON)

spouse spouse

→ More aboutCurrent
in ...
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Another observation on the above invariant clause: if you have carefully followed
thediscussion of non-commutative boolean operators, you will have noticed that
this clause requires the non-commutative version ofimplies, since the second
operand wouldn’t be defined ifspouse is void.

This shows further why we shouldn’t jump to create an object every time
there’s an entity declaration. Both objects on the preceding figure should
probably start their lives celibate, with voidspouse references:

Later on some instructions will attach thespousereference of the first object
to the second and conversely, yielding the state shown on the earlier figure.
Suchreattachmentinstructions don’t create any new objects; they simply
attach references to existing objects. We’ll study them in a later chapter.

The role of void references

Consider a reference appearing in a field of an object, such as thespousefield
of a person object. If itself attached to an object, it indicates the presence of
certain information, represented by that object. If it’s void, it indicates that
such information doesn’t exist. This is particularly useful when we use
references tolink objects in a more complex structure.

For example we might decide to represent a metro line (any instance of
classMETRO_LINE) by one or more instances of a classSTOP, representing
particular stops on the route. One possible technique (we’ll see many others)
is to have, in every instance ofSTOP, a fieldnextindicating the next stop on
the route. So an instance ofSTOP will look like this:

← “Semistrictimplica-
tion”,  page 96.

Double celibacy

(PERSON)(PERSON)

spouse spouse

A stop
(provisional)

(STOP)

next
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where the solid part represents fields providing other information on the stop.
Then a full line will be a set of such objects, each but the last linked to the next
one by anext reference:

Note how the last object uses a void reference fornextto indicate that there is
no nextobject in this case. Terminating such structures is one of the principal
uses for void references.

6.4 CREATING SIMPLE OBJECTS

I hope you haven’t lost track of our goal in this chapter, which is to create our
fancy_lineas pictured at the very beginning, with three stations. We’re almost
there but first we need to create the objects representing the stops on the line.

These auxiliary objects will be instances of the classSTOP just
mentioned. Can you see why we need this class, and not just instances of class
METRO_STATION?

The last figure gives a clue. A stop on a line is associated with a station,
but it’s a different object because it represents the stationas belonging to the
line. A query such as “What is the next station?” is not a feature of the station;
it’s a feature of the station as belonging to the line. That’s because some
stations (exchanges) belong to two or more lines. On the following figure, the
“next” station for Gambetta (going as usual from South and West to North and
East) depends on which of its two lines you take.

A linked line

(STOP)

next

(STOP) (STOP)

nextnext

More than one
“next” station
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A STOPobject will be very simple: it will contain a reference to a station, and
a reference to the next object. We’ll require the station reference to be always
non-void; thenext reference may be void at the end of a line.

Although with what we are learning now we would soon be able to create the
station objects themselves, we won’t need to; they are available from class
TOURunder the namesStation_Montrouge, Station_Issy, Station_Balard. So
we only worry aboutSTOP objects here.

A first version of classSTOPcalledSIMPLE_STOPhas the following
interface (bring it up under EiffelStudio):

class SIMPLE_STOPfeature

station: METRO_STATION
-- Station which this stop represents

next: SIMPLE_STOP
-- Next stop on same line

set_station(s: METRO_STATION)
-- Associate this stop withs.

require
station_exists: s /= Void

ensure
station_set: station= s

link (s: SIMPLE_STOP)
-- Makes the next stop on the line.

ensure
next_set: next= s

-- This really calls for an invariant statingstation/= Void; it will
-- be added to the next version of this class, called justSTOP.
end

A stop(final)

(STOP)
station

next

(METRO_

(Void, or to other
STOP object)

STATION)
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The querystationyields the associated station; the querynextyields the next
stop. For each of these we have a command:set_stationto associate the stop
to a certain station, andlink to link it to another stop on the same line.

Here is how to create an instance of this class. Assume that (along with
fancy_line: METRO_LINE) we have declared

Then in procedurebuild_a_line we may create a stop:

The instructioncreatestop1is acreation instruction. It’s the basic operation
that produces objects at run time. Its effect is exactly as the keywordcreate
suggests: create an object, and attach the listed entity, herestop1, to that new
object. In pictures: starting from a state in whichstop1 is void

executingcreate stop1 attaches it to an object created for this purpose:

Thecreateinstruction doesn’t need to specify the type of object to be created,
since every entity such asstop1 is declared with a type, here with the
declarationstop1: SIMPLE_STOP. The type of the object to be created is the
type declared for the corresponding entity, hereSIMPLE_STOP.

stop1: SIMPLE_STOP

build_a_lineis
-- Build an imaginary line and highlight it on the map.

do
Paris.display
Metro.highlight

-- “Create more stops and finish buildingfancy_line”
fancy_line.illuminate

end

create stop1

Before creation
instruction

stop1

After creation
instruction

stop1

(SIMPLE_STOP)
station

next
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As a consequence of the the earlier discussion, all reference fields of the new
object are set toVoid. We can attach them to actual objects using the commands
set_stationand link. This enables us to build all the stops offancy_line(the
METRO_LINE object itself will follow). We declare the three stops:

Note the new syntax, enabling you to declare several entities of the same type
together, rather than writing a declaration for each. You will just separate the
entities by commas and write the type once after the colon.

The numbers correspond to the order on our line:

This permits the next version ofbuild_a_line:

stop1, stop2, stop3: SIMPLE_STOP

build_a_lineis
-- Build an imaginary line and highlight it on the map.

do
Paris.display
Metro.highlight

-- Create the stops and associate each to its station:

-- Link each applicable stop to the next:

Station_Montrouge

Station_Issy

Station_Balard

1

2

3
Three stops on a
line

create stop1
stop1.set_station(Station_Montrouge)

create stop2
stop2.set_station(Station_Issy)

create stop3
stop3.set_station(Station_Balard)

stop1.link (stop2)
stop2.link (stop3)
stop1.link (stop2)
stop2.link (stop3)
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Note how the pseudocode shrinks progressively as we add more instructions
— “non-pseudo” code — that realize its intent. At the end we’ll have removed
all pseudocode.

The two highlighted calls tolink chain the first stop to the second and the
second to the third. The third stop is not chained to anything; itsnextreference,
set to void on creation, will remain void. That’s what we want since it
represents the last stop on the line.

The calls toset_stationmust satisfy the precondition of this feature, which
requires their arguments to be non-void. This is indeed satisfied by
Station_montrougeand the other predefined stations from the “magic” ofTOUR.

6.5 CREATION PROCEDURES

Procedurebuild_a_line uses the simplest form of creation:

for some_stopof type SIMPLE_STOP. This does the job but deserves an
improvement. As the last version of the procedure indicates, the typical
scheme for creating a stop associated with a stationexisting_station is in fact

which in addition to the creation instruction requires a feature call
immediately afterwards, to associate the new object to a station. The object
resulting from the first instruction is useless because, as noted, it makes no
sense to have a “stop” object without an associated station. We would like to
reflect this through an invariant

but then the class becomes incorrect since every instancemust satisfy the
invariant on creation, which won’t be the case here.

-- “Createfancy_line and give it the stops just created”
fancy_line.illuminate

end

create some_stop [C1]

create some_stop
some_stop.set_station(existing_station)

invariant
station_exists: station/= Void

← “TouchofMethodol-
ogy:PreconditionPrin-
ciple”,  page 67.

← “TouchofMethodol-
ogy: Invariant Princi-
ple”,  page 71.



§6.5 CREATION PROCEDURES 123

So we have two separate reasons suggesting that the two instructions
above, the creation and the call toset_station, should be merged into one:
• A reason of convenience: with the class as it stands, any client needing to

create a stop must use both instructions; forgetting the second one will
result in incorrect software and run-time failures. It’s a general rule of
software design that we should avoid producing elements that require
specific prescriptions for use — “When you do A, never forget to do B as
well!” — as it’s all too easy for client programmers to miss the
instructions. Better provide an operation that does everything needed,
removing the need to learn a complicated interface.

• A reason of correctness: ensuring that instances of the class, straight from
their creation, are consistent — here by specifying a non-void station.

To address both concerns, we may declare the class with one or morecreation
procedures. A creation procedure is a command that clientsmustcall
whenever they create an instance of the class, ensuring that the instance is
properly initialized and, in particular, satisfies the invariant.

With a creation procedure, hereset_station, and the stops now declared as

(rather thanSIMPLE_STOPas before), the creation instruction as executed by
clients is not justcreatestop1 as before [1] but

which has the effect achieved earlier by two separate instructions:

The only difference between the two classes is thatSTOPhas the desired
invariantstation/= Voidand declaresset_stationas a creation procedure. Here
is how the class interface will look; other than the class names, only the
highlighted parts have changed.:

new_stop1, new_stop2, new_stop3: STOP

createnew_stop1 [C2].set_station(Station_montrouge)

After creation
instruction
using a creation
procedure

stop1

(STOP)
station

next

(STATION)

Station_
montrouge
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At the top of the class interface we have a new clause

using again the keywordcreate, and listing one of the commands of the class,
set_station. This tells the client programmer that the class has one creation
procedure,set_station. The clause lists one creation procedure; it could also
list none, or several (since there may be more than one way to initialize a
newly created object).

The consequence of including such a clause in the interface of the class
is that it’s no longer valid for a client to create an object using the basic form
of the creation instruction,create new_stop[] ; because the class specifies
creation procedures, youmust use one of them, through form [2].

class STOP

create
set_station

create

set_station
feature

station: METRO_STATION
-- Station which this stop represents

next: STOP
-- Next stop on same line

set_station(s: METRO_STATION)
-- Associate this stop withs.

require
station_exists: s /= Void

ensure
station_set: station= s

link (s: STOP)
-- Makes the next stop on the line.

ensure
next_set: next= s

invariant
station_exists: station/= Void

end

Same as before,
now serves also as
creation procedure
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This rule enables the author of a class to force proper initialization of all
instances that clients will create. It is closely connected with the notion of
invariant: the requirement in this example is that every object will satisfy,
immediately after creation, the desired invariant

which is in turn ensured by the precondition ofset_station. This is a
general principle:

“Non-trivial invariant” means any invariant other thanTrue (which is usually
omitted) or any property that would be ensured by letting all the fields take the
default values ensured by the initialization rules (zero for numbers,Falsefor
booleans,Void for references).

Even in the absence of a strong invariant it may be useful to provide
creation procedures to enable clients to combine creation with initialization.
For example a classPOINTdescribing points in a two-dimensional space may
provide creation proceduresmake_cartesianandmake_polar, each with two
arguments denoting coordinates, enabling clients to create points identified by
their cartesian or polar coordinates.

In some cases — such as this one — you may want to allow both forms,
[1] and [2]. The technique then is to use

wheredefault_createis the name of a feature (inherited by all classes from a
common parent) with no arguments, which by default does nothing. To use
this procedure you would normally write

station_exists: station/= Void

Touch of Methodology: Creation principle
If a class has a non-trivial invariant, it must list one or more creation
procedures, whose purpose is to ensure that every instance, upon execution
of a creation instruction, will satisfy the invariant.

classPOINT create
, make_cartesian, make_polar

feature
...

end

createyour_point.default_create

default_create
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but this can be abbreviated into form [1], here

which thecreateclause makes valid along with the other two forms

6.6 OBJECT CREATION: SUMMARY

As a consequence of the preceding discussion, it’s easy to remember what you
must do to create an object:

6.7 CORRECTNESS OF A CREATION INSTRUCTION

For every instruction that we study, we must know precisely, in line with the
principles of Design by Contract sketched in earlier chapters:

• How to use the instruction correctly: itsprecondition.

• What we are getting in return: thepostcondition.

Together, these properties (complemented, for some constructs, by a notion of
invariant) define thecorrectness of a language mechanism.

createyour_point

createyour_point.make_cartesian(x, y)
createyour_point.make_polar(r, t)

Creating an instance of a class
• If the class has nocreate clause, use the basic form,createx [1].
• If the class has acreateclause listing one or more creation procedures,

usecreatex.make(...), wheremakeis one of the creation procedures,
and “(...)” stands for appropriate arguments formake, if any: the right
number of arguments, with the right types, and guaranteed to satisfy
the precondition if there’s one.
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Here is the rule for the creation mechanism:

The form without creation procedure,createx, trivially satisfies clauses1 and
3 since there is no applicable precondition or postcondition.

The correctness condition (clause1) doesn’t requirex to be void. It is
indeed not a mistake to create two objects successively for the same targetx:

even though this form by itself is wasteful since the object created by the first
instruction will be immediately forgotten:

The second creation instruction reattaches the referencex to the second object,
so that the first object is now useless. (We’ll see below what happens to such
“orphan” objects.)

Touch of Methodology:
Creation Instruction Correctness Rule

The property (precondition) that must holdbefore a creation instruction:
1 • It is correct to execute the instruction if and only if the precondition of

its creation procedure, if any, holds.

Properties (postconditions) that will holdafter a creation instruction with
targetx of typeC:
2 • x /= Void will hold.

3 • The postcondition of the creation procedure, if any, will hold.

4 • The object attached tox will satisfy the invariant ofC.

create x
-- Here as a result x is not void (see clause2)

create x

Creating two
objects in a rowx First created object

Second created object
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Although two successive creation instructions of the exact form shown
make no sense, variants of this scheme can be useful. For example there could
be other instructions between the twocreate x, doing something interesting
with the first object. Or if a creation procedure is involved, as in
createx.make(...), it may record the first object somewhere.

Clauses2 to 3 define the effect of executing a creation instruction:

• Whether or notx was void before the creation instruction, it won’t be void
afterwards (clause2) since the instruction attaches it to an object.

• If there is a creation procedure, its postcondition will hold for the newly
created object (clause3).

• In addition, that object will satisfy theclass invariant(clause4). Already
stated in theInvariantPrinciple, this is an essential requirement on any
creation instruction: to make sure that any object, when it starts out in life,
satisfies the consistency condition that its class imposes on all instances,
as expressed by the invariant. If the default initializations don’t achieve
this, then it is the duty of creation procedures to correct the situation by
producing an initial state that satisfies the class invariant.

6.8 SYSTEM EXECUTION

A final consequence of the creation mechanism is that we can now find out
what the process is forexecuting a system (an entire program).

Starting it all

With object creation, execution is in fact a simple concept:

The reason this suffices is that the root creation procedure (also calledroot
procedure for short) may perform any actions that you have specified; in
general it will itself create new objects and call other features, which may in
turn do the same and so on. So you may think of your system — a collection
of classes — as a set of balls on a billard table; the creation procedures kicks
the first ball, which will hit other balls that in turn will kick more.

Definitions:
System execution, root object, root class, root creation

procedure
Executing a system consists of creating an instance — theroot object —
of a designated class from the system, called itsroot class, using a
designated creation procedure of that class, called itsroot creation
procedure.

← “TouchofMethodol-
ogy: Invariant Princi-
ple”,  page 71.
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What’s special about our billard boards (our systems) is that a ball, when
kicked, can create new balls to be kicked, and that we may end up in a single
execution with millions of balls rather than a dozen or so.

The root class, the system and the design process

The root class and root procedure are there to start a process that relies on
mechanisms found in the classes of the system and their features. It’s
important to think of these classes as having a value of their own,
independently of any particular system and its choice of root class and root
procedure. As we have repeatedly seen, the classes are machines, each with its
own role. A system is a particular assembly of such machines, where we have
decided to choose one of them to start execution. But the classes exist beyond
that system; a class may, for example appear in several systems, combined in
each case with different classes.

A class that appears in many different systems because it provides features of
general interest is said to bereusable; classes designed for reusability will be
grouped intolibraries . Even when designing specific applications rather than
libraries you should always strive to make your classes as reusable as possible,
since there’s always the potential that you’ll run into a similar need again.

In older views of software engineering, a program was conceived as a
monolithic construction consisting of a “main program” divided into
“subprograms”. This made it difficult to reuse some of the elements for new
purposes, since they had all been produced as part of the fulfillment of one
specific overall goal; it also hampered efforts to change the program if that
particular goal changed, as it very often does in practice.

More modern approaches to software construction, based on the
object-orientedideas that we use in this book, fight these deficiences by
dividing the software into classes (a more general concept than subprogram)
and encouraging the designer to give proper attention to each individual class,
making it as complete and useful as possible. To obtain an actual system that
handles a certain computer application you must, of course, select and
combine a number of classes, and devise a root class and root procedure to
kick off the execution process. In the end, then, the root procedure plays the
traditional role of the main program. The difference is a methodological one:
unlike a main program, the root class and root procedure are not a fundamental
element of the system design; they are just a particular way to start off a
particular execution process based on a set of classes that you’ve decided to
combine in a particular way. But the prime focus is on these classes.

→ Chapter27 is
devoted to reuse.



CREATING OBJECTS AND EXECUTING SYSTEMS §6.8130

These observations point to some of the key concerns of professional
software engineering (as opposed to amateur programming):extendibility,
the ease with which it will be possible to adapt a system when user needs
change over time; andreusability, the ease of reusing existing software for the
needs of new applications.

Specifying the root

After this short foray into design principles let’s come back to a more mundane
issue: how will you specify the root class and root creation procedure of a
system?

The development environment — EiffelStudio — is there to let you
define such properties of a system. They are just part of the “Project Settings”
of a system, which you can access through theFile → Project Settingsmenu.
A section of the EiffelStudio appendix gives the details.

The current object and general relativity

The perspective we have now gained on system execution enables us to
understand a fundamental property of the object-oriented form of
computation, which it might be tempting to callgeneral relativityif the phrase
hadn’t already been taken, a while ago, by an ETH graduate . The question is
a very basic one: when you see a name in a class, for example the attribute
namestation in classSIMPLE_STOP, what does it really mean? OK, in
principle we know, if only through the declaration and its header comment:

But what stop is “this stop”? In an instruction using the attribute, such as
station.set_name("Louvre"), of which station are we changing the name?

station: METRO_STATION
-- Station which this stop represents

→ “SPECIFYING A
ROOT CLASS AND
CREATION PROCE-
DURE”, A.6,page576
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The answer can only be relative. The attribute refers to thecurrent object
at applicable times during execution. We can define this notion as follows:

So if you follow the execution of a system: the root object gets created; after
possibly some other operations, in particular to create objects, it may perform
a call using as its target one of these objects, which becomes current; it may
again perform a call on another target, which will become current; and so on.
Whenever a call terminates the previous current object resumes its role.

This gives the answer to the question of what a feature name means: it denotes
the feature applied to the current object. In classSIMPLE_STOP, any use of
station— for example,Console.show(station.name) to display the name of a
stop’s station — denotes the “station” field of the currentSIMPLE_STOPobject;
this also explains “this” in header comments, as in “Station whichthis stop
represents”.

This convention is central to the object-oriented style of programming. A
class describes the properties and behavior of a certain category of objects. It
does so by describing the properties and behavior of a typical representative
of the category: the current object.

Definition: Current object

At any time during the execution of a system, there is a current object
determined as follows:
1 • The root object is, at the start of execution, the first current object.
2 • At the start of a qualified callx.f (…), wherex denotes an object, that

object becomes the new current object.
3 • When such a call terminates, the previous current object becomes

current again.
4 • No other operation causes a change of current object.
To denote the current object, you may use the reserved wordCurrent.

Scheme for
system
execution
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These observations lead us to generalize the notion ofcall. We know that
an instruction or expression with a period, such as

is a feature call, applied, like all calls, to a target object: the object denoted by
Consolein the first example andstation in the second. But what about the
status ofConsoleandstationthemselves? They are calls too, with a target that
is the current object. In fact you might also write them as

where, as noted above,Current denotes the current object. You don’t need,
however, to use thisqualified form in such cases; theunqualifiedforms
Console andstation have the same meaning. The definitions are as follows:

It is important to realize here that many expressions of whose status you may
not have been quite sure until now are actuallycalls— unqualified. Examples
as diverse (in the discussions so far) as uses of

belong to this category. When the invariant ofMETRO_LINEstated

it meant that the Southwest endof the current metro lineis the same as the first
station of that same line.

Console.show(station.name) -- An instruction
station.name -- An expression

Current.Console
Current.station

Definitions: Qualified and unqualified call

A feature call isqualified if it explicitly lists the target object, for example
with dot notation, as inx.f (args).
A call is unqualified if it doesn’t list its target, which is then taken to be the
current object, as inf (args).

Paris, Louvre, Line8 -- In our original classPREVIEW(chapter2)
sw_end, nw_end, i_th -- In the invariant ofMETRO_LINE(chapter4)
fancy_line -- In the present chapter

sw_end= i_th (1)

← “Class invariants”,
page 70.
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These observations show how fundamental and ubiquitouscalls are in
our programs. Along with qualified calls in dot notation, which clearly stand
out as calls, simple innocuous-looking notations likeConsoleorParisare calls
too, unqualified.

Calls are actually present in even more deceptive disguises: we’ llsee that an
arithmetic expression likea + b is, formally, just special syntax — in programming
language jargon, “syntactic sugar” — for a qualified calla.plus(b).

Note that in the rule defining the current objectabove, case4 tells us that
operations other than qualified calls and returns don’t change the current
object. This is true of unqualified calls: wherex.f (args) makes the object
attached tox the new current object for the duration of the call, the unqualified
form f (args) doesn’t cause a change of current object. This is consistent with
the above observation that you may also write itCurrent.f (args).

The “general relativity” nature of object-oriented programming can make
you a bit dizzy at first (maybe it did until this section), since it prevents you
from understanding program elements entirely by themselves: you must
interpret them in terms of the enclosing class. It is a result of the modularity
of the approach: its rejection of monolithic, all-in-one program architectures
in favor of highly decentralized systems made of components to be developed
autonomously and combined in may different ways.

6.9 KEY CONCEPTS LEARNED IN THIS CHAPTER

• A reference is eitherattached to an object, orvoid.
• A feature call on an entity, such asx.f (...), will only execute properly if

the value ofx is attached to an object.
• Every reference is initially void, and remains void in the absence of any

operation such as creation that explicitly attaches it to an object.
• Void references serve to indicate missing information, and to terminate

linked structures.
• A creation instruction of targetx creates a new object and attachesx to it.
• The form of the creation instruction iscreate x, or — using a creation

procedurep specified in the class —createx. p (arguments).
• Prior to the execution of a creation procedure if any, the fields of a newly

created object are initialized to standard default values, including zero for
numbers and void for references.

• A creation instruction must ensure the invariant of the corresponding
class. If the default initializations don’t achieve this, the instruction must
use a creation procedure that corrects the problem.

• Executing a system consists of creating an instance of a specified “root”
class, with an associated root creation procedure.

→

← Page131.
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• At any time of execution there is acurrent object: the object on which the
routine last started operates.

• Calls can be qualified, applied to a target named explicitly, or unqualified,
applied to the current object.

• Every unqualified mention of a feature must be understood (“general
relativity” principle of O-O programming) as applying to an implicit
object — the current object, a typical representative of the class.

New vocabulary

6-E EXERCISES

6-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

Talking about void

It may be useful to determine whether a reference is void or not.if and only if
it is not a void reference, that is to say,x is attached to some object. A feature
call x.f (...) is permitted in the second case only. So when you need a condition
such as

(stating, as an example, that a line has at least six stations), and you do not
know for sure thatfancy_line is attached, you should instead express it as

guaranteeing that the expression will always evaluate properly at run time. For
a non-existing line, it will yieldFalse.

Attached Creation procedure Current object
Entity Exception Extendibility
Failure Library Main program
Qualified call Reference Reusable Reusability
Root class Root creation procedure (= Root procedure)
Root object Unqualified call Void reference

fancy_line.count>= 6

(fancy_line/= Void) and then (fancy_line.count>= 6)
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7

Control structures

We by now have a first grasp of thedatastructure of our programs, made of
objects connected by references. It’s time to look at thecontrol structure,
which determines the order in which the programs’ execution will apply
instructions to these objects.

7.1 PROBLEM-SOLVING STRUCTURES

You may have heard this satire of the reasoning skills supposedly taught
to engineers:

As a water-boiling technique it may not be the most efficient, but it provides
an example of combining some of the fundamental control structures:

• Theconditional: “if this condition holds then do this, else do that”.

• Thesequence: “do this and then do that”.

• The routine, which enables us to name a previously identified
problem-solving technique (possibly parameterized), and reuse it in any
applicable context.

Remembering the discussion of contracts in earlier chapters, you will also have
noted that the throwback to case1 in case2 is only possible, as explicitly
mentioned, because the first step of case2 guarantees theprecondition of case1
(water is cold). Preconditions and other contract techniques will indeed play a
large role in getting our control structures right.

How to boil a pot of water
1 • If the water is cold: put the pot on the fire, and wait until it boils.

2 • If the water is hot: wait until it cools down. Then — as the appropriate
condition is now met — apply case1.
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In its light-hearted way, this example sets the proper context for our study of
control structures: they areproblem-solving techniques. To program is to
solve a problem; each kind of control structure reflects a particularstrategyfor
finding a solution to a problem.

The problem will always be expressed as: starting from known properties
K, reach a certain goalG. In the exampleK is the property that we have a pot
of water, andG that the water in the pot is boiling. The “strategies” provided
by control structures are ways of reducing the problem toeasierproblems of
that kind. For example:

• You may apply thesequencecontrol structure if you find an intermediate
goal I such that both of the following new problems are easier than the
original (achievingG directly fromK): achieveI from K; achieveG from
I. The sequence control structure applies, in order, a solution to the first
new problem and a solution to the second one.

• Theconditional control structure is the strategy of partitioning the set of
possible initial situations,K, into two disjoint domains, so that it’s easier
to solve the problem separately on each of these domains.

• The loop structure, of which we have yet to see an example, is the
strategy of solving the problem on a subset (possibly trivial) of its domain
and extending the solution repeatedly until it covers the whole domain.

• The routine control structure is the strategy of solving a problem by
recognizing that it matches another problem — often of a more general
nature — to which you already know a solution.

The recursion technique, important enough to occupy achapter of its own, is
applicable if you demonstrate that you can derive a solution byassuminga solution
to thesame problem applied to one or more smaller data structures.

Since programming is about solving problems, it will be particularly useful to
study these and other control structures in this light.

For each of the control structures we will successively explore:

• The general idea, throughexamples.

• Thesyntax of the corresponding language construct.

• Its semantics: the run-time effect, in this case how the control structure
governs the order of execution of the instructions it contains.

• Correctnessrules needed to ensure that the semantics is what we want —
that executing the control structure produces a meaningful result rather
than a program crash or some other unpleasant consequence.

→ Chapter16.
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7.2 THE NOTION OF ALGORITHM

Control structures take care of scheduling the operations in the processes
carried out by computers. Such processes are calledalgorithms; this is one of
the fundamental concepts of computing science. You may have seen the term
already, even in the popular press which nowadays discusses things like
“cryptographic algorithms” in reporting security issues. For the study of
control structures we need a precise understanding of the concept.

Example and definition

In general terms an algorithm is adescriptionof a computational process,
sufficient to enable a machine — for our interests, a computer — to carry out
the process on any input data without further instructions.

You already know many algorithms. To add two integers, as in

you apply the following rules (probably without thinking of them explicitly):

687
+ 42

———
= 729

Touch of Elementary Maths:
Adding two decimal numbers

The process consists of a number ofsteps, each working on aposition in
the numbers. The position for the first step is the position of the rightmost
digit of both numbers; for each subsequent step, it’s the position
immediately to the left of the previous one.

At each step, there is acarry. The initial carry is 0.
At each step, letmbe the digit from the first number at the step’s position and
n the corresponding digit from the second number, with the convention that if
either number has no digit at that position the corresponding value (morn) is 0.

At each step, the process performs the following:
1 • Compute the sums of m, n and the carry.

2 • If s is less than 10, writesat the step’s position in the result line, and let
the carry for the next step be 0.
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Operation3 relies on an assumption: “s cannot be more than 19”. Without it the
process would not make sense, since we want to write digits only. To guarantee the
correctness of the algorithm we have to prove that the property holds at every step.
Indeed,m andn are at most 9 each, so their sum is at most 18; at the first step the
carry is 0, and at every following step it can only (as a result of that same operation
3) be either 0 or 1, so its sum withm andn will at most be 19. This is an example
of aninvariant property , a concept that we’ll study in more detail with loops.

Precision and explicitness: algorithms vs recipes

Although less precise than the standard for publishing algorithms, the
preceding specification is more punctilious than most of the prescriptions we
are used to follow — with, it must be said, varying degrees of success — in
ordinary life. Here is for example a trilingual set of directions on a bag of
pre-cooked minestrone:

3 • If s is 10 or more, writes – 10 (which is a single digit, ass cannot be
more than 19) at the step’s position in the result line, and let the carry
for the next step be 1.

The process stops when there are no digits at the step’s position on either
line and the carry is 0.

Not an algorithm
(see English
translation in
text)

Source: Buitoni
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In German and French the instructions state:“Pour the frozen vegetables into
one liter of cold water, add two tablespoonfuls of oil and salt”. What’s striking
is not so much the lack of precision (“tablespoonful” can be given an exact
conventional value, and anyway the idea of using such a general term is that it
doesn’t matter too much whether you take a slightly bigger or smaller
tablespoon) as the absence of the key instruction: if you want to get an edible
result, you’d better heat up the thing at some point. Only the Italian version
mentions this detail — “cook according to the times given” — without which
the pictures would be meaningless.

For such instructions intended for human interpretation, lack of
explicitness is not an issue; it will be immediately clear to most readers that
they can’t prepare such food without heating it, and that the pictures indicate
cooking times. (Even I succeeded!) But such an approach would not work for
an algorithm. You must specify every operation, every detail of the process;
and you must specify them in a form that leaves no room for ambiguity.

Properties of an algorithm

For algorithms, as opposed to informal recipes, we expect a number of
properties captured by the following definition.

Definition: Algorithm
An algorithm is the specification of a process acting on a (possibly empty)
set of data, satisfying the following five rules:
1 • The specification defines the applicable sets of data.

2 • The specification defines a set of elementary actions, from which all
steps of the process are drawn.

3 • The specification defines the possible order or orders in which the
process may carry out these steps.

4 • The specification of the elementary actions (rule2) and of the permitted
orderings (rule3) relies on precisely defined conventions, allowing the
process to be carried out by an automaton (such as a computer) without
human intervention, with results for the same set of data guaranteed to
be the same on two different automata following the same conventions.

5 • For any set of data to which the process is applicable (as per rule1), the
process is guaranteed to terminate after executing a finite number of the
algorithm’s steps.
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The above method for adding two numbers possesses the required properties:

1 • It describes a process to be applied to some data, and specifies the kind of
data: two integers.

2 • The process relies on well-defined basic actions: set a value to zero or to
a known number, add three numbers, compare a number to 10.

3 • The description specifies in what order to apply such actions.

4 • It is precise. That precision should be sufficient for any two people to
understand and apply the algorithm in the same way, although, as noted,
possibly not sufficient for other goals.

5 • For any applicable data — two numbers written in decimal notation —the
process will terminate after a finite number of steps. This is intuitively
clear but must be ascertained rigorously; we’ll see how to do this by
showing that the quantityM – step+ 1 is avariant.

Algorithms vs programs

You may wonder, in light of the preceding definition, what distinguishes an
algorithm from a program. The basic concept is indeed the same.

It is sometimes said that the difference is theabstractionlevel: that a
program is meant to execute on a particular machine, whereas an algorithm is
an abstract definition of a computing process, independent of any computing
devices. This made sense a few decades ago, when programs were expressed
in low-level codes for specific computers. Algorithms then served to express
theessenceof programs: the computing process described independently from
any computer. But that view is no longer applicable today:

• To expressprograms, we can use clear, high-level notations, defined at a
level of abstraction far above the details of any particular computer. The
Eiffel notation used in this book is an example.

• To express analgorithm in a way that fully meets the definition’s
requirements, in particular the requirement of precision — condition4 —
we will need a notation with rigorously defined syntax and semantics,
making it in the end equivalent to a programming language.

→ “Loop termina-
tion”,  page 159.
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It is true that practical descriptions of algorithms often leave unspecified some
details, such as choices of data structures, which a program cannot omit since
it wouldn’t then compile and execute. This practice does seem to suggest that
algorithms are more abstract than programs. But it is only a useful convention
to facilitate publication; for that purpose, it renounces some of the precision
that true algorithms require (condition4 again), and every reader of the
description understands that to get an algorithm in the official sense she would
need to bring the missing details back in.

So we can’t rely on the level of abstraction to distinguish algorithms from
programs. Two differences — or nuances — are perhaps more significant:

• An algorithm describes a single computing process. A program in the
traditional sense was also that — “Compute this month’s payroll!” — but
programs today involvelotsof algorithms. We’ve already seen several in
the Traffic system (display a line, animate a line, display a route...) and
there are hundreds more. It’s to emphasize this variety of algorithms that
when talking about such a combination of software elements I tend to use,
rather than “program” (which may still suggest the idea of doing one
possibly one task), the wordsystem.

• As important to a program as the description of the processing steps is the
description of the data structure — in the object-oriented approach of this
book, theobject structure — to which they apply. This criterion is not
absolute either, since you can’t really separate the algorithmic steps from
the structure which they manipulate. But in describing programming
concepts we may sometimes want to emphasize the processing aspect —
the algorithm in a narrow sense of the term — and sometimes the data.
This explains the title of a famous programmingbook by Niklaus Wirth:
Algorithms + Data Structures= Programs.

The object-oriented approach to software construction has the peculiarity of
giving a central role to the data through the object types: the classes.Every
algorithm is then attached to a particular class. Eiffel applies this rule without
exception: every algorithm that you write will appear as afeatureof some
class. This approach is justified by considerations of software quality that
we’ll explore in partIV. It implies, for this book, that we will study the
algorithm and data aspects in close connection.

Control structures, as studied in this chapter, are one example of an
algorithmic concept not directly related to a particular kind of data structure.

Prentice Hall, 1976.

(Picture to be replaced.)
Wirth
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7.3 CONTROL STRUCTURE BASICS

The specification of an algorithm must include elements of two kinds:

• The elementary steps to execute (clause2of thedefinition of “algorithm”).

• The order of their execution (clause3).

Control structures handle the second of these needs. Precisely:

There are, as previewed, three fundamental forms of control structure:

• The sequence, consisting of instructions listed in a certain order; its
execution consists of executing these instructions in the same order.

That’s the control structure we have been using implicitly in all the examples so
far, since we have been writing instructions under the assumption that they would
executed in the order given.

• Theloop, containing a sequence of instructions to be executed repeatedly.

• The conditional, consisting of a condition and two sequences of
instructions; its execution consists of executing one or the other of these
sequences depending on whether the condition — a boolean expression
— evaluates toTrue or False. It can be generalized to a choice between
more than two possibilities.

These are mechanisms for scheduling the execution of our program’s
instructions, taking advantage of three fundamental capabilities of computers:

• Executingall of a set of specified actions, in a specified order.

• Executing a singlespecified action, or some variants of it,many times.

• Executingoneof a set of specified actions, depending on a specified condition.

Such control structures assume that the program will at run time be doing at
most one thing at a time. With several computers, or with a single computer
sharing its time between different programs, we can actually haveparallel
execution, yielding more control structures. These are the topic of a later
chapter, devoted toconcurrency(“concurrent” means the same as “parallel”).

Definitions: Control flow, control structure

The scheduling of a program’s operations during execution is called its
control flow.
A control structure is a program construct affecting the control flow.

← Page141.

Or “flow of control” .

→ Chapter23.
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Our basic control structures can be combined without restriction, so that
you may for example have a conditional involving two sequences of
instructions, where one or more of the instructions in these sequences are in
turn loops, or conditionals, themselves involving further sub-structures.

Such a description of a computing process, consisting of instructions
grouped into control structures describing their run-time scheduling,
constitutes an algorithm.

When you have defined an algorithm, you will often want to wrap it into
a program unit with a name, which you can then use through that name. Such
a grouping is known as aroutine, a fundamental form of program structuring,
achieving on the control side what classes give us on the data side. Routines
enable you in effect to addnewcontrol structures to the available repertoire,
by abstracting particular combinations of existing structures.

These notions are the subject of the following sections. In addition we
will review two other forms of control structuring:
• The branching instruction, also known asgoto (“Go to” written as one

word), which has fallen from grace as a tool for programmers — we’ll see
why — but still plays a role in computer instruction codes.

• Table-drivencontrol, a way to specify control through thedatastructure
rather than through explicit control instructions.

7.4 SEQUENCE (COMPOUND INSTRUCTION)

We are all familiar with solving a problem by identifying one or more
intermediate goals, so that we can proceed in steps. If there is only one
such intermediate goal we’ll solve two separate problems:
• Achieve the intermediate goal from the hypothesis.
• Achieve the problem’s overall goal from the intermediate goal.
More generally, withn intermediate goals we’ll haven + 1 steps, where stepi
(for 2 ≤ i ≤ n) has to achieve thei-th intermediate goal from the preceding one.

Examples

In our application domain of city travel, a typical example of sequence is a
possible strategy going from a placea to a placeb:
1 • On the map, find the metro stationmaclosest toa.

2 • On the map, find the metro stationmbclosest tob.

3 • Walk froma to ma.

4 • Take the metro fromma to mb.

5 • Walk frommb to b.

→ Routines are studied
in the next chapter.

→ “THE LOWER
LEVEL:BRANCHING
INSTRUCTIONS”,
7.7, page 180.

→ “TABLE-DRIVEN
CONTROL”, 7.9,page
194.
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This is a human strategy, not a program. A program might, for example, build
a route froma to b. Assuming the declarations

you might use the sequence of instructions

This takes advantage of the following creation procedures of classSEGMENT:

• make_walk, producing a walking segment from one place to another.

• make_metro, producing a metro segment from one place to another.

and the following features of classROUTE:

• The creation proceduremake_empty, producing an empty route.

• The commandappend, adding a segment at the end of a route.

For this and future programming exercises, you won’t any more get a step-by-step
description of how to write, compile and run the example, unless this involves
some EiffelStudio mechanism that you haven’t seen yet. All the necessary
techniques have been seen before; if you have any hesitation consult the
EiffelStudioappendix or go back to the earlier examples.

walking_1, walking_2, metro_1: SEGMENT
full: ROUTE

-- Version 1
create walking_1.make_walk(a, ma)
create walking_2.make_walk(mb, b)
create metro_1.make_metro(ma, mb)
create full.make_empty
full.append(walking_1)
full.append(metro_1)
full.append(walking_2)

Programming time!
Creating and animating a route

Using the above scheme, write and execute a system that will create a route
from Elysee_palaceto Eiffel_tower(both place names defined as features
in classTOURISM), and animate the route.
Put the corresponding software elements, and the remaining ones for this
chapter, in a new class calledROUTES.

→ A, page 573.
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Compound: syntax

As the above example shows, the sequence control structure is not new with
this chapter: we have seen it many times before — in fact, ever since ourvery
first program example — without having a name for it. We simply wrote
several instructions in the intended order of execution, as in

Since it is often useful to consider such a sequence of instructions as a single
instruction — for example to make it part of a bigger control structure — it’s
also called acompound instruction, or just “compound”.

The syntax rule is very simple:

We haven’t used semicolons so far. The style rule indeed suggests not to bother
with them:

So if you will be printing out the above “Version 1” example and are down to
your last roll of paper (or have a very environmentally-conscious boss), you
might write the last three instructions as

Paris.display
Louvre.spotlight
Metro.highlight
Route1.animate

Syntax:
Compound instruction

To specify a sequence, orcompound, of zero or more instructions, write
them one after the other in the desired order of execution, optionally
separated by semicolons.

Touch of Style:
Semicolons between instructions

• If (as should almost always be the case) successive instructions appear
on separate lines,omit the semicolon.

• In the occasional case of two instructions appearing on the same line
(to be used only for very short instructions and if there’s a good reason
to save on the number of lines),alwaysseparate them by a semicolon.

full.append(walking_1) ; full.append(metro_1) ; full.append(walking_2)

← Featureexplore,
page20.



CONTROL STRUCTURES §7.4148

but there is seldom a reason to do so. Instead, you will usually have one line
per instruction; then you can just forget the semicolons.

It is important toremember that the separation into lines doesnot by
itself carry any semantic value; line return is just a “break” character, which
has the same effect as a space or a tab. So nothing prevents you from writing

Nothing, that is, except good taste, elementary common sense, the official
style rules, and any hint of a trace of a shadow of a tinge of concern for
whoever is going to try to read your program later, including two readers of
particular interest: the instructor (if you’re taking a course); and — after a few
days, weeks or months — yourself.

Even on separate lines, some people are initially nervous about omitting
the semicolons, perhaps because many commonly used programming
languages have strict rules requiring them in many places and prohibiting
them in others, causing the program texts to indulge in an orgy of semicolons,
and the compiler to harass you if you forget one, or put one where it’s not
expected. To get over semicolon addiction a simple test suffices: put two
version of the same program side by side, both with a single instruction per
line but one with semicolons and the other without; you’ll see right away that
the second one is cleaner and more readable.

If you do use semicolons, mistakenly including an extra semicolon will
be harmless, becauseinstruction_1; ; instruction_2is formally understood as
threeinstructions, of which the second is anemptyinstruction. So this won’t
cause any trouble or error. All the same, it’s better to clean up your code and
remove any unneeded element.

Compound: semantics

The run-time behavior of a sequence is what the name of this control structure
and the earlier informal discussion suggest:

full.append(walking_1) full.append(metro_1) full.append(walking_2)

Semantics:
Compound instruction

Executing a sequence of instructions consists of executing each instruction
in turn, in the order given.

← From“Br eaks and
indentation”,  page 49.

Ugly!
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Note that the syntax description talks of “zero or more” instructions (not one
or more) and hence permits empty sequences; the semantics in this case is to
do nothing. This is not a very exciting case, but it is useful to allow it for when
a sequence appears as part of a larger structure.

Order overspecification

You may have noticed that in the above example(“[ 1]”) the chosen sequence
is only one of a number of possibilities. For example we could append each
segment to the full route as soon as we’ve created it:

Many other orders are possible; the only constraints for this example are that
any instruction using an object (route or segment) must come after the creation
instruction for that object, and that we append segments in the proper order.

Using the sequence control structure often creates such cases of
overspecification, that is to say, of a solution that is not the most general
possible one. This kind of overspecification does not directly harm the software,
but one must be conscious that the solution is only one of a set of possibilities.
In some circumstances, when execution speed is a concern, it may be possible
to speed up execution by executing some group of instructionsconcurrently
with others, that is to say, in parallel. For example in “Version 1” the four initial
creation instructions can be executed concurrently without affecting the result.
Concurrency, however, is a delicate matter and programmers usually don’t
explicitly prescribe it for such elementary cases.

-- Version 2-- Create the route:
create full.make_empty

-- Create and append the first segment:
create walking_1.make_walk(a, ma)
full.append(walking_1)

-- Create and append the second segment:
create metro_1.make_metro(ma, mb)
full.append(metro_1)]

-- Create and append the third segment:
create walking_2.make_walk(mb, b)
full.append(walking_2)

← Page146.

→Seechapter23about
concurrency.
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Compound: correctness

We have seen that a feature may have a contract including a precondition and
a postcondition. These properties governcalls to the feature, such as the above
call full.append(walking_1). The precondition tells the client (the calling
feature) what itmustguarantee to be correctly serviced. The postcondition
tells the client what itmayassume on termination of such a correct call.

Since the instructions making up a Compound will be executed in the
order given, there is an obvious correctness rule for this control structure:

Special case: an empty Compound is (by itself) always correct, but achieves
no new postcondition.

In our example, you may check the contract for the featureappendof
classROUTE by bringing up the class in EiffelStudio. With some
postcondition clauses omitted, it reads

Every creation instruction of the formcreatex or createx.make(...) ensures
that the conditionx /= Void will hold after its execution. So our example
satisfies the correctness rule for compound instructions; this is true in both its
“[ 1]” and its “[2]”. But that wouldn’t be the case if we changed the order of
the first instructions to start with

Correctness:
Compound instruction

For a Compound instruction to be correct:
• The program must ensure that the precondition of the Compound’s

first instruction, if any, holds prior to any execution.
• The postcondition of every instruction in the compound must imply

the precondition of the following one if any.
• The postcondition of the last instruction must imply the postcondition

desired for the entire Compound.

append(s: SEGMENT)
require

segment_exists: s /= Void
ensure

lengths_added: count= old count + s.count

←Clause2of“Touchof
Methodology: Creation
Instruction Correctness
Rule”,  page 127.
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wherewalking_1, at the place of use, denotes a non-existentSEGMENTobject
that the extract mistakenly attempts to append to the route.

7.5 LOOPS

Our second control structure, the loop, taps into one of the most amazing
features of computers: their ability to repeat an operation, or variants of that
operation, many times —very many times by human standards.

A typical example of loop is an animation scheme to highlight a metro
line by displaying a red dot on each of its stations in turn, for half a second.
The systemShow_linein the Traffic delivery does this. You can execute it now
if you wish; the effect at one of the intermediate steps is this:

Here is a loop that achieves this effect. It usesshow_spot(p) to display a red
spot at pointp on the screen for a few seconds. To understand the details we’ll
need concepts introduced in the rest of this discussion, so you should just take
this example as an introduction to how a loop looks:

-- Version 3 (erroneous)
-- Create the route:

create full.make_empty

-- Create and append the first segment:
full.append( )
create walking_1.make_walk(a, ma)

walking_1

Highlighting a
station
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The loop moves a “cursor” (a virtual marker) to the beginning of the line
(start), then until the cursor is beyond the last position (is_after) it performs
the following for each successive station (item): display the red spot at the
location of the station, and advance the cursor to the next station through
commandforth. The value ofSpot_time is predefined to half a second.

This shows some of the key ingredients of a loop: initialization (from ),
exit condition (until ), and actions to be repeatedly executed (loop). To get a
full understanding of this loop we must first study the concepts in more depth.

Loops as approximations

As a problem-solving technique, the loop is the method of approximating the
result on successive, ever bigger subsets of the problem space.

In the Metro Line Animation example, the problem is to display a red dot
on each station of the line. Successive approximations are: display a dot on no
station at all; display it on the first station; display it successively on the first
two stations; and so on.

Here is another example. Assume you want to know the maximum of a
set of one or more valuesN1, N2, ..., Nn. The following strategy, described
informally, will work:

• Definemaxto beN1. It is then true, trivially, thatmaxis the maximum of
the set of values containing just one value,N1.

• Then for every successivei = 2, ...,n do the following: ifNi is greater than
the currentmax, redefinemax to beNi.

from
Line8.start

until
Line8.is_after

loop
show_spot(Line8.item.location)
Line8.forth

end

Programming time!
Animating Line 8

Put the preceding loop in a featuretraverseof classROUTES(the example
class for this chapter). For this example and subsequent variations, update
the class and run the system to observe the results.

→ In “Animating a
metro line”,  page 164.
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This ensures that at thei-th step (where the first step is the first case, the second
step is the second case fori = 2, the third step fori = 3 etc.) the following
property, called aloop invariant of the loop, holds:

At then-th step, wherei = n, this gives us that
“max is the maximum ofN1, N2, ...,Nn”

which is the desired result.
The following picture illustrates the loop strategy in this case:

The loop establishes the invariant property “maxis the maximum of the firsti
values” for a trivial value:i = 1; then it repeatedly extends the subset of the
data on which the invariant holds.

In the Metro Line Animation example, the invariant would be: “A red dot
has been displayed on all the stations visited so far”.

The notion of invariant is not new, since we have alreadyencountered class
invariants. The two forms of invariant are related, since both describe a property
which certain operations must maintain (meaning: if executed in a state satisfying
the invariant, they must terminate in a state satisfying it again). But their roles are
different: a class invariant applies to an entire class and must be maintained by the
execution offeaturesof the class; a loop invariant applies to a single loop and must
be maintained by each iteration of theloop body.

The loop strategy

Although many loops are more sophisticated, the “maximum” example
illustrates the general form of loops as a problem-solving strategy.

The strategy is useful when a problem consists, starting from some initial
propertyPre, of establishing a certain goalPostcharacterizing some set of data
DS. This set is finite, although it might be very large.

Loop invariant of the “maximum” strategy, at step i

max is the maximum ofN1, N2, ...,Ni

N1 Nn

Successive, growing subsets of the data
on which the invariant will hold

Data elements

Ni

Finding a
maximum by
successive
approximations

N2

← “Class invariants”,
page 70.
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To use a loop is to find a weaker (more general) form of the goalPost: a
propertyINV (s) — the loop’s invariant — defined on subsetssof DS(not just
DS itself), with the following properties:

L1 • You know an initial subsetInit of DS such that the initial conditionPre
impliesINV (Init); in other words, the invariant holds for the initial subset.

L2 • INV (DS), that is to sayINVapplied to the whole set, implies your goalPost.

L3 • You know a technique, applicable whenINV (s) holds for a sets that is
not yet all ofDS, to makeINV (s’) hold for a larger subsets’ of DS.

The “maximum” example has all these ingredients:DS is the set of numbers
{ N1, N2, ...,Nn} ; the preconditionPre is the property thatDShas at least one
element; the goalPost is the property that we have found the maximum of
these numbers; and the invariantINV (s), wheres is a subsetN1, N2, ...,Ni of
DS, is that we have found the maximum ofs. Then:

M1 •If Pre is satisfied, that is to say there’s at least one number, then we know
an initial subsetInit such thatINV (Init) holds: just take the set consisting
of only the first numberN1.

M2 •INV (DS) — the invariant applied to the whole set{ N1, N2, ..., Nn} —
does imply the goalPost; actually, it’s identical.

M3 •WhenINV (s) holds for a sets = {N1, N2, ..., Ni} which is not all ofDS
— in other words,i < n — then we can establishINV (s’) for a larger
subsets’ of DS: we just takes’ to be{ N1, N2, ...,Ni, } , and the new
maximum to be the greater of the previous maximum andNi+1.

Note — in the general case — how carefully the invariant is devised to fit our
general strategy of solving a problem by successive approximation:

• INV is sufficentlyweak that we can establish it easily for some initial
subset, usually very small, of the whole data set.

• It is sufficiently strong to give us the entire desired goal,Post, when
applied to the whole set.

• It is sufficientlyflexible to let us extend it from any applicable subset to
a slightly larger one.

By repeatedly performing this extension, having started by establishing the
invariant on the initial subset, we’ll get to the desired result. This strategy of
successive approximations of the goal on progressively larger sets might take
many iterations, but computers are fast, and they don’t go on strike to
complain of repetitive work.

Ni+1
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These observations define how the loop works as a control structure. Its
execution will:

S1 • EstablishINV (Init), taking advantage ofL1. This gives usInit as a first
subsets on whichINV holds.

S2 • As long ass is not the complete setDS, apply the technique ofL3 to
establishINV on a new, largers.

S3 • As soon ass is the whole ofDS, stop: we have establishedINV on DS,
which thanks toL2 establishes our goalPost.

This process is guaranteed to terminate because we alwaysassumeDSto be a
finite set; sinces is always a subset ofDS, and grows by at least one element
at every step, it has to reach the fullDSafter a finite number of iterations of
stepS2. In some cases, however, establishing termination will require some
extracare.

Loop instruction: basic syntax

To express the loop strategy as a program text we will use, in the “maximum”
example, the following general structure:

Here all the basic instructions are still pseudocode rather than actual Eiffel.
The example illustrates the three required parts of a loop construct
(complemented below by twooptional parts):

• Thefrom  clause introduces the initialization instructions (S1).

• The loop clause introduces the instructions to be executed in each of the
successive iterations (S2).

• Theuntil clause introduces the exit condition: the condition under which
the iterations will terminate (S3).

from
-- “Definemaxto beN1”
-- “Define i to be 1”

until
i = n

loop
-- “Redefinemax as the greater of the current maximum andNi+1”
-- “Increasei by one”

end

← Page154.

→ “Loop termina-
tion”,  page 159.
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The run-time effect of this construct, suggested by the keywords (from , until ,
loop), is in line with the previous discussion:

• First, execute the instructions in thefrom  clause (initialization).

• Then execute the instructions (body) in theloop clause until the condition
stated in theuntil  clause (exit condition) holds.

The last point means more precisely that after initialization the body will
be executed:

• Not at all, in the case the exit condition holds immediately after
the initialization.

• Once, if one execution of the body leads to the exit condition being true.

• More generally:i times for somei, if the exit condition will be false after
j executions of the body for1 ≤ j < i, and true afteri executions.

Syntactically, thefrom andloop clauses each contain a compound instruction.
As a consequence you may include any number of instructions, including zero.
It indeed happens that a loop doesn’t require an explicit initialization
instruction (in cases when the context before the loop already implies the
invariant); then thefrom  clause will be empty:

This doesn’t apply to theloop clause, since it must make some progress in the
approximation (bring at least one new element to the subsets of the previous
discussion); otherwise the loop process wouldn’t terminate. So you can’t have
an emptyloop clause in a realistic loop.

until
“Exit condition”

loop
-- “Loop body”

end

from
Nothing here
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Including the invariant

The basic form of loop, as just seen, doesn’t show the loop invariant. This is
unpleasant since the invariant is essential to understanding what the loop is
about. The optional but recommendedinvariant clause takes care of this. With
this clause our example becomes:

The invariant in this example is still pseudocode, but useful nonetheless to
convey essential information about the loop.

Loop instruction: correctness

The invariant of a loop has two characteristic properties:

An instruction “preserves” a property if its execution, started with that
property satisfied, terminates with the property satisfied again. It’s this
preservation property that explains the name “invariant”.

The class invariant must similarly be ensured upon instance creation, and
preserved by every feature of the class.

from
-- “Definemaxto beN1”
-- “Define i to be1”

until
i = n

loop
-- “Redefinemax as the greater of the current maximum andNi+1”
-- “Increasei by one”

end

Correctness:
Loop invariant

The invariant of a loop must be:
L1 •Ensured by the initialization (from  clause)

L2 •Preserved by the body (loop clause) whenever executed with the exit
condition not satisfied.

invariant
-- “maxis the maximum of {N1, N2, ...,Ni}”

← “Class invariants”,
page 70.
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As we have seen, the purpose of a loop is to achieve a certain outcome by
successive approximations. The steps towards this goal are the initialization
and then successive executions of the body. After each one of these steps, a
property holds that is an approximation of the final desired outcome; that’s the
invariant. In our two examples the invariants, in pseudocode, are:

• “maxis the maximum of {N1, N2, ...,Ni}” as thei-th approximation, for
1 ≤ i ≤ n, of the final property“maxis the maximum of {N1, N2, ...,Nn}” .

• “A red spot has been displayed on all stations visited so far, in their order
on the line”, as an approximation of the final property that the spot has
been displayed on all stations in order.

When the loop execution terminates, the invariantLoop_invariantwill still
hold because of propertiesL1 andL2 above. In addition, of course, the exit
conditionLoop_exitwill hold — otherwise the loop wouldn’t have terminated
yet. So the final condition produced by the loop is

This is the outcome achieved by the loop:

The syntax highlights the Loop Postcondition Rule by putting theinvariant
anduntil clauses next to each other. So if you see a loop with these two
elements and want to know what it does, just look at these two adjacent clauses:

Loop_invariantand Loop_exit

Correctness:
Loop Postcondition Rule

The condition achieved by the execution of a loop is the conjunction of its
invariant and its exit condition.

from
-- “Definemaxto beN1”
-- “Define i to be1”

loop
-- “Redefinemax as the greater of the current maximum andNi+1”
-- “Increasei by one”

end

invariant
“max is the maximum of {N1, N2, ...,Ni}”

until
i = n

and Final condition
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The effect of the loop is their conjunction (theirand).

In the Metro Line animation example, the exit condition is, informally,
“all stations have been visited”; conjoined with the invariant stated above, this
tells us that a red dot has been displayed on all stations, in the order of the line.

The Loop Postcondition Rule is of course the direct consequence of how
loops were defined in the first place, as an approximation mechanism. Quoting
from that earl ier discussion, the idea was to choose as invariant a
generalization of the final goal, which is:

• “Sufficentlyweak that we can establish it easily for some initial subset of
the whole data set”: this is the role of the initialization.

• “Sufficientlyflexible to let us extend it from any applicable subset to a
slightly larger one”: this is the role of the body, executed when the
invariant is satisfied and the exit condition is not satisfied; it then yields a
state where the invariant is satisfied again.

• “Sufficientlystrong to give us the entire desired goal when applied to the
whole set”: this is achieved on exit, as per the Loop Postcondition Rule,
by the conjunction of the exit condition and the invariant.

Loop termination

The loop execution scheme, as described, repeatedly performs the loop body
until the exit condition is satisfied. If the loop derives from a well-devised
approximation strategy as above, its execution will terminate after a finite
number of iterations, since the set being approximated isfinite and each
iteration adds a new element to its approximation, so that the process cannot
go forever. But the loop syntax permits an arbitrary initialization, exit
condition and loop body, so it could in principle execute forever, like

from
“Any instruction here (or none at all)”

loop
“Any instruction here (or none at all)”

end

← Page154.

←Asnotedonpage155.

until
0 /= 0
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In this extreme example the exit condition can never be satisfied, so the loop
can’t ever terminate. If you execute the corresponding program, you’ll be
sitting at the terminal with nothing happening; after a while you’ll probably
realize that something’s wrong, so you’ll interrupt the program (EiffelStudio
has a button for that purpose). But of course this is very disturbing, especially
since you have no way to know — if you are just a user of the program, and
have no access to its text — whether the program is really looping forever, or
just taking a long time.

A loop with 0 /= 0 as exit condition makes no sense, but even when you
mean well you may inadvertently produce a non-terminating loop and hence a
non-terminating program. To avoid this unpleasant result the best technique is
to ensure that each loop you write has an associatedloop variant:

If indeed you can find such an expression, then you have shown that the loop
will terminate after a finite number of iterations: it’s not possible for a
non-negative integer value to decrease forever while remaining non-negative.
In fact, if we know the original valueV of the variant after initialization, we
know that the loop will terminate after at mostV iterations, since each iteration
decreases the variant by at least 1.

For this reasoning to hold, the variant must indeed be an integer. Real numbers
would not work, since it is perfectly possible (in mathematics, if not on a
computer) for an infinite sequence of real numbers, such as the sequence 1, 1/2,
1/3, ..., 1/n, ..., to consist of ever decreasing values.

If you know a variant, the syntax lets you specify it in avariant clause next to
the invariant clause. For example we may add a specification of the loop
variant to our computation of the maximum:

Definition: Loop variant
A variant for a loop is an integer expression possessing the following
properties:
1 • On execution of the loop initialization (from clause), the variant has a

non-negative value.

2 • Every execution of the loop body (loop clause) when the exit condition
is not satisfied decreases the value of the variant.

3 • Every such execution also keeps the variant non-negative.
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The variant identified here isn – i . It indeed satisfies the conditions:

V1 •The initialization setsi to 1. The program assumes thatn ≥ 1. So the
variant is initially non-negative.

V2 •The loop body increasesi by one, and hence decreasesn – i by one.
Because the invariant combined with the negation of the exit condition
tells us thati remains less thann at the start of the loop body, the variant
remains non-negative.

V3 •When the exit condition is not satisfied,i will be less thann and hence
n – i, when decreased by one, will remain non-negative.

For the last pointV3, it is not sufficient to consider the negation of the exit
condition, which only tells us thati /= n: we need to be sure thati < n. But note
the new invariant properties added above:1 <= i andi <= n. These are ensured
by the initialization and preserved by the body when executed withi /= n, so
they are indeed invariant. Then when the exit condition is not satisfied, that is
to say,i /= n, we know from the invariant propertyi <= n that in facti < n.

You may well feel at this point that I am splitting hairs and that the loop
as given is evidently correct — that it will always terminate, having computed
the maximum of the given set of values. But in practice it’s a common mistake
to write a loop that will not terminate. If you have ever used a program to see
it “hang”, it might very well be the result of such a mistake on the part of its
author. Maybe the problem didn’t appear in the program tests; tests can only
capture a small part of all possible cases. Only through the kind of reasoning
illustrated above can you guarantee — for your own programs — that a loop
will always terminate, regardless of the program inputs.

from
-- “Definemaxto beN1”
-- “Define i to be1”

until
i = n

loop
-- “Redefinemax as the greater of the current maximum andNi+1”
-- “Increasei by one”

end

invariant
1 <= i
i <= n
-- “max is the maximum of {N1, N2, ...,Ni}”

variant
n – i
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Considering the possibility of non-termination leads to important notions
which you will study in more detail in a course on the theory of computation:

Touch of Theory:
The Halting Problem and undecidability

The prospect of a loop that runs forever is disturbing. Isn’t there a way,
given a program, to check that every loop in it will terminate? Compilers
already perform some other verifications for us, in particulartype checks
(if x is of type METRO_STATIONand you write a feature callx.f, the
compiler will issue an error message and refuse to compile your program
unlessf is a feature of classMETRO_STATION). Perhaps they could also
check loop termination?

The answer to this general question isno. A theorem states that — assuming
a programming language powerful enough for practical needs — it’s
impossibleto write a program (such as a compiler) that will correctly report,
when fed any program text, whether that program will always terminate.
This is known as theundecidability of theHalting Problem:

• TheHalting Problem is whether a program will terminate (halt).
• A problem isundecidableif no effective technique exists that will

yield a correct solution in every case.

The Halting Problem is the most famous undecidability result in the theory
of computation, although not the only one.

Depressing as it may sound, this result doesn’t prevent you in practice, when
you write a program, from guaranteeing — as you should! — that it will
terminate. The undecidability theorem rules out anygeneralmechanism that
would determine termination foranyprogram, but notspecifictechniques
for demonstrating thatsomeprograms will terminate. The use of an explicit
loop variant is such a practical technique — a very effective one. If you can
prove that an integer expression has the variant propertiesV1toV3(initially
non-negative, decreased, and maintained non-negative by every iteration),
then you have the guarantee that the loop will terminate.

Commercial-grade compilers are not yet able to perform such proofs, so
you will have to do them manually by inspecting the program, and, if there’s
any doubt, let EiffelStudio check at run time that the variant decreases on
each iteration. Unlike the general Halting Problem this is not a fundamental
impossibility, but a limitation of current technology.
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We will actually be able toprove the undecidability of the Halting Problem
once we’ve studied routines.

The undecidability of the Halting Problem belongs to a series ofnegativeresults
that burst into one science after another in the early 1900s, spoiling the Great
Science Party that the new century had seemed to herald:

• Mathematicians saw the validity of set theory — and, as it turned out, of the basic
techniques of logical reasoning — put into question by the emergence of apparent
paradoxes; just as an enormous 30-year effort to repair the foundations, by such
mathematicians as Bertrand Russell and David Hilbert, seemed to have a chance
of succeeding, Kurt Gödel proved that in any axiomatic system powerful enough
to describe ordinary mathematics there will be properties that can be neither
proved nor disproved. Thisincompletenesstheorem is one of the most striking
examples of the limitations on our ability toreason.

• At about the same time, physics had to accept the Heisenberg uncertainty principle
and other results of quantum mechanics that put limits on our ability toobserve.

Undecidability results, for the Halting Problem in particular, are the computing
science version of such absolute limitations.

Touch of History:
Tackling the Halting Problem

The Halting Problem was described — as a special case of the “decision
problem”, orEntscheidungsproblem, a general issue going back to Leibniz
in the 17th-18th century and Hilbert in the early 20th — and its
undecidability proved, a decade before the appearance of actual
stored-program computers, in a famous mathematical paper of 1936, “On
Computable Numbers, with an Application to the Entscheidungsproblem”.
The author, the British mathematician Alan Turing, relied on an abstract
model for a computing machine, known as theTuring machine. The
Turing machine — a mathematical concept, not a real machine — is still
used today to discuss general properties of computation, independent of any
particular computer architecture or programming language.
Turing didn’t stop at mathematical machines. He went on during the second
World War to lead the successful effort to decrypt the German
cryptographic machine, the Enigma, and afterwards to build several of the
world’s first actual computers. (The end of his life was marred by — let’s
resort to understatement — lack of recognition of his achievements by the
authorities of his country.)
Alan Turing introduced many of the seminal ideas of computing science.
The highest distinction in the field, the Turing Award, honors his memory.

→ “AN APPLICA-
TION: PROVINGTHE
UNDECIDABILITY
OF THE HALTING
PROBLEM”,  page
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The theoretical undecidability of the Halting Problem shouldn’t directly affect
— except for the emotional trauma of coming to terms with our intellectual
limitations, but I trust you’ll recover — your practice of programming; yet
non-terminating programs are not just a theoretical possibility but a very real
threat. To avoid its unpleasant occurrence, the advice is clear:

Animating a metro line

As a simple example of loop, we come back to the problem sketched at the
beginning of this section: “animating” Line 8 by having a red dot move
through its stations. We may use:

• From classMETRO_STATION, a querylocation, indicating the station’s
place on the map; the result is of typePOINT, representing the notion of
point in a 2-dimensional space.

• A commandshow_spotfrom classTOURISM; show_spot(p), for p of
typePOINT, will display a red spot at locationp.

• Spot_time, also fromTOURISM, a predefined value for the time to leave
the red spot on each station; it’s set to 0.5 seconds.

The task of the loop will be to callshow_spotat the position of every station
of the line, in sequence.

To get to the successive stations we could (with the help of operations on
integer variables studied in thechapter after next) use the queryi_th which
gives us thei-th element of a line, through the callsome_line.i_th (i), for any
applicablei; the loop would have to perform

for successive values ofi, ranging from 1 toLine8.count. Instead we’ll use this
opportunity to discover a typical form of loop used foriterating over object
structures such as list. To “iterate” over a data structure is to perform an
operation on each of its elements, or on a subset of its elements selected by an
explicit criterion. Here the operation consists of callingshow_spotfor the
position of the selected station.

Touch of Methodology:
Loop termination

Whenever you write a loop, examine the question of its termination.
Convince yourself — by identifying a suitable variant — that it will always
have a finite number of iterations. If you can’t, rework the loop until you can
equip it with a satisfactory variant.

show_spot(Line8.i_th (i).position)

← Page151.

→ Assignment:
chapter9.
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Classes such asMETRO_LINE, and in general classes describing ordered
lists of things, support iteration by letting you move acursor (a marker) to
successive places in the list. The cursor doesn’t have to be an actual object,
simply an abstract notion denoting, at any point in time, a position in the list:

In the state shown, the cursor is on the third station.METRO_LINEand other
list classes include the following four key features — two commands and two
queries — for iterating over the corresponding object structures:
• The commandstart, which brings the cursor to the first item. (An item is

an element of the list, such as a station in the case of a Metro Line).
• The commandforth, which advances the cursor to the next item.
• The queryitem, which yields the item, if any, at cursor position.
• The boolean queryis_after, yieldingTrueif and only if the cursor is at the

extreme right, past the last element if any. For symmetry there’s also
is_before, although we don’t need it yet.

Balard

Cursor position

Lourmel Boucicaut Felix_
faure

... A list and its
cursor

Basic list
features

1 count

start

item

is_afteris_before

forth

index
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Also useful is the queryindexwhich, as illustrated, gives the index of the
current cursor position, which is 1 for the first item andcount for the last.

This is enough to give us the general iteration scheme for lists, and its
application to our example:

The scheme usingstart, forth, itemandis_afterto iterate over a list occurs so
frequently that you must make sure to understand its details and convince
yourself of its correctness. Informally, its effect is clear:

• Bring the cursor to the first item of the list, if any, through the call tostart
in the initialization.

• At each step through the loop, display forSpot_timeseconds a red spot
on the stationLine8.itemat cursor position.

• Also at each step, after displaying the spot, advance the cursor by one
position, throughforth.

• Stop when the cursoris_after, that is to say, past the last item.

To avoid any confusion (I hope the previous discussion doesn’t leave room for
any, but just in case…): be sure to note that there is no connection between the
position of a station on the map or, as we’ve called it, itslocation, and the notion
of cursor position:

from
Line8.start

invariant
-- “For all stations before cursor position, a spot has been displayed”
-- “More invariant clauses (see below)”

variant
Line8.count – Line8.index + 1

until
Line8.is_after

loop
show_spot(Line8.item.location)
Line8.forth

end
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• A station has a geographical location in the city, determined by its coordinates.

• The cursor exists only in our imagination and in our program, not in the world out
there. It’s an internal marker enabling the program to iterate over a list of stations,
remembering from one iteration to the next what item it visited last.

Let’s now consider the loop constituents in more detail. The initialization uses
start to bring the cursor to the first position. In the Contract View of class
METRO_LINE(and of any similar class based on the notion of list) you may
see that the specification ofstart reads:

The boolean queryis_emptyindicates whether the list is empty. Let’s consider
first the case of a non-empty list (likeLine8). The first postcondition clause
at_first of start indicates that after initialization the cursor is on the first
element (index= 1), as we would expect.

The loop’s exit condition isLine8.is_afterand so for a non-empty list it
won’t be satisfied after initialization; you can in fact check this through the
clause in the class invariant that reads

Since this is an equality between two boolean values, it means thatis_afteris
true if and only ifindex= count + 1; for a non-empty listcountwill be at least
1, so after the initialization, whenindex= 1 , it’s impossible foris_after to
hold. So in this case the loop body will be executed at least once.

Programming time!
Terminating and non-terminating loop

Update the loop in featuretraverseof classROUTESto read as the last
version, with the variant and (informal) invariant. Run it.
Now remove the instructionLine8.forth, introducing an error. Run the
system again and observe what happens.
(Then restore the missing line for future exercises.)

start
-- Bring cursor to first element
-- (No effect if empty)

ensure
at_first: (not is_empty) implies (index= 1)
empty_convention: (is_empty) implies (is_after)

is_after= (index= count + 1)
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Each execution of the loop body performs

which displays a red spot at thelocation of the item at the current cursor
position in the list.

Understanding and verifying the loop

Let’s gain a deeper understanding of our loop example by verifying that it’s
correct. It’s a good idea, as you read, to use the debugger to examine the
objects involved at various stages of the execution.

For ease of reference here is the loop again:

show_spot( .location)

Programming time!
Using the debugger

As you read through the complementary explanations of this example, and
in particular its correctness arguments, it is useful to get a concrete picture
by following what’s going on at run time. The EiffelStudiodebugger
provides this capability. Use it to execute the program as a whole, or
instruction by instruction in the featuretraverseof classROUTES, and to
stop it at any time, then traverse the object structure and examine the
contents of relevant objects.

For example you can see the instance ofMETRO_LINEand check that the
results of queries such asis_beforeand is_afteragree with the expected
values as deduced from the analysis of the program carried out below.

Such a run-time inspection tool is not a substitute for systematic reasoning
about programs. Reasoning yields the properties that will hold in all
executions of the program; run-time inspection can only tell you that a
particular property holds at one point of one execution. But it’s still very
helpful as a way to gain a practical understanding of what’s going on; it lets
you, literally,see your program as it’s executing.

As its name indicates, the debugger helps, when a program doesn’t function
as expected, to find out what the error — thebug — is. But its scope is
broader; bug or no bug, it gives you a direct window into program
execution. Don’t wait until something goes wrong to take advantage of it.

A section of the EiffelStudio appendix tells you how to run the debugger to
examine the execution of the current example.

Line8.item

→ Chapter26covers
testing and debugging.

→ “CONTROLLING
EXECUTION AND IN-
SPECTINGOBJECTS”,
A.7, page 576.
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Let’s first deal with the case of an empty list. As noted, the postcondition of
the commandstart reads

so that — by “convention” — an empty list will, after a call tostart, satisfy
is_after. Of course this convention is not there by accident: it’s precisely meant
to ensure that the typical iteration on a list, using the form illustrated by our
example — start withstart, exit onis_after, and each time through the loop do
something withitem and then move on withforth — stops immediately,
having produced no visible effect, when applied to an empty list. This is
indeed the case for our loop.

from [1]
Line8.start

invariant
-- “For all stations before cursor position, a spot has been displayed”
-- “More invariant clauses (see below)”

variant
Line8.count – Line8.index + 1

until
Line8.is_after

loop
show_spot(Line8.item.location)
Line8.forth

end

ensure
at_first: (not is_empty) implies (index= 1)
empty_convention: emptyimplies is_after

Touch of Methodology:
Beware of the border cases!

Extreme cases, such as an empty list, are a frequent source of errors. It’s all
too easy, when you design your program, to think only of non-empty cases
(and test it only on those). Then once in a while the execution of the
program might use an empty structure, and fail. The problem doesn’t just
arise for empty structures but for extreme cases in general; another example
is a structure with limited capacity, which might cause problems whenfull.

When designing a program and reasoning about its correctness, make sure
to think of the extreme cases, and to verify that your reasoning holds for
these cases as well as the more ordinary ones. This also applies totesting:
always include extreme cases in your program tests.

→ Chapter26 discuss-
es testing.
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You may run the example on an empty line (classTOURISMdefines a feature
Empty_linefor that purpose) and use the debugger to follow what happens. For
the rest of this discussion we assume that the line is not empty.

Bring up the specification foritem. You’ll see that it has a precondition,
stating that the query is only applicable if the cursor is on a list element:

as suggested by the figure:

Since the loop body callsitem— in the call toshow_spot— we must verify
that prior to the execution of this call the precondition will always hold.

Note first that the exit condition isnot is_after, so is_after is not true
whenshow_spotis called (if it were, the loop body would not be executed).
Next, is_beforemust also not be true. This is ensured by adding the following
property to the loop invariant:

Why is this indeed a loop invariant? We note in the class invariant that

item: METRO_STATION
-- Current item

require
not_off:not (is_afteror is_before)

not_before_unless_empty: (not is_empty) implies (not is_before) [I2]

is_before= (index= 0)
index>= 0
index<= count + 1

Where a list item
exists

1 count20 ... count+1

Hereitem is defined

itemnot defineditemnot defined

is_afteris_before
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in other words,is_beforeis true, obviously enough, if and only if the cursor’s
indexposition is zero. After initialization, the postcondition ofstart— clause
at_firstas givenabove — indicates thatindexis one, sois_beforecannot hold.
Then we have to check that every execution of the loop body preserves this
property [2]. The specification offorth reads

Sinceindexhas been increased by one, it cannot be zero, and henceis_before
cannot hold. So [2] is indeed a loop invariant.

You should track the properties just seen on an actual execution of the
loop; use the debugger to execute the loop iterations one by one, and explore
the object structure at each step.

The cursor and where it will go

To complete our understanding of loops and of this example it’s useful to
check a little further into the class invariant ofMETRO_LINE. If you bring it
up you’ll see the following two clauses, also appearing in all the library classes
having to do with list structures of any variation:

This expresses, as illustrated below, that we allow the cursor to be:
• On an item if any (if the list is empty there are no items)
• One position left of the first item, but no further to the left.
• One position right of the last, but no further right.

forth
-- Move cursor to next position

require
not_after:not is_after

ensure
moved_forth: index= old index + 1

non_negative_index: index>= 0
index_small_enough: index<= count + 1

← Page167.

Permitted cursor
positions

1 count20

Item positions:
... count+1

Possible cursor positions
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Being able to go off by one position is useful for the loop scheme illustrated
by our spot-moving example:

After the loop has processed the last item, the highlighted call toforth will
move past that item. This will causeis_afterto be true, so that there will be no
further iteration; but it is essential that the call toforth be possible even though
it leads to a position (atcount + 1) where there is no list item. The invariant
permits this; it is matched by the precondition offorth, cited above:

7.6 CONDITIONAL INSTRUCTIONS

The next control structure, the conditional instruction, doesn’t raise as many
issues as the loop, but is also a fundamental building block for programs.

A conditional instruction involves a condition and (in the basic form) two
instructions; it will execute one of these instructions if the condition holds, the
other one if not.

As a problem-solving technique, the conditional instruction corresponds
to separating cases: divide the problem space into two (or more) parts such
that it is easier to solve the problem separately in each part. For example, when
trying to get from the Eiffel Tower to the Louvre:

• If the weather is good and you are not too tired,thenwalk to the nearest
station and take the metro.

• Else try to catch a taxi.

from
some_list.start

invariant
-- “All items left of cursor, if any, have been processed”

variant
some_list.count – some_list.index + 1

until
some_list.is_after

loop
-- “Process item at cursor position”

end

require
not_after:not is_after

some_list.forth
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Or, in elementary mathematics, if you are asked for real roots of the quadratic
equationax2 + bx + c = 0:

• If the discriminantδ defined asb2 – 4 acis positive,thenyou can derive
the two solutions(–b ± ) / 2a.

• Else, if δ is zero,then you can derive the single solution–b / 2a.

• Else, there is no real solution (only complex ones).

You may picture the use of a conditional, as a problem-solving technique, in
terms of a partition of the set of cases to handle:

You have found a separation of the problem space into two parts, characterized
by a certaincondition, which holds on one and not in the other, such that it’s
easier to find a separate solution for each part than a global solution. The basic
form of the construct will be:

Conditional: an example

As a typical example of conditional instruction, let’s adapt our last loop
example. The loop was displaying a spot on each station. We refine this by
stopping a little longer, with a spot that blinks, on exchanges. ClassTOURISM
obligingly provides for that purpose a commandshow_blinking_spot,
complementingshow_stop used so far.

We can achieve the result through this variation of the previous loop,
where the only change is the highlighted part:

if  conditionthen
“Produce Region 1 solution”

else
“Produce Region 2 solution

end

δ

REGION 1:
conditionholds

REGION 2:
conditiondoesn’t hold

Conditional as a
partition of the
problem space

← [1], page 169.



CONTROL STRUCTURES §7.6174

The example conditional instruction uses three times the expressionLine8.item, a
query call. It is more elegant to compute the result once, give it a name, and then
reuse that name whenever needed. We’ll learnsoon how to do this.

For the conditional instruction we need no less than four new keywords:if ,
then andelse, as well aselseifwhich will appear next. The basic structure is
straightworward:

whereconditionis a boolean expression andCompound_1andCompound_2
are compound instructions —sequences of zero or more instructions.

from [3]
Line8.start

invariant
not_before_unless_empty: (not is_empty) implies (not is_before)
-- “ For all stations before cursor position, a spot has been displayed”

variant
Line8.count – Line8.index + 1

until
Line8.is_after

loop

Line8.forth
end

Programming time!
Using a conditional

Update the preceding example — featuretraversein classROUTES— to
take into account the conditional instruction above. Run the result.

if  conditionthen
Compound_1

else
Compound_2

end

if  Line8.item.is_exchangethen
show_blinking_spot(Line8.item.location)

else
show_spot(Line8.item.location)

end

→ Assignment:
chapter9.

← “SEQUENCE
(COMPOUND
INSTRUCTION)”, 7.4,
page 145.



§7.6 CONDITIONAL INSTRUCTIONS 175

Conditional structure and variants

Being sequences ofzero or more instructions, bothCompound_1and
Compound_2 may be empty, so that you may write

with nothing in theelsepart. This corresponds to the frequent case of an
instruction or sequence of instructions that you want to execute only if a
certain condition holds, doing nothing otherwise. Rather than including an
elseclause with no instructions you may in this case omit the clause altogether.
You will just write:

In either form — with or without anelseclause — any of the instructions
making up the compounds can itself be a control structure, for example a loop
or another conditional.

Assume for example that you want to do something different — yet —
for a Metro station that connects to the railway network. You may use this
scheme as a replacement for the previous loop:

if  conditionthen
Compound_1

end

if  conditionthen
Compound_1

end

from … invariant … variant … until … loop [4]
-- The omitted loop clauses are as in [3] above

Line8.forth
end

Not the recommended
style(see next).

else
Nothing here

Recommended style.

No else clause

Not the recommended
style; see[7], page178

if  Line8.item.is_exchangethen
show_blinking_spot(Line8.item.location)

else
if  Line8.item.is_railway_connectionthen

show_big_red_spot(Line8.item.location)
else

show_spot(Line8.item.location)
end

end
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Such inclusion of program structures within others is callednesting. Here we
have a conditional instruction nested in another conditional instruction, itself
nested in a loop.

In examples such as the last one [4] the depth of nesting makes the structure
appear more complex than it needs to be, and we’ll be able to simplify it
without recourse to routines. This simplification is applicable to conditionals
repeatedly nested in theelse part of other conditionals:

In this structure the nesting gives a deceptive impression of complexity,
whereas in fact the decision structure is sequential:

Touch of Style:
How deep a nest?

There are no theoretical limits on how deeply you may nest control
structures. The limits are practical: good taste, and the desire to keep your
programs readable.
The last example [4] has a depth offour: basic instructions appearing within
a control structure, itself within a structure, itself within another. This is
about the maximum that you should use in ordinary programming. That’s
not an absolute rule: some algorithms genuinely require a higher depth of
nesting. But when you reach such a level you should ask yourself whether
you can avoid the extra nesting.
The alternative, in such a case, is usually to carve out a significant part of
the structure and give it an independent status as aroutine, replacing its
original occurrence by acall to that routine. We’ll study routinesnext.

if  condition1 then [5]
…

else
if  condition2 then
…
else

if  condition3 then
…

else
…
-- “More nested occurrences ofif … then … else … end”
…

end
end

end

→ Chapter8.
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• If condition1 holds, execute the firstthen part, and nothing else.

• For i > 1, if conditioni holds but none of theconditionj for j < i, execute
the i-th then part, and nothing else.

• If no conditioni holds, execute the innermostelse part, and nothing else.

The keywordelseifenables you to remove the unnecessary nesting in this case
by writing the successive cases at the same level:

This replaces aMatrioshka-like structure

if  condition1 then [6]
…

elseifcondition2 then
…

elseif condition3 then
…

elseif… More conditions if needed… then
…

else -- As before, theelse part is optional
…

end

Matrioshki
(Russian dolls)if c1 then

...

end

else

if c2 then

...
else

end

...
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by a comb-like structure, less ambitious but easier to understand:

The keyword iselseifas a single word, not to be confused withelsefollowed
by if — two keywords — as used in the previous form, which calls for more
nesting since everyif  must have its very own matchingthen andend.

A piece of trivia, useful in TV contests and in cocktail parties when the
conversation dries up:elseifis the only Eiffel keyword made of two English words.
Every other reserved word of the language is made of a single English word,
unabbreviated, and chosen from everyday vocabulary. “Else if” is a simple enough
notion, but there’s no single English word to describe it.

With elseif we may rewrite the last Metro line example [4] as a single
conditional instruction with no further nesting:

from … invariant … variant … until … loop [7]
-- Omitted loop clauses as in [3]

Line8.forth
end

condition1

Instructions1

...

else

elseif

elseif

if

then

then

end

Instructions2

Instructions0

condition1

...

Comb-like
structure

if  Line8.item.is_exchangethen
show_blinking_spot(Line8.item.location)

elseif Line8.item.is_railway_connectionthen
show_big_red_spot(Line8.item.location)

else
show_spot(Line8.item.location)

end
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Conditional: syntax

Here is a summary of the form of conditional instructions:

If, by the way, you find this form of syntax description too verbose and at the
same time not rigorous enough (for example we have to understand that each
conditiondenotes a separate boolean expression), you are right. The better
technique for describing such non-trivial syntax constructs — such as the
control structures of this chapter — is a mathematical notation known as BNF.
We’ll learn it in the chapter on syntax. The informal specifications of the
present chapter, aided by examples, will suffice in the meantime.

Conditional: semantics

The effect of the conditional instruction reflects the preceding discussions:

Syntax:
Conditional

A conditional instruction consists, in order, of:
• An “If part”, of the formif condition.
• A “Then part” of the formthen compound.
• Zero or more “Else if parts”, each of the form

elseifconditionthen compound.
• Zero or one “Else part” of the formelsecompound
• The keywordend.

Here eachcondition is a boolean expression, and eachcompoundis a
compound instruction.

Semantics:
Conditional

The execution of a conditional instruction consists of executing at most one
of the compound instructions appearing in its “Then part”, “Else if” parts if
any and “Else part” if any, determined as follows:

• If the condition followingif has valueTrue, the compound in the Then part.
• If that condition has valueFalse, the first compound in an Else if part,

if any, such that the corresponding condition has valueTrue.
• If none of the above applies and there is an Else part, its compound.
• If none of the above applies, no compound (the conditional has no effect).

→ Chapter13.



CONTROL STRUCTURES §7.7180

Conditional: correctness

The correctness of a conditional instruction is the separate correctness of both
of its branches under the respective assumption that the condition holds and
doesn’t hold:

7.7 THE LOWER LEVEL: BRANCHING INSTRUCTIONS

The combination of our three fundamental mechanisms — sequence, loop and
conditional — provides the appropriate basis (when complemented by
routines) to build the control structures that we need to build our programs.

These programming-language mechanisms have counterparts in the
instruction codes directly executed by computers, or “machine languages”.
Compilers are responsible for the mapping between the two. But the control
structures offered by most machine languages are more rudimentary than
those we have studied.

Conditional and unconditional branching

Machine-level control mechanisms typically include:

• Unconditional branch: an instruction that transfers control to the
instruction found at a given location in memory. In the example below
this instruction will appear asBR AddresswhereAddressis the location
of the target instruction.

• Conditional branch: transfer control to a specified location if two
specified values are equal, otherwise proceed to the next instruction. We
may write itBEQ Value1 Value2 Address. The name stands for “Branch
if EQual”.

Correctness:
Conditional instruction

For a conditional instructionif c then a else b end to be correct, the
program must ensure that prior to the conditional’s execution:

• If c holds, the precondition ofa holds.
• If c doesn’t hold, the precondition ofb holds.

The postconditions ofa andb — each executed under these conditions —
must imply the postcondition desired for the conditional instruction.
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With these mechanisms the equivalent of

looks like this:

Hereloc_aandloc_bstand formemory locations holding the values ofa and
b The numbers on the left are instruction locations; starting at 100 is just an
example, and so are the numbers of locations occupied by the code for each
compound instruction. Determining precisely the space taken up by machine
instructions associated with every program element, and laying out everything
in memory, can be a tricky task; since almost no one writes application at the
machine-language level, this task is the responsibility of compilers (that is to
say of compiler writers) rather than application programmers.

From thisconditionalexample, you can infer the code structure that a
compiler would generate for aloop. This is the subject of anexercise.

The goto instruction and flowcharts

Branching instructions, conditional and non-conditional, reflect basic
operations that computers are able to perform: test certain boolean conditions
such as the equality of two values held in memory; transfer control to an
instruction stored at a specified location. So it is natural that we should find
these instructions in machine language. But they were not always confined
there. All programming languages used to have, and many still offer, agoto
instruction, whose name comes from “go to” written as a single word. In such
languages you may give alabel to instruction, as in

if  a = b then
Compound_1

else
Compount_2

end

100 BEQ loc_a loc_b111
101 ... Code forCompound_2

...
110 BR125
111 ... Code forCompound_1 ...

...
125 ... Code for continuation of program ...

some_label: some_instruction

A conditional in
machine code

Such values on which
machine instructions
operate directly are
usually held in special
locations calledregis-
ters. See chapter12.

→ 7-E.2, page 195.
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wheresome_labelis a name — an identifier — of your choice. It is common
for such languages to use a colon: between the label and the instruction it
labels, but other conventions are possible. These labels correspond to the
location numbers (100, 101, ...) appearing in our machine-language example,
but they are chosen by the programmer, who lets the compiler maps them to
actual locations. The language then includes an instruction of the form

whose effect is to transfer control — which would otherwise continue with the
instruction appearing next — to the instruction with the givenlabel.

Instead of anif condition then Compound_1elseCompound_2end
conditional, the language may have a more limited choice instruction
test condition simple_instruction, which executes thesimple_instructionif
theconditionis true, otherwise proceeding sequentially. This closely reflects
machine-level instructions such asBEQ. To express the equivalent of the
conditional in such a language you would write:

This is less clear than the conditional instruction, with its hierarchical,
symmetric structure.

The comparison is even less favorable for a loop which, ignoring the
from  part, would be represented as:

goto label

test conditiongotoelse_part
Compound_1
gotocontinue

else_part: Compound_2
continue: … Continuation of program…

start: test exit_conditiongotocontinue
Body
gotostart

continue: … Continuation of program…

The keyword is usually
if in such languages;
test is used here to
avoid confusion with
the full-blown condi-
tional instruction.
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with its control flow involving twogotobranches going in opposite directions:

Flowcharts

The last figure uses a representation of the control flow called aprogram
flowchart or just flowchart. The box shapes are standardized: diamond for a
test node, here with two outgoing branches forTrueandFalse; rectangle for a
processing block, here for theBody. You maytest your understanding of the
concept by drawing a flowchart for the Conditional construct.

Flowcharts used to be a popular way of expressing the control structure
of a program. Nowadays you may still encounter them in descriptions of
non-software processes, but for programming they have fallen into disrepute
(to the point that some authors call them “flaw charts”). That’s easy to
understand. When programming languages gave you, as control structures, the
unconditionalgoto and a conditional branching instruction such as
testconditiongoto label, flowcharts provided a welcome high-level view of
the run-time flow of control, clearer than what could be inferred from reading
the program text with its succession of branching and non-branching
instructions. But this is obsolete for two reasons:

• Our programs do more complicated things. We nest compounds within
loops within conditionals; big flowcharts quickly become messy.

• The mechanisms of this chapter — compound, loop, conditional —
provide a higher form of expression for the control structure. A neatly
formatted program text, with indentation clearly reflecting the nesting,
carries a better representation of the run-time scheduling of instructions.

Flowchart for a
loop

exit_
condition

Body

True

False

→Exercise7-E.3,page
196.
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The move from flowcharts to carefully chosen and properly nested control
structures belies the cliché that “a picture is worth a thousand words”. In
software we need many thousands or indeed millions of “words”, but it’s
critical that they be theright words. For precise, unambiguous descriptions
pictures lose their appeal.

The correctness of a program may depend on fine details such as using a condition
i <= n rather thani < n; the best pictures in the world are largely helpless when it
comes to getting such aspects right.

Goto harmful?

Flowcharts are not the only casualty of the reexamination of control structure
specification that occurred as software engineering grew into a discipline: the
goto instruction also lost favor.

The reasons are pretty much the same. The mechanisms that we have
studied offer better control over execution. This comment actually contains
two separate arguments which we must distinguish carefully:
• The first observation is that the loop and conditional constructs (the

compound doesn’t need any explicit transfer of control) are much more
readable — especially when we handle complex control needs by nesting
several such constructs within each other — thangoto. This doesn’t take
much convincing; a simple look at the original structures and theirgoto
variants suffices.

• That is not, however, the full story. By sticking to the three mechanisms
listed we are restraining ourselves as compared to a programmer who
would be using arbitrarygoto instructions — or, equivalently, arbitrary
flowcharts with arrows, possibly crossing each other, from any decision
box to any other box. The nickname for such contorted control structures
is spaghettibowl; the figure opposite shows an example, still small. The
high-level control structures are clearly better for program readability, but
that’s only a methodological argument. Could it be that by restricting
ourselves to our three control structures and excluding thegoto we lose
something essential? In other words, are there important algorithms that
one cannot express without fullgoto power?

The answer, remarkably enough, isno. A theoremproved in 1966 by two
Italian computer scientists, Corrado Böhm and Giuseppe Jacopini, states that
every flowchart of interest in the theory of computation has an equivalent
expression using only sequence and loops (the conditional is not even needed).

The transformation rules from arbitrary flowcharts togoto-less programs,
as derived from their paper, are complex. Without using any such theory you
may try your hand — just by using your understanding of the program to spot
the implicit loops and rearrange the blocks — at de-gotofying a simple
structure, or even the flowchart of the last figure.

The implied slander on
one of humankind’s
most creative culinary
inventionsisregrettable.
On the other hand, real
programmers mostly
run on cold pizza.

Corrado Böhm and
Giuseppe Jacopini:
Flow diagrams, Turing
machines and lan-
guages with only two
formation rules. Com-
munications of the
ACM,vol.9,no.5,pages
366-371, May 1966.
(Requires a background
in computation theory.)
→Exercise7-E.3,page
196.
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But that is not really what you will do in practice. There is no need to usegotos
and then remove them. You should build your program directly with the
high-level control structures, which have amply proved their adequacy to
express algorithms simple and complex in a clear way.

Touch of History:
Quashing thegoto

Today “Go to” is almost a dirty word in programming, but that wasn’t
always so. Once upon a time, branch instructions were the basic control
structure. And then without warning appeared in theCommunications of the
ACMof March 1968 — the year, throughout the Western world, of youthful
questioning of the established order — anarticle entitled “Goto considered
harmful” by Edsger W. Dijkstra. To avoid delaying its publication the editor
at the time, Niklaus Wirth, had decided to run it as a “Letter to the Editor”.
Through careful reasoning Dijkstra argued that unrestricted branches were
detrimental to program quality.
This led to the mother of all programming polemics — then as now,
programmers don’t like their habits questioned — which still resurfaces once
in a while. But no one would seriously argue any more for unrestricted gotos.

Spaghetti bowl

→ See reference &
URL in“FURTHER
READING”,  7.10,
page 194.
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Dijkstra’s short paper, which every programmer must read, beautifully
explained the challenge that we face when devising a program:

No one, then or later, has said this better. A program, even a simple one, is a
static view of a wide range of possible dynamic computations, determined by
the wide range of possible inputs. So wide indeed is the range — in many
cases, potentially infinite — that we can’t visualize it; but to ensure the
correctness of our program we must somehow infer the dynamic properties
from the static view. The discipline of using a nested structure of clear,
well-understood mechanisms such as the sequence, the loop and the
conditional helps; accepting the unrestrictedgoto would defeat this goal.

Structured programming

The revolution in views of programming started by Dijkstra’s iconoclasm led
to a movement known asstructured programming , which advocated a
systematic, rational approach to program construction. Structured
programming is the basis for all that has been done since in programming
methodology, including object-oriented programming.

As thefirst book on the topic shows, structured programming is about
much more than control structures and thegoto. Its principal message is that
programming should be considered a scientific discipline based on
mathematical rigor. (Dijkstra went further, describing programming as “one of
the most difficult branches of applied mathematics”).

What stuck in the mind of the programming masses, however, is the
elimination of thegoto and the restriction of control structures to the three
kinds seen in this chapter: sequence, loop and conditional, often called “the
control structures of structured programming”.

Touch of the Masters:
Dijkstra on the program and its execution

Our intellectual powers are rather geared to master static relations and our
powers to visualize processes evolving in time are relatively poorly
developed. For that reason we should do(as wise programmers aware of our
limitations) our utmost to shorten the conceptual gap between the static
program and the dynamic process, to make the correspondence between the
program(spread out in text space) and the process(spread out in time) as
trivial as possible.

E.W. Dijkstra, 1968

Dijkstra

→ “Structured Pro-
gramming”, reference
on page194.
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These control structures all haveone-entry, one-exit flowcharts:

In contrast, arbitrary control structures — see the units of our earlierspaghetti
bowl — may have any number of entries and exits. Restricting ourselves to
building blocks with one entry and one exit means that we can construct
arbitrarily ambitious algorithms through three simple mechanisms:
• Serial connection: use the exit of one unit as the entry of another, as an

electrical engineer connects the output of a resistance to the input of a
capacitor.

• Nesting: use a unit as one of the blocks within another.
• Functional abstraction: turn a unit, possibly with sub-units, into a

routine, also characterized by one-entry, one-exit control flow.
The Böhm-Jacopini theorem tells us that we are not losing any expressive
power by limiting ourselves to these mechanisms. The gains in program
simplicity and readability — and hence in guaranteeing that the programs are
correct, extending them, reusing them — are considerable.

Three kinds of
one-entry,
one-exit
structure

(Compound) (Loop) (Conditional)

← “Spaghetti bowl”,
page 185.
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The goto puts on a mask

While few people would argue for a return to the generalgoto, the battle for
simple control structures is not over. In particular, many programming
languages support a form of loop that permits a “break” away from the middle.
(There are also break instructions for “multi-branch” variants of the
conditional, studied below.) The loop break instruction gives possibilities such
as

The effect is that ifother_conditionholds during an execution of the loop body
execution terminates prematurely, skipping theOther_instructions, any
further testing ofexit_condition and any further iteration.

Other constructs of a similar nature include an instructionagain that stops the
current loop iteration to start the next one immediately.

Such instructions are nothing else than the oldgoto in sheep’s clothing. Treat
them the same way as the original:

It’s easy to apply the advice to examples such as the above: just rewrite it as

Other examples may require more rework but they do not affect the general rule.

from … until  exit_conditionloop
Some_instructions
if  other_conditionthen end
Other_instructions

end

Touch of Methodology:
Sticking to one-entry, one-exit building blocks

Stay away from any “break” or similar control mechanism.

from … until  exit_conditionloop
Some_instructions

end

WARNING: Illustration
only. Not legal Eiffel.

break

← “Flowchart for a
loop”,  page 183.

if not other_conditionthen
Other_instructions

end
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The basic argument for that rule is the same one as against the general
goto: the clarity and simplicity of one-entry, one-exit structures. There’s also
a fundamental criterion: our ability to reason about the semantics of programs:
in Dijkstra’s terms, to “shorten the conceptual gap between the static program
and the dynamic process”. With loops as we’ve seen them, a key technique for
such reasoning is theLoop Postcondition Principle: to understand what a
loop does, it suffices to combine the invariant (even if informal) with the exit
condition. For example we devised the loop computing the maximum of a set
of values to have the invariant

and the exit condition

making it immediate by visual inspection that the loop — if its initialization
does succeed in establishing the invariant and its body in maintaining it, and
if it terminates — ensures thatmaxis the maximum ofN1, N2, ..., . As soon
as we introducebreak instructions or any other way to disrupt the basic
control flow of the loop, such reasoning is no longer possible; in fact the very
notion of loop invariant goes away, at least in the simple, immediately
understandable form we have seen. That’s already reason enough to stick,
once again, to the one-entry one-exit scheme.

7.8 OTHER CONTROL STRUCTURES

Sequence, loop, conditional: the threesome of “structured programming”
make up the basis of structuring control flow. (By now you might have got the
message.) Some variants are interesting too and we’ll now take a quick peek
at them.

Since the Böhm-Jacopini theorem tells us that the basic threesome is
enough to express all meaningful algorithms, none of the extensions below is
theoreticallynecessary; they can all be expressed, in a simple way, as
combinations of sequences, loops and conditionals. But that doesn’t
automatically disqualify them as useful tool for the programmer, since they
might give us a more effective mode of expression in particular cases. Based
on this criterion we may divide them into two categories:

C1 • Constructs that provide a welcome improvement over the basic ones,
applicable to important practical cases.

“max is the maximum ofN1, N2, ...,Ni”

i = n

Nn
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C2 • Mechanisms which you need to know since they are present in some
common programming languages, but for which no compelling argument
exists to justify using them.

This difference is of course partly a matter of opinion, and you’ll be able to
form your own.

Loop initialization

You may note first that thefrom clause of our loop construct is (as far as I
know) specific to Eiffel. As a way to specify the control flow it is of course
redundant since instead of

you may combine the “sequence” control structure with the loop, writing

This achieves exactly the same effect. The most common loop constructs
indeed start at theuntil , or its equivalent in another language.

The reason for including thefrom in the syntax is clear: most loop
processes, like most approximation processes, need some kind of
initialization, and that initialization is not just some instruction that comes
before the loop: we want to treat it as an integral part of the loop, since without
it the loop wouldn’t work correctly. This is reflected in the loop correctness
rules, as the theory assigns a precise role to the initialization:ensuring the
initial validity of the loop invariant , prior to any iterations of the loop body,
each of which (if applicable) must thenpreserve that invariant.

In languages whose loops don’t have afrom clause all you’ll be able to
do is to write the initialization as a separate compound, perhaps with a
comment explaining why it’s there.

from
Initialization_instructions

until conditionloop
Body

end

from
-- Nothing here!

until conditionloop
Body

end

Initialization_instructions
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In Eiffel, this discussion gives us an answer to the question that you may
have been asking yourself: if some operations are executed before a loop,
should they appear in preceding instructions or in the loop’s ownfrom clause?
Depending on the role of those operations, they might be in either place, or
split across the two:

Other forms of loop

Many programming languages propose a form of loop, usually with the
keywordwhile, highlighting thecontinuation rather than exit condition:

The semantics is: evaluateContinuation_condition; if it is false, do nothing; if
it is true, executeBodyand start again. This is equivalent, in our style, to using

or unti l Exit_condit ion where Exit_condit ion is the negation of
Continuation_condition.

The difference is one of viewpoint:

• Thewhile form emphasizesexecution: it reflects that at run time the loop
will execute its body as long as theContinuation_condition holds.

• Theuntil form emphasizesreasoningabout the program, its correctness
and its effect: it reflects that the loop will yield a result that, together with
the invariant property, satisfiesExit_condition.

Touch of Methodology:
Where to place pre-loop instructions

If an instruction executed before a loop serves to initialize the loop process,
for example to establish its invariant, put it in the loop’sfrom  clause.
If it is part of a set of operations that simply happen to be executed before
the loop in the algorithm of the enclosing routine, put it before the loop.

while Continuation_conditionloop
Body

end

until  Continuation_condition

WARNING: Sample
syntax; not valid Eiffel.

not
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Another loop variant shouldn’t be confused withfrom… until … loop … end
even though it generally uses the keyworduntil — at the end of the construct
rather than the beginning. It may appear as:

The semantics is: executeBody; then ifExit_conditionevaluates to true, stop;
otherwise start again. Here theBodyis always executed at least once, whereas
the previous variants (from … until andwhile) will not execute it at all if the
exit condition is true (or the continuation condition false) on start.

The equivalent of arepeat loop in our notation is obvious:

This has the disadvantage of repeating theBody, whereas we should generally
try to avoid code replication. One may counter this criticism by noting that the
repetition is part of the algorithm, and that ifBodycontains more than one or
two instructions it’s appropriate to express it as a routine. Here we reach the
realm of opinions. I prefer to have a single loop construct, with its carefully
defined semantics and its simple notion of invariant (its counterpart in the
repeat form is more complicated), and pay the occasional price of repeating a
line of code. It is indeed occasional; in practice zero-or-more loops outnumber
the one-or-more kind.

Yet another loop variant has the form

repeat
Body

until
Exit_condition

end

from
Body

until
Exit_condition

loop
Body

end

for  i: 1 .. 10 loop
Body

end

WARNING: Sample
syntax; not valid Eiffel.

WARNING: Sample
syntax; not valid Eiffel.
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with the semantics of executingBody, whose instructions generally usei,
successively for all values ofi in the given interval: here 1, then 2, and so on
up to 10. The boundary values 1 and 10 are just an example, and in some
languages can be computed at run time rather than set in the program text.

In the C language and its successors the form is

The first element in parentheses is the initialization ofi; the second one is the
continuation condition; the last is the incrementation operation to be
performed after each execution of theBody; the notationi++ means “increase
i by one”. Ignoring thevery visible differences of syntactical style — rather
than keywords, C tends to use many special symbols such as braces,
parentheses, semicolons — this implies a fine degree of control over the
behavior at execution that is characteristic of this style of programming.

Thefrom  loop of this chapter expresses such schemes simply too:

using theassignmentinstructiona := b (“Give to a the current value ofb”)
studied in detail in a forthcomingchapter.

This is not the end of the story about thefor style of loop. One may
definitely argue that thefrom … until … loop equivalent doesn’t do as good
a job of immediately reflecting that the loop is an iteration over a certain
interval,1 .. 10 in our example. This property is buried (as in the C version)
in the operations oni: initialization, test, incrementation. This is a strong
argument for having a higher-level form of loop that simply prescribes: “apply
this operation to all elements of that set”. But then thefor style as shown

for (i=1; i <= 10; i++ ) {
Body

}

from
i := 1

until
i > n

loop
Body
i := i + 1

end

→ AppendixEpresents
the C language.

→ Chapter9.



CONTROL STRUCTURES §7.9194

appears too restrictive: why should we only permit such a scheme for a
contiguous interal of integer values? It’s easy to think of many other
possibilities for “that set”. For example, we have already started using lists,
such as a Metro line seen as a list of stops or stations; it appears just as
desirable that a general mechanism should enable us to ask, in high-level
terms, “apply this operation to all stations on that line”.

Such a mechanism has a name:iterator . We will indeed see that it’s
possible to define general and powerful iterators, applicable to a wide range of
object structures. This will not require any new control structure construct, and
will have to wait until thediscussion of data structures.

Multi-branch conditional

[To be completed.]

Preview: exception handling

[To be completed.]

7.9 TABLE-DRIVEN CONTROL

[To be completed.]

7.10 FURTHER READING

George Polya:How to Solve It, 2nd edition; Princeton University Press, 1957.

The acknowledged reference on becoming better at mathematical
problem solving. Don’t be put off by the publication date, this book is
still a best-seller in its paperback edition.

Edsger W. Dijkstra:Goto Statement Considered Harmful, Letter to the Editor,
in Communications of the ACM, Vol. 11, No. 3, March 1968, pp. 147-148.
Available online atwww.acm.org/classics/oct95/.

A famous note that started the programming methodology revolution of
the seventies and Structured Programming. Explains why the “Goto” is
inappropriate for good programming but, even more importantly,
illuminates the process of program construction, concisely (two pages)
and effectively. Decades later, still a must-read.

Ole-Johan Dahl, Edsger W. Dijkstra, C.A.R Hoare:Structured Programming,
Academic Press, 1972.

→ “ITERATING ON
DATA STRUC-
TURES”,  10.12, page
304

http://www.acm.org/classics/oct95/
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A classic. Consists of three monographs, the first of which, Dijkstra’s
Notes on Structured Programmingis the most famous; but the other two
are just as interesting: Hoare’s cogent description of the complementary
need fordata structuring, and Dahl’s presentation (with Hoare) of the
Simula 67 concepts now known as object-oriented programming. Few
software books have had comparable influence on the history of the field.

7.11 KEY CONCEPTS LEARNED IN THIS CHAPTER

•

New vocabulary

7-E EXERCISES

7-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

7-E.2 Loops in machine language

Consider a loop of the form

Algorithm Branching instruction Concurrent
Conditional Conditional branch Control structure
Cursor Flowchart Iterate
Loop Loop invariant Loop variant
Overspecification Parallel Preserve
Sequence Unconditional branch

from
Compound_1

until
i = n

loop
Compound_2

end
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Using the machine instructionsBR andBEQ assumed in thediscussion of
branching, write the corresponding machine-language code.

7-E.3 Flowchart for a conditional

Following the conventions of the flowchart for aloop, draw a flowchart for the
conditional instructionif ConditionthenCompound_1elseCompound_2end.

7-E.4 Böhm-Jacopini in practice

Consider the followinggoto-based program extract relying on conditional
goto instructions:

1 • Draw the corresponding flowchart.

2 • Propose a program extract that has exactly the same run-time effect but
uses only compound, loop and conditional as control structures, without
anygoto instruction.

7-E.5 Goto elimination for recursion elimination

(This exercise uses material from a later chapter, chapter16 on recursion.)
Express theraw result of recursion elimination for the Tower of Hanoi
problem withoutgoto instructions. Run the result for a few values ofn and
check that the results are the same as those of the recursive version.

Instruction_1
test c1goto t3

t2 Instruction_2
t3 Instruction_3

test c2goto t2
Instruction_4

← “THE LOWER
LEVEL:BRANCHING
INSTRUCTIONS”,
7.7, page 180.

← “Flowchart for a
loop”,  page 183.

→hanoi_derecursified,
page402.
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8

Routines and functional abstraction

The control structures of the previous chapter — compound, loop, conditional
and their variants — give us basic mechanisms for scheduling instructions. If
they were our only tools, we would always have to express the flow of control
in full detail. For complex programs, the depth of nesting would quickly make
the structure defy understanding.

To keep that complexity under control we resort to another time-honored
problem-solving technique:identify subproblems. A subproblem is simply a
problem whose solution may help solve other problems. If the subproblem can
be solved by providing an element — simple or complex — of the control
structure, we can give that solution a name and use it through that name. This
is known asfunctional abstraction; the corresponding programming
mechanism is known as theroutine.

8.1 BOTTOM-UP AND TOP-DOWN REASONING

Why can it be useful to identify subproblems? Two complementary answers
suggest themselves:

• In solving a problem, we may identify a subproblem to which we already
know a solution. Then we’ll just plug that solution back into the solution
of the larger problem. This is abottom-up use of subproblems: work
from what we already know to build up solutions to bigger problems.
This style of reasoning is, for example, fundamental in physics and
engineering: an engineer will analyze an electrical system and model it in
terms of some differential equation of a known type, then use known
techniques to solve that equation and deduce properties of the system.
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• In other cases we realize that part of a problem by itself constitutes a
problem of its own — a subproblem — which we hope will be easier to
solve than the overall problem. This may be useful even if we don’t
already have a solution to the subproblem, because it enables us to deal
separately with various parts of the task. You may for exampleassume
that there is a solution to the subproblem and use it to solve the larger
problem; once you have that larger solution, you will return to the
subproblem and take care of its own solution. This is atop-down use of
subproblems: work on the overall goal, and divide it into a set of smaller
goals, to be solved separately. Top-down development is also known as
“Divide and conquer” (or “Divide and rule”). We have already
encountered a top-down technique:pseudocode, which lets us refer in an
informal way to program parts that we wish to expand later.

Whether in a bottom-up or top-down spirit, the use of subproblems is a form
of abstraction: ignore the specifics of a particular situation to recognize it as
an instance of a general scheme.

In programming, the corresponding construct, capturing the solution to a
subproblem, is known as aroutine.

Routines appear in both bottom-up and top-down development. In their
bottom-up role, they supportreuse: you can take advantage, for your program,
of some algorithmic scheme that you or someone else has previously
encountered and turned into a routine. In the top-down mode, you can use calls
to routines that represent well-identified elements of the processing, and
postpone the writing of the routines themselves. This is similar to using
pseudocode but more structured, since you have to decide on a precise name
and interface for the routine.

Touch of Terminology:
Routines by any other name

Routines have several other names. You may encounter the synonyms
subprogram(suitably reminiscent of “subproblem”) andsubroutine, out of
fashion except for the Fortran programming language.
Routines may return a result, and are then calledfunctions; a routine that
doesn’t return a result is called aprocedure. Both of these terms are,
however, sometimes used in reference to routines of the general kind; in
particular, C and C-based languages use “function”.
As if this weren’t enough, you will also notice, for object-oriented
languages, the wordmethod, which means the same thing as “routine” but
introduces confusions with the usual sense of “method”, as in “he writes his
methods without any method”.

← Page110.
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8.2 ROUTINES AS FEATURES

A routine captures an algorithm that is applicable to all instances of a class. As
such it is one of the two kinds offeature of a class. The other kind, yet to be
studied, is theattribute.

Like any other feature, a routine has:

• A declaration, which appears in the text of the feature’s class, and
describes all the properties of the routine. The declaration of a routine is
also called itsimplementation.

• An interface, which retains only a subset of the properties of the routine,
those interesting to clients that will use the feature; you can see routine
interfaces in theContract View of a class.

We have already encountered many routines, even though we knew them only
as features. For example:

• Our veryfirst feature,explorein classPREVIEW, was already a routine.
So is the featuretraversethat you have been asked to write, under
successive variants, in the previous chapter.

• In studying how to use a class through its interface, we used a number of
features from classMETRO_STATION, some of which were routines,
such as the commandremove_all_segmentsand the queryi_th. (Some
others, such assw_end andcount, are not routines but attributes.)

In the first case you had to write the entire routine declaration, but in the
second case you only knew the routines through their interfaces, for example:

You can see the full routine declaration by looking up the text of the class
METRO_STATION. You wil l now learn how to wri te your own
routine declarations.

remove_all_segments
-- Remove all stations except the South-West end.

← The definition of
“feature” was on
page33.

← We encountered
Contract Views in
“What characterizes a
metro line”,  page 57.

← “A CLASSTEXT”,
2.1, page 17.

← “COMMANDS”,
4.5,page63and subse-
quent sections.

ensure
only_one_left: count= 1
both_ends_same: sw_end= ne_end
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8.3 ENCAPSULATING A FUNCTIONAL ABSTRACTION

The lastexample of our study of conditionals provide a good case for defining
a “functional abstraction” in the form of a routine. The overall loop, appearing
in the routinetraverse of our example classROUTES, read:

Many of the operations apply toLine8.item. What’s disturbing is not just the
repetition, but the lack of recognition that the Conditional forming the body of
the loop is an operation on that object, a Metro station. This will become much
clearer if we abstract that operation into a routine. The loop then becomes:

relying on a new routineshow_stationwhose declaration will appear in the
same classROUTES:

from … invariant … variant … until … loop [7]

Line8.forth
end

from … invariant … variant … until … loop [8]

Line8.forth
end

show_station(s: METRO_STATION) is
-- Highlight s in a form adapted to its status

require
station_exists: s /= Void

do

end

← Originally on page
178, repeated here.

if  Line8.item.is_exchangethen
show_blinking_spot(Line8.item.location)

elseif Line8.item.is_railway_connectionthen
show_big_red_spot(Line8.item.location)

else
show_spot(Line8.item.location)

end

show_station(Line8.item)

if  s.is_exchangethen
show_blinking_spot(s.location)

elseif s.is_railway_connectionthen
show_big_red_spot(s.location)

else
show_spot(s.location)

end
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8.4 ANATOMY OF A ROUTINE DECLARATION

The declaration ofshow_stationshows the typical form of a routine. Many
elements are already familiar.

A routine is a software element denoting a certain set of operations to be
performed on behalf of other software elements, said tocall the routine. So far we
have only one caller toshow_station: our example loop[8], where the call reads

Such a call may only appear in a routine; here we have assumed that the call
is in the routinetraverseof the same classROUTES. Routinetraverseis said
to be acaller of routineshow_station.

If a routine of a classC is a caller of a routine of a classS, this makesC
aclient of S. Here the presence of the call makesROUTES its own client.

In the overall system, a routine may have zero, one or more calls, but it
always has one declaration, which defines the routine’s algorithm, and appears
in a class. Let’s analyze the declaration ofshow_stationas it appears on the
previous page. The first line

gives the name of the routine, as well as itssignature: the list of its formal
arguments, if any, and their types. Formal arguments represent values on
which the routine will operate; each caller will pass these values through
actual arguments, one for each formal argument.

An actual argument is an expression; its type must match the type of the
corresponding formal argument.

Theoriginal definition of “argument” covered both formal and actual arguments.

Here the signature involves one formal argument, of typeMETRO_STATION,
to which the routine will refer ass; in the example call, the actual argument is
Line8.item. The type of this expression is indeedMETRO_STATION, since the
query item of classMETRO_LINEreturns a station. If the types were
incompatible, EiffelStudio would produce an error message when you attempt
to compile the system:

show_station(Line8.item)

show_station(s: METRO_STATION)

← “Client” was
defined on page51.

← “FEATURESWITH
ARGUMENTS”,  2.4,
page 34.
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In this example we have passed an actual argument of some arbitrary type
WRONG_TYPEto a routine that has an formal argument of type
METRO_STATION. The error message explains what’s wrong.

Within the routineshow_station, we use the formal arguments as an
expression denoting a station. The operations performed onswill, in any call,
apply to the corresponding actual argument; in our example call, that’s the
station denoted byLine8.item.

Not all routines have arguments;remove_all_segments was an example without.

The actual argument

Error message

with context
information

Type of the formal argument

Type of the actual argument
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The remainder of thedeclaration of show_stationcontains the
following elements:

• Like any feature, a routine should have a header comment explaining
what it does.

• There’s a precondition, heres /= Void, stating that we only want to work
on actual arguments that are not void.

• Thedo clause is called thebody of the routine. It consists of a sequence
of instruction — a Compound — defining the algorithm that the routine
will execute.

• There could also be a postcondition, although none appears here.

Interface vs implementation

EiffelStudio lets you see both the implementation and the interface of a routine
such asshow_station:

• The implementation (declaration) appears in the default view for the
class, known as the “Text View”. It’s the declaration of the routine as we
have seen it.

• The interface appears if you request the “Contract View” by clicking the
corresponding button. Its form, familiar from our earlier study of
interfaces of features of classMETRO_LINE, contains just:

The interface of a routine is intended for programmers of client classes; of the
routine’s elements listed above, it retains the signature, header comment,
precondition and postcondition; but it discards the body, which describes how
the routine is implemented. The interface of the routine should only describe
what the routine does, nothow it does it. The signature and contracts,
complemented by the natural-language explanation of the header comment,
suffice to express this “what”.

The Contract View also differs from the Text View by omitting some syntactical
details such as theis keyword, which are necessary to avoid ambiguity in programs
but not required in interface descriptions.

show_station(s: METRO_STATION)
-- Highlight s in a form adapted to its status

require
station_exists: s /= Void

← Page200.
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8.5 INFORMATION HIDING

The technique of presenting client programmers with an interface that includes
only a subset of the properties of a software element — here a routine, but more
generally a class or any other module — is calledinformation hiding .

Information hiding is one of the key tools enabling you to build large
software systems and cope with their complexity: provide the users of each
element withjust what they need to use it.

In spite of its name, information hiding is not aboutpreventingclient
programmers from seeing the implementation of the mechanisms they use
(classes, routines and other features): since the Traffic library and other Eiffel
libraries are available in source form, you can use EiffelStudio to peek into the
implementations of all the features fromMETRO_LINEand other classes that
you have been invited to use through their interfaces. The actual purpose of
information hiding is the reverse:not requiringthe client programmers to look
at the implementations when they want to reuse a software element. The
amount of information to digest would quickly become enormous.
Information hiding enables you to use software by reading only a small part of
that information. It’s your best ally in the programmer’s constant effort to
avoid getting swallowed by complexity.

Not all libraries are available in source form; a library supplier may elect to provide
interfaces only, usually to preserve proprietary know-how contained in the
implementations. Whether to make the implementation available is a commercial or
political decision; information hiding is a technical device, unrelated to that decision,
for protecting programmers against having to learn heaps of irrelevant details.

Information hiding is a weapon not only against complexity but also against
instability. One of the main characteristics of programs as developed in
practice is the amount ofchangethey must undergo; it’s not for nothing that
the field is calledsoftware. Every time some software element changes, it
might affect all its clients, potentially triggering a chain reaction of changes
throughout the entire system. But if the elements have been well designed,
with good choices of what goes into the interface and what remains an
implementation decision, many changes will affect the implementation only.
Clients will not be affected, since they only rely on the interface. This is an
invaluable help to keep software projects under control.
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8.6 PROCEDURES VS FUNCTIONS

There are two kinds of routine:
• A procedure performs certain actions; a call to a procedure is, in the

calling routine, aninstruction. The preceding examples, such astraverse
andshow_station, are procedures. So arecreation procedures, studied in
an earlier chapter and serving to initialize class instances on creation.

• A function computes a certain value or set of values (usually by
performing actions too); a call to a function is, in the caller, anexpression.
We haven’t seen any function implementation yet, but several of the
features used through their interfaces, for examplei_th in class
METRO_LINE, are functions.

Programming time!
Experimenting with EiffelStudio and information hiding

When you hit the “Compile” button, EiffelStudio doesn’t recompile the entire
system, which would take too long. Instead, it recompiles only the classes that
you have modified since the last compilation, plus any others that depend on
them, directly or indirectly. This is known asincremental compilation.
EiffelStudio’s incremental compilation isautomatic: you don’t need to list
the modified classes; EiffelStudio will detect them automatically, and will
find out what other classes depend on them.
In this dependency analysis, information hiding is essential: if you change
only the implementation of a class, EiffelStudio will spot this, and will not
recompile its clients. If your change affects the interface, EiffelStudio will
recompile the clients. You may observe this now as follows:
5 • Add a routine, sayr, to METRO_LINE. It doesn’t matter what the

routine does, but give it an argument and a precondition.
6 • In routinetraversefrom ROUTES, add a call tor. Make sure the call is

valid: it must use an argument of the right type.
7 • Recompile the system. Notice what classes are being compiled. (Here

and in the following you must watch carefully, since the compilation
is very fast and displays the names of compiled classes only briefly.)

8 • Change an element of the body ofr, without touching the interface.
Recompile, and observe what classes the compilation processes.

9 • Now add a precondition clause tor; this changes its interface.
Recompile, and notice how the compilation processesROUTES.

10 • To bring back the system to its previous state, remover from
METRO_LINEthe call tor from traverse. Recompile and execute to
check that everything is back to the previous state.

← “CREATION
PROCEDURES”,
6.5, page 122.
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The difference is closely related to one that we already know:

• A procedure implements acommand feature.

• A function implements aquery feature.

Commands can only be implemented by procedures, but for queries we will see
that there’s another implementation: through anattribute.

We saw how the signature of a procedure is characterized by a name and an
optional list of formal arguments with their types, as in the beginning of the
declaration ofshow_station:

The signature of a function must, in addition, list the type of the value to be
returned by the function. We saw this in the interface for functions such asi_th
in METRO_LINE, which returns a result of typeMETRO_STATION, as
expressed by the beginning of its declaration:

The rest of the declaration is the same elements as for a procedure: header
comment, pre- and postcondition,do clause (body). There’s a need, in the
body and the postcondition, to denote the value to be returned by the function;
this will be through the reserved wordResult, introduced in the next chapter.

8.7 FUNCTIONAL ABSTRACTION

Routines are the basic algorithmic blocks making up our classes and, through
them, our systems.

Use routines as analgorithmic abstraction mechanism. To abstract
means to concentrate on the essence rather than the circumstances, on the
general concept rather than its instances. Abstracting almost always implies
naming: once you have isolated a useful abstraction, you give it a name for
ease of future reference. In programming we encounter two fundamental
forms of abstraction:

• Data abstraction, which gives us the notion ofclass to describe the
abstraction behind our program’s data — objects.

• Algorithm abstraction, also calledfunctional abstraction, to describe
the abstractions behind our algorithms.

show_station(s: METRO_STATION) is
… Rest of procedure declaration…

i_th (i: INTEGER)  is
… Rest of function declaration…

: METRO_STATION



§8.7 FUNCTIONAL ABSTRACTION 207

In “functional abstraction” the word “function” is taken in opposition to “data”. A
better term would be “routine abstraction” since we’ve just seen that functions are
technically a more specific notion (routines returning results). The common phrase
is, however, “functional abstraction”, and I’ll retain it since you’ve now had
enough explanations to avoid any confusion.

To keep your systems manageable even if, overall, their algorithms involve
many details, you may rely on routines. Both the bottom-up and top-down
views are attractive:

• When you have written an algorithmic element that covers a significant
processing step, turning it into a routine enables you to give it a name and
a precise specification (signature, header comment and contracts); this
turns it into a well-defined software element and, among other benefits,
facilitates the laterreuse of the element. This is the bottom-up view.

• In the top-down view, you may use a routine to capture a step of the
processing that you have identified in building a larger algorithm, but for
which you haven’t yet written the details, and perhaps do not want to
write the details yet as they would detract you from your main goal.

In this second role, routines are often a superior alternative topseudocode. We
saw the use of pseudocode, in a top-down development process, to capture
elements of the algorithm that you don’t yet want to develop. Theexample was
a pseudocode comment

which we could replace by a call to aplaceholder routine, here a procedure
create_fancy_line. For the system to compile, the routine must exist, even if it
does nothing:

-- “Create line and fill in its stations”

create_fancy_lineis
-- Createfancy_line and fill in its stations

do
-- To be completed (your name, today’s date)

ensure
line_exists:fancy_line /= Void

end

← “OVERALL
SETUP”,6.1,page110.
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Note the postcondition stating that part of the contract: the routine must create
an object forfancy_line. It would be good to add more clauses..

8.8 USING ROUTINES

Routines — algorithmic abstraction — are one of your best tools in taming the
beast of complexity. Use them generously to capture meaningful algorithmic
elements. Use them bottom-up, to prepare existing elements for later reuse;
use them top-down, to prepare for elements that you know you will need but
don’t want yet to write in full.

Programmers concerned withefficiency, in particular execution speed,
are sometimes wary of using too many routines, since the mechanics of calling
a routine almost always means that a call to a routine takes longer than just
executing the routine’s instructions. A good programmer will, of course, pay
attention to efficiency, as to all other qualities of software. But this is seldom
a reason to limit the use of routines, for three reasons:

• Modern computer architectures have drastically decreased the time
penalty of routine calls.

• Except in the case of a routine call appearing in the body of an “inner
loops” executed very many times, any remaining penalty will remain
small as compared to the overall excution time of a program performing
extensive computations. (If the program does not perform extensive
computation, all this doesn’t matter anyway.) There will typically be only
a few such inner loops, making up a small part of the program, even if
they make up a substantial proportion of its execution time. Then you
should only worry about these elements, once you have identified them.
The rest of the system, where any such small-scale performance
consideration have little effect, should be left alone.

Touch of Methodology:
Placeholder routines

If you use a placeholder routine, always include information about
your nameandtoday’s date, as well as a full header comment and any other
explanation of what you intend to do, so that the purpose doesn’t get lost if
some time passes before the implementation gets written.

Also, ask yourself if the routine will need any precondition and
postcondition, and if so write them from the start, in the placeholder
version. They are part of the routine’s specification, help you ensure that
you understand what you need it for, and will be precious when the time
comes to implement it.
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• For those program elements where it does matter to avoid the price of a
routine call, you don’t have to do the job yourself. The EiffelStudio
compiler will, in its optimized (“finalization”) mode, perform automatic
routine inlining. This means that it will expand your routine calls to be
executed as if the instructions had been written directly — “in line” — at
the place of each call. The advantage of this approach is that you don’t
have to damage the structure of your program and risk introducing bugs.
The inlining process is safe and it is automatic, although you may set
some parameters, for example the largest size of routines to be inline.

8.9 AN APPLICATION: PROVING THE UNDECIDABILITY OF
THE HALTING PROBLEM

An earlier commentstated that it’s impossible to devise an algorithm
(“effective procedure”) to determine whether an arbitrary program will halt.
Let’s prove this result, under the observation that if such a general algorithm
existed we could write an Eiffel function that implements it.

Specifically, we would be able to write a function

The argument,root_directory, is the name of a directory assumed to contain
the system’s “Ace” file, that is to say the description of the whole system,
giving access to all its classes and specifying the root class and the root
creation procedure. We assume for simplicity that the Ace file will be a file
calledAce.acein that directory. Being able to solve the Halting Problem then
implies that we can complete the “appropriate algorithm” so that
terminates(r) will return Trueif and only if there is indeed such an Ace file in
r and execution of the corresponding system will terminate.

You may change the conventions to include more arguments, or adapt them to
another programming language; instead of an Ace file, the argument could simply
be the name of a file containing the text of the entire system with all its classes.
What matters is that it is possible to pass as argument enough information to let
functionterminatesobtain the text of the system whose termination or not it must
decide (as in “Decision Problem”, Entscheidungsproblem).

terminates(root_directory: STRING): BOOLEANis
-- Does execution of the system available inroot_directory,
-- if any, terminate?

do
… An appropriate algorithm…

end

← “Touch of Theory:
The Halting Problem
and undecidability”,
page 162.
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All this assumes that the system needs no run-time input. A more general form
of the function would handle possible input:

We’ll use the first form, but the reasoning applies just as well to the second one.

That reasoning is simple. If we had an implementation ofterminates
we could use it to write a one-class system with the following root
creation procedure:

C:\your_projectis just an arbitrary directory name; it’s a Windows-style
directory (folder) name, so on another operating system you’ll use something
else, for example/usr/home/your_projecton Unix. What matters is that we use
the name of the actual directory where we will store the Ace file for our
“paradox” systemitself. Then the call toterminatesdecides whether that
system terminates. Now consider what the creation procedure does:

• If the functionterminatesdetermines by analysis of the system’s program
text that its execution willnot terminate, the loop’s exit condition
not terminates("C:\your_project") will be true the first time around, and
the loop will terminate immediately; so will the entire system since it
does nothing else. This is a contradiction.

• If the function determines that executionterminates, the exit condition
will never be true, so the (empty) loop body will execute forever, and
hence the system willnot terminate — contradiction again.

terminates_on_input(root_directory: STRING; ):
BOOLEANis

-- Does execution of the system available inroot_directory,
-- if any, terminate when applied toinput?

do
… An appropriate algorithm…

end

paradoxis
-- Terminate if and only if not.

do
from
until

not terminates("C:\your_project")
loop
end

end

input: STRING

Note empty loop body.
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This suffices to show that it’s impossible to write a general-purposeterminates
function that would ascertain termination for an arbitrary program.

One may devise a more concise version of the argument, ignoring files and
directories and instead using Eiffel’s “agents”. We’ll see it in the chapter on agents.

8.10 FURTHER READING

8.11 KEY CONCEPTS LEARNED IN THIS CHAPTER

•

New vocabulary

8-E EXERCISES

8-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

Actual argument Body Data abstraction
Declaration Formal argument Function
Functional abstraction Implementation Incremental compilation
Information hiding Placeholder routine Procedure
Routine Signature
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9

Variables, assignment and references

One of the distinctive features of programs is their use of names, orentities, to
denote values that may change during program execution, as a result of the
computation. The previous examples have implicitly relied on such change,
but we haven’t yet seen the basic change operation, assignment.

It’s a fascinating concept, deceptively simple when you first see it, and
full of surprising consequences. We’ll study it in this chapter together with a
number of related techniques, in particularreferences, which define the
run-time object structure.

Math is static, software is dynamic

The ability of a program to change its own environment is the most
significant difference between software construction and mathematical
reasoning, similar in so many other respects.
Mathematics uses transformations, but they are mechanisms to describe
certain values in terms of others, not to change any value that existed before.
If I write “ Lety = cos(x)”, I am not changing or even creating anything, just
giving a name to a value, the cosine ofx, that existed all along, whether or
not anyone had bothered to talk about it. In particular I am not changingx.
Even if after talking about thisy I want to contrast the properties of the sine
and cosine functions, and continue “Let’s now assume instead thaty is
sin (x), then…”, I am reusing the namey for convenience but talking about
another mathematical object. If in describing a sequence I write something
like “Let s0 be 1, and thensi+ 1 = 1 / si for everyi ≥ 0” I am referring to an
infinite sequence of values, not a value that changes asi increases.

The software perspective is different. We don’t just describe results by the
properties they must satisfy: we mustcomputethem through algorithms
whose implementation uses a computer and its memory, large but finite.
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9.1 ASSIGNMENT

Assignment is the instruction that allows us to change the value of an entity.

For the examples and exercises of this chapter, you will use a new class
calledASSIGNMENTS.

Summing travel times

The following simple problem will serve as example: knowing the average
time between stops on a Metro line, compute the estimated time for traveling
the full line. We will add toMETRO_LINEa functiontotal_timetaking care
of this.

The principle of the algorithm is straightforward: follow the stops on the
line in sequence, and add at each step the time from the previous stop. The
basic information comes from a query of classSTOP:

whereis_linkedtells whether the metro stop is linked to a successor. The type
REAL is used for the computer approximation of the real numbers
of mathematics.

The execution of these algorithms proceeds by storing successively
computed values in memory. If the memory were infinitely large, infinitely
cheap and infinitely fast to access, the execution might choose a different
cell for every new value to be stored, such as successivesi ; but since it’s
finite we must reuse cells when we don’t need their values any more.

So in programming we will havevariableswhich, unlike their counterparts
in mathematics, deserve their names, as they change value during
execution. The presence of such change is one of the major challenges in
efforts to reason about programs using the basic tools at our disposal: the
tools of logic and, more generally, of mathematics.

time_to_next: REAL
-- Estimated travel time to next stop (departure to departure,
-- except for next-to-last stop: departure to arrival)

require
has_next: is_linked
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Our desired functiontotal_time will have the following general form:

Result denotes the result to be returned by the function. The two pseudocode
instructions will be replaced by assignments.

The boolean-valued functionis_lasttells us whether the cursor is on the
last element. Note the difference with the loop schemes of the previous
chapter, which stopped onafter rather thanis_last.

(Hint: compare the number of stops with the number of intervals between
successive stops. Also, compare the variant with the earlier one.)

total_time: REALis
-- Estimated travel time for full line

do
from

start
-- “SetResult to zero”

invariant
-- “The value ofResult is the time to travel from first station
-- to station at cursor position”

until
is_last

loop
-- “IncreaseResultby the time to the next station”
forth

variant
count – index

end
end

Quiz time:
When to exit from the loop

Why does the loop fortotal_timeuseis_last, rather than the usualafter, as
exit condition?

Basic list
features

1 count
item

afteris_last
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An Assignment instruction is of the form

wheresourceis an expression andtarget is a variable entity, such asResult.
The effect at run time is to change the value denoted by thetargetto the value
of thesource.

We can make good use of this mechanism to complete our function:

Each time through the loop, we add to the currentResult the time to the next
station. Since we also perform aforth, this preserves the invariant. At the end
of the loop, that invariant tells us thatResult denotes the time to travel to the
station at cursor position; sinceis_last is now true the cursor is on the last
station, soResult gives us the total traveling time.

target  source

total_time: REALis
-- Estimated travel time for full line

do
from

start

invariant
-- “The value ofResult is the time to travel from first station
-- to station at cursor position”

until
is_last

loop

forth
variant

count – index
end

end

Programming time!
Estimating the time to travel a metro line

Write a functiontotal_time8to compute and display the travel time on the
Metro Line 8. Use the above model, but to avoid modifyingMETRO_LINE
make the function part ofASSIGNMENTS, the class for this chapter, adapting
it to useLine8.start instead ofstart, Line8.count instead ofcount etc.

:=

Result := 0.0

Result := Result + item.time_to_next
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Local variables

In a previous chapter wesaw an algorithm scheme for computing the
maximum of a set of values. In the absence of assignment it resorted to
pseudocode elements of the form

We may now express the algorithm fully using assignment. Let’s write it as a
function that computes the greatest name, alphabetically, of all the station
names on a line:

We have indulged in a little orgy of assignments. Thefrom clause initializes
Result to the name of the first station,sw_end, and the integeri to one. Then
in the loop we find out if the name of the current station, denoted bynew, is

-- “Definemaxto beN1”
-- “Define i to be1”
-- “Redefinemax as the greater of the current maximum andNi+1”
-- “Increasei by one”

highest_name(line: METRO_LINE): STRING is
-- Alphabetically last of names of stations on line

require
line_exists: line /= Void

end

← See e.g. page161.

local
i: INTEGER
new: STRING

do
from

Result := sw_end.name
i := 1

invariant … --- As before
until

i = line.count
loop

new:= i_th (i).name
if new> Result then

Result := new
end

i := i + 1
variant … --- As before

end
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greater than the name of the current maximum, and if so we replace the value
of Resultby the value ofnew(but otherwise we don’t changeResult, as there
is noelseclause to theif ). The correctness of this algorithm depends on two
properties expressed by the invariants of the corresponding classes:

• A METRO_LINEalways has at least one station, accessible assw_endor,
equivalently,i_th (1).

• Every metro station has a non-voidname.

Also note that order comparison for strings uses alphabetical order:s2> s1has
valueTrue if and only ifs2 is afters1 alphabetically.

The principal novelty of this example is its use oflocal variables. The
declarations

introduce two entities,i andnew, which the routine may use for the needs of
its algorithm, to store intermediate results. “Local variables” are such entities,
local to a routine and introduced by the keywordlocal. You could do without
local variables, declaringi andnew(in this example) as features of the class,
more preciselyattributesas studied next. But this would be giving them a status
they don’t claim: a feature is a property of the class, associated with every one
of its instances; here we only needi andnewtemporarily for each execution
of the routine. When such an execution terminates,i andnew can go away.

You can choose names of local variables freely as long as they don’t cause
any ambiguity:

Programming time!
Alphabetically highest station name

Add function highest_nameto the example class for this chapter,
ASSIGNMENTS, and use it to display the alphabetically highest name of
stations on Line 8 of the Metro.

local
i: INTEGER
new: STRING

Local variable rule

A local variable may not have the same name as a feature of the
enclosing class, or as an argument of the enclosing routine.
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In principle it would be possible to allow the reuse of feature names as names
of local variables, with the convention that within the function the name
denotes the local variable; but this would be foolish language design, inviting
confusion and errors. Names are cheap; when you need a new entity, choose a
new name.

Nothing prevents you, from using the same names for local variables of
different routines, in the same way that different classes may use the same
feature names (some names such asitem, count, put… occur in many different
classes). Here there is no ambiguity.

Function results

Result, as used in the last two examples, may appear in a function, where it
denotes the result being computed by the function. Remember thatfunctions
are one of the two kinds ofroutine; procedures, the other kind, can change
objects but do not return a result. A function returns a value.Result serves to
denote, within the function’s text, that future result as computed so far.
(Obviously, you may not useResult in a procedure.)

As a consequence, the instruction (in a routine of classASSIGNMENTS)

will call highest_nameand display its value, which is the last value ofResult
as computed by the function’s body just before its execution terminates. You
will have seen this if you took the last “Programming time”.

Result is, formally, a local variable. Its only distinction is that you don’t
declare it as you do with your own local variables (in declarations of the form
i: INTEGER); it is automatically available in any function, and implicitly
declared for you with the return type you specified for the function —REAL
for total_time, STRING for highest_name.

This also means thatResult is areserved wordof the language: you may
not use it for any of your own identifiers. Reserved words generalize the notion
of keyword:

Console.show(highest_name(Line8))

Definition: reserved word

A reserved wordis an identifier that has a special role in the programming
language, and as a consequence may not be used to denote specific elements
(such as class names, feature names, entities etc.) of programs.

← First introduced on
page19.
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Keywords are reserved words that play a syntactic role only, as markers.
Result is an example of a reserved word that’s not a keyword because it
directly carries a semantic value. Other reserved words in this non-keyword
category includeTrue andFalse, which also denote values, both boolean.

Entities and variables

Although we haven’t seen all kinds of entities yet, it’s important to clarify the
terminology. We know what an entity is: an identifier that denotes possible
run-time values. For some entities, there will be just one such value.
Assignment concerns the other kind:

Local variables — includingResult — are variables. The other major kind is
attributes, to be studied later in this chapter.

Thetarget of any assignment must be a variable.

Swapping two values

Here is a typical use of assignment and local variables. Assume two variables
var1 andvar2 of the same typeT. The following three instructions will swap
their values:

This requires a third variable,swap, typically declared as a local variable of
the enclosing routine. It’s clear why we needswap: we must have a place to
store away the value of one of the other two variables before overriding it. A
variable such asswap, used only for a narrow, immediate purpose, is known
as atemporary variable.

The power of assignment

The symbol for assignment is:=; you may read it aloud as “receives”, for
example “i receivesi plus one”. The effect, as we’ve seen, is to replace the
value of thetarget by that of thesource expression.

Some people read it aloud as “becomes”, but “receives” is better:i is just i and
doesn’t “becomes”i + 1(except perhaps as in the joke about the impatient German
tourist in a London restaurant: “Vaiter, I vant to become a potato NOW!”).

Definitions: variable, variable entity
A variable entity, or justvariable, is an entity whose associated value may
change during execution.

swap:= var1 ; var1 := var2 ; var2 := swap

← “Boolean values,
variables,operatorsand
expressions”,  page 74.

← Exercise9-E.3,page
238asks you to achieve
the same result without
local variables.

“Bekommen” in Ger-
man means “to receive”.
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The earlier value of the target is lost — and lost forever: no one’s keeping any
record. Assignment is the equivalent, in high-level programming languages, of
the basic operation permitted by computers: replace the content of a certain
memory cell by a specific value. So if you will need a value again, make sure
to record it yourself — through another assignment! — into a variable.

A common scheme in assignments is to use the previous value of a
variable in the source of an assignment that has the same variable as its target.
This appeared in instructions of both of the routines we’ve seen:

The goal is to update the value of a variable on the basis of its previous value
and new information. That’s very close to the standard mathematical
technique of defining a sequence of values, as in the example cited at the
beginning of this chapter:

wheref is some function (the example usedf (x) = 1/x). To computesn for
somen >= 0 with a computer you may use the loop

This scheme is only applicable if you need not retain the successive values,
only the last onesi at each step. Both of our routines used it.

Be sure to remember the difference between the mathematical property
si+ 1 = f (si) and the software instructionx := f (x), which reflects thechange
mechanism that’s foreign to mathematics and complicates reasoning about
program.s Note in particular the difference between the instruction

Result := Result + item.time_to_next
i := i + 1

“Let s0 be given, and thensi+ 1 = f (si) for everyi ≥ 0”

from
Result := “The given initial values0”
i := 0

invariant
“Result= si”

until
i = n

variant
n – i

loop

end

i := i + 1
Result := f (Result)
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and the boolean expression

as used for example in a Conditionalif x = y then … The boolean expression
has the same properties as an equality in mathematics; it isdescriptive,
presenting a possible property (true or false) of two valuesx andy. The
Assignment instruction isprescriptive: it tells the computation to change the
value of a variable. In addition it isdestructive, obliterating the previous value
of that variable.

A striking example of the difference is the instruction

frequently encountered in loops, using an integer variablei. The boolean
expressioni i + 1 , while legal, would be useless since it always has value
false: no integer may be equal to the integer that follows it.

x  y

x  y

i  i + 1

Touch of Syntax:
Confusing assignment and equality

The first widely used programming language, Fortran (from the 1950s),
used the equality symbol= for assignment. This was clearly an oversight;
subsequent languages such as Algol and its successors introduced:= for
assignment, reverting= to its standard meaning as equality operator.
For unknown reasons, the C language, in the late sixties, brought back= for
assignment, using== for equality. Not only does this convention contradict
well-established mathematical properties (for example,a = b in
mathematics means the same asb = a), but it introduces a frequent source
of errors;if (x = y) … instead ofif (x == y) … is actually legal in C, but has
an unexpected effect: assign the value ofy to x; then yield a boolean value
(as if the assignment were also a boolean expression), which isFalseif the
resulting value ofx — the previous value ofy — is zero or equivalent, and
True otherwise! If you use C you must be extremely careful about this
source of confusion, which plagues even experienced C developers, and has
been documented as the cause of bugs and security attacks in important
programs and operating systems.
Such recent languages as C++, Java and C# have retained the C convention
for assignment and equality, with (in the last two cases) stricter type
controls to avoid the bugs mentioned.

:=

=

:=

=
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9.2 ATTRIBUTES

There are two kinds of variables (entities to which we may assign a value). We
have now seen the first kind: local variables, includingResult. The second,
which we’ll study now, isattributes. It’s not completely new: we’ve seen it
implicitly, under the guise of objectfields, when learning about object creation.
But we can now complete our understanding of this concept, and find its place
among entities, features and other creatures of our object-oriented bestiary.

Fields, features, queries, functions, attributes

We saw in the discussion of creation that an object, as it exists at run time in
the memory of your computer, consists of a number offields, some references,
some expanded:

Like anything other property of the object, these fields must come from the
specification of its generating class. Indeed each field comes from a feature of
the class, more precisely a query, and even more precisely an attribute.

To restart from the beginning, a feature is, as you know, either a command
or a query. A query, unlike a command, returns a result. A query can in turn be
either a function or an attribute. It’s a function if it obtains its result by
computing it. For example, in the classMETRO_LINE:

sw_end: METRO_STATIONis
-- End station on South or West side

do
if not  is_emptythen

Result := metro_stops.first.station
end

end

An object and
its fields

(METRO_LINE)
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This is a function. On the other hand, we find, in the same class, the following
querywithout an algorithm (anis … do … end part):

This is an attribute. Including it in the class means stipulating that every
instance of the class will have a field of the given type —INTEGER—
containing the value of theindex for the station:

Assigning to an attribute

As the comment indicates,index in classMETRO_LINEis the index of the
“cursor” position; the cursor is a mechanism allowing clients to explore
successive stations of a line by going back and forth. One of the commands for
manipulating the cursor isstart, which sets the cursor to the first station (the
one known assw_end):

A client may call this feature on a particular line, as in

The effect is to set the value ofindex for the corresponding instance of
METRO_LINE. If that object previously had itsindexfield set to 8, as in the
preceding figure, the call will reset it to 1, with no change to other fields:

index: INTEGER
-- Index of currently considered station in line

start is
-- Bring station cursor to first element.

do

ensure
on_first: index= 1

end

Line8.start

An object and
its fields

(METRO_LINE)

index 8

index:= 1
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Line8.start is a qualified call tostart, from a client. As usual, it’s also possible
to callstart unqualified from another routine ofMETRO_LINE.

Attributes and information hiding

Two other procedures of the class also setindex:

All three procedures let clients set theindex field of any particular
METRO_LINE object, as in

forth is
-- Move station cursor to next item.

require
not_after:not after

do
index:= index + 1

ensure
moved_right: index= old index +1

end

go_ith(i: INTEGER) is
-- Move station cursor to item at positioni.

require
not_over_left: i >= 0
not_over_right: i <= count + 1

do
index:= i

ensure
set: index= i

end

“Line” object
after astart

(METRO_LINE)

index 1
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Just as importantly, such procedure calls are theonly way for a client to
modify this field. You won’t be permitted — try it if you wish, and see the
compiler message — to write an assignment-like operation

This is simply not legal syntax: an assignment may only have a variable entity
as its target, and an entity consists of a single identifier;indexis OK, as in the
assignments appearing within the class in proceduresstart, forth andgo_ith
shown above, but notLine8.index.

The underlying reason is easy to understand. Letting clients directly
modify fields in this way would bypass all the safeguards ofinformation
hiding and good design. We must remember the general view, illustrated by an
earlier picture, of an object as a machine that clients may only manipulate
through the operations of its official interface, illustrated as command and
query buttons:

Performing a direct assignmentsome_machine.some_field:= new_value
would be the software equivalent of unscrewing the casing to reveal the guts
of the machine, and starting to rewire the connections with a soldering iron.
With an electronic device this would void the warranty; with a software
machine, it would void the interface and the associated contracts.

Line8.start

Line8.forth

Line8.go_ith(5) [H1]

Line8.index:= 98 [H2] WARNING: syntacti-
cally illegal.For discus-
sion only.

← “INFORMATION
HIDING”,  page 204;
see figure page32.

“Line” object as
machine

start

forth

go_ith

item index

count sw_end
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Note in particular how the illegal assignment [2], which at first sight
seems equivalent to the procedure call [1], would — if permitted — ignore the
precondition ofgo_ith that states

There’s no exception to the rule that any object modification must go through
the interface provided by the features of the class. When you write a class, it’s
both your privilege and your responsibility to decide what you will let clients
do to its instances. Given an attributea of the class, of typeT, you may allow
clients to set the corresponding value arbitrarily, by providing a procedure

through which clients may usetheir_object.set_a(any_value) without
restriction. Or you may introduce a precondition, as ingo_ith, which restricts
the permitted values. Or you might limit clients to more specific ways of
setting the value, as would be the case ifMETRO_LINEdidn’t havego_ithbut
provided onlystart andforth as operations that affect theindexfield. Finally,
you might decide not to give clients any way at all to modifyindex.

This doesn’t prevent you, however, from letting clientsaccessthe index
field of an object (rather than modify it). With the class as given, a client may
use the expressionLine8.index; try for example

which will display the value2 in the Console window.

On the other hand you may wish —as a case of full information hiding —
to remove an attribute completely from the clients’ reach, for access as well as
modification. For exampleMETRO_LINEhas a featureid_generatorthat it
uses for its own implementation purposes, and does not make available to

require
not_over_left: i >= 0
not_over_right: i <= count + 1

set_a(x: T) is
-- Set the value of a to x.

do
a := x

ensure
set: a = x

end

Line8.start
Line8.forth
Console.show(Line8.index)
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clients in any form. It suffices for the class to include afeature clause starting
with feature { NONE} ; all the features it introduces are kept away from
clients. You can indeed see at the end ofMETRO_LINE, just before the
invariant , the clause

This implies that an expression such asLine8.id_generatoris invalid in any
client (try to use it in a class, and see the compiler message). Accordingly, it
won’t feature in the class documentation as produced by the environment:
bring up the Interface View of classMETRO_LINEnow; you won’t see any
mention ofid_generator. You may only use this feature, within the class text,
unqualified. For example procedureextenduses (again check this for yourself)
the assignment

9.3 KINDS OF FEATURE

We have now seen all categories of features; let’s go once more over
the classification.

The client’s view

Viewed from the client’s perspective, a feature of a class may either:

• Return a result: then it’s aquery.

• Return no result, but be able to modify the target object: then it’s acommand.

In the first case, there are two possibilities depending on how the class author
has chosen to implement the query:

• You may choose tostore, for every instance of the class, the value of the
query in one of the instance’s fields. This means implementing the query
as anattribute of the class. It is then the responsibility of every command
of the class to update the value of that field if it needs to (for example,
executingforth affects the value ofindex).

• You may choose instead tocomputethe value of the query whenever
requested, using an appropriate algorithm. Then you implement the query
as afunction.

feature { NONE} -- Initialization
id_generator: ID_GENERATOR

-- Internal identification for current line

i := id_generator.generated_id
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The following figure represents this classification:

“Memory” means that the value is stored, rather than computed. Note that the
word “procedure” appears redundant at this stage, being synonymous
with “command”.

The notion ofquery is particularly important as a common category for
attributes and functions. From the client’s perspective, it doesn’t matter that a
query is implemented by storage or by computation. Although the difference
between the two categories appears in the class text, it doesnot appear in the
class interface. Bring up indeed the Interface View forMETRO_LINEagain;
you can see, next to each other, one in the-- Accessfeature clause and the
other in-- Measurement, the interfaces for

and

But if you now look up these features in the actual class text (not the Interface
View) you’ll see that the declaration ofindexappears exactly as shown, since
it is an attribute, while the full declaration ofcountreveals it to be a function:

index: INTEGER
-- Index of currently considered station in line

count: INTEGER
-- Number of stations of this line

Feature

Command

Query

Attribute

Function

Procedure

No
result

Compu-

Memory

Returns
result

tation

Feature
categories
(client’s view)
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Nothing in the Interface View suggests this difference. Internally one is an
attribute and the other a function; for the client, they are both just queries.

The policy that treats attributes and functions identically in the Interface
View of a class reflects a central principle of software development:

“Storage” is for attributes and “computation” is for functions. “No logical
difference” means no difference of functionality; there might still be a
difference of executionefficiency, as an attribute implementation takes up
space, while a function doesn’t but usually requires longer to execute than a
simple field access.

The choice between the two solutions indeed involves space-time
tradeoffs, explaining the importance of the Uniform Access Principle: it’s very
difficult to know ahead of time what solution will be best; during the course of
a project you may have to reverse such decisions several times as a result of
time and space measurements. The principle shields client software from the
these changes: the notationsome_object.some_querywill remain applicable
throughout, so that you may try out various solutions without penalty. If access
to attributes and functions used different syntax, you would each time have to
update a much larger part of the software than necessary.

The principle further justifies the information hiding policy discussed:

• It is OK to make an attribute available to clients, as inLine8.index,
especially since we make it available not as an attribute but more
generally as a query: the client has no way to know, from the official
interface description of the class, whether it’s an attribute or a function.

• It is not OK, however, to let clients assign directly to it, as in the illegal
Line8.index := new_value, since (among other problems) this would
reveal it is an attribute.

count: INTEGERis
-- Number of stations of this line

do
Result := metro_stops.count

end

Touch of Methodology:
The Uniform Access Principle

To clients of a class it must make no logical difference, when they use one
of its features, whether the class implements it by storage or computation.
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The supplier’s view

If we take the viewpoint not of the client but of the supplier class, in other
words the implementer’s internal perspective, we get the following categories:

The only addition to the previous figure’s terminology is the notion of Routine,
covering both procedures (the term appears more justified now) and functions.

Putting the two views together, we get the complete picture:

You must know the precise definition of all the terms listed on this figure, and
their role in building classes and making them usable by clients.

Feature

Routine

Attribute

Function

Procedure

Returns
result

No
result

Compu-

Memory

tation

Feature
categories
(supplier’s view)
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Memory

Returns
result

tation

tation
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categories
(full view)
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9.4 ENTITIES REVISITED

To finish with terminology, let’s clarify any uncertainty that you may still feel
about the fundamental programming concepts introduced so far. Everything
regardingfeaturesshould now be clear, but we have also used the termsentity
andvariable; it’s useful to take a closer look.

Defining entities

Entities wereintroduced earlier as identifiers denoting possible run-time
values; we are now in a position to list all possible variants:

So if you were puzzled thatindexfromMETRO_LINEwas sometimes referred
to as a feature and sometimes as an entity, caseE1 is the explanation:indexis
both. In factindexis: a feature, and more specifically a query and an attribute;
an entity. It’s one more thing: avariable. Entities are indeed of two kinds:

• Variable entities, or justvariables, if it’s possible for the program to
change their values through assignments. This includes local variables
(categoryE3 above) and variable attributes, which we’ll study now.

• Constant entities. This includes formal arguments (E3) andCurrent(E4)

Variable and constant attributes

Attributes may be either variable, as in all the examples seen so far, or constant.

Attributes declared in the usual form are variable, for exampleindex in

Definition: Kinds of entity

An entity is one of:
E1 •An attribute.

E2 •A formal argument of a routine.

E3 •A local variable of a routine.

E4 •Current, denoting the current object.

index: INTEGER

← In “ENTITIES
ANDOBJECTS”,6.2,
page 111.
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You recognize aconstant attribute by its declaration including the
keyword is followed by a value. InMETRO_LINEyou may see (in a
feature { NONE} clause towards the end) the declaration

This introduces the constant integer attributeFirst_id. Note the convention:

This style is also common for strings, as in

known as amanifest string.
Not being variables, constant attributes of any type a may not serve as

assignment targets:First_id := 2 or Map_title := "Something else" are invalid
assignments (try them and watch for the compiler messages).

Constant attributes serve to give names to values that your program may
need. Youshould use this technique:

So if you need a string for an error message, or a physical constant, don’t use
it directly in the instructions that need them, as in

First_id: INTEGERis 1000

Touch of Style:
Constants

For names of constant attributes, as for predefined objects, start with an
upper-case letter, writing the rest in lower case.

Map_title: STRINGis "Plan of the Metro“

Touch of Methodology:
Symbolic Constant Principle

When you need any specific values in a program — other than very simple
values such as the integers 0 or 1 to start a loop or increment an index — do
not use manifest values directly in the corresponding instructions, but
declare constant attributes with these values, and then use these attributes
everywhere else.

display("Couldn’t send email in allotted time")

length:= 2.54 ∗ length_in_inches

WARNING: Not the rec-
ommended style.
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but declare

and write the instructions as

The reason is that such constants (although not the second of these examples)
may have to change during the evolution of the program, and then you will
want to change just one place; the principle also supports program readability,
by encouraging you to give to each constant a name explaining its role in the
software. Often, in a large program, you will group such constants in specific
classes intended solely for this purpose; for example a particular class may
include all the strings appearing in error messages. This facilitates program
adaptation and evolution.

Directly using manifest values in instructions is a particularly bad idea forstrings, as
the example error message above (“Couldn’t send…”), since a successful program
may at some point requirelocalizedversions for various countries. In that case you
will use not manifest constants but variables, with the actual strings appearing in
external “resource files” rather than in the program.

9.5 REFERENCE ASSIGNMENT

The values that we manipulate — in particular the fields of objects,
corresponding to attributes of their generating classes — may be basic values
such as integers and booleans, or they may be references. So far we have
applied assignment to basic values only; but we also need to assign references.
That is in particular how we will buildlinkeddata structures, such as a list of
metro stops where each stop contains a reference to the associated station and
link to the next stop on the line.

Implementing the classSTOPwill require such reference assignments.
The class interfaceincluded the following feature specifications

Timeout_message: STRINGis "Couldn’t send email in allotted time"

Inches_to_centimeters: REALis 2.54

display(Timeout_message)

length:= Inches_to_centimeters∗ length_in_inches

← See the full specifi-
cation on page119.
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indicating that the implementations must set the attributesstationandnext
respectively. To provide these implementations we need assignment. Here
then are the routine texts (not just their interfaces any more):

A reference assignmentreattachesthe reference to a new object. Previously
it may have been void (attached to no object), or attached to another object (or
of course to the same object, in which case the assignment changes nothing).
To illustrate these possibilities, consider variabless1ands2of typeSTOPand
two creation instructions

set_station(ms: METRO_STATION)
-- Associate this stop withs.

require
station_exists: ms/= Void

ensure
station_set:

link (s: STOP)
-- Makes the next stop on the line.

ensure
next_set:

set_station(ms: METRO_STATION) is
-- Associate this stop withms.

require
station_exists: ms/= Void

ensure
station_set: station= ms

end

link (s: STOP)
-- Makes the next stop on the line.

ensure
next_set: next= s

end

create s1.set_station(Station_Balard)
create s2.set_station(Station_Issy)

station= s

next= s

do
station:= ms

do
next:= s
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both usingset_stationas creation procedure; this is necessary since wehad
written the classSTOP as

The creation instructions produce two objects:

with stationreferences attached (thanks to the creation procedureset_station)
to two preëxistingSTATIONobjects, andnext references void, since all
reference attributes start out void and hereset_stationdoes nothing aboutnext.

To chain the two stops, you may use the instruction

which updates thenext reference of the first object

class STOP

feature
station: METRO_STATION

next: STOP

set_station(s: METRO_STATION) … As above…

link (s: STOP) … As above…
invariant

station_exists: station/= Void
end

s1.link (s2)

← “CREATIONPRO-
CEDURES”,  6.5,
page 122.

create
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(STOP)
station

next
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next

station
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as a consequence of the assignment instruction in procedurelink:

This is an example of a reference assignment, which attaches a reference. Here
the reference (thenextfield of the firstSTOPobject) was initially void, and we
assign to it a non-void reference (s2), so we attachnextto an object, the second
STOPobject. We can also use reference assignment to make a reference void,
for example by adding the following procedure toSTOP:

This uses the valueVoid, always denoting a void reference. The following
three calls have the same effect (assuming that the value ofv is void):

Here is some more playing with references and reference assignments. Let’s
use the previous example again but with three stations rather than two (the
additions are highlighted):

--- STOPPED HERE ---

link (s: STOP)
-- Makes the next stop on the line.

do

ensure
next_set: next= s

end

make_last
-- Make this stop the last one on the line.

do

ensure
no_next: next= Void

end

s1.make_last s1.link (Void) s1.link (v)

create s1.set_station(Station_Balard)
create s2.set_station(Station_Issy)

create s2.set_station(Station_Issy)
s1.link (s2)

next:= s

next:= Void

create s1.set_station(Station_Montrouge)

s2.link (s3)



VARIABLES, ASSIGNMENT AND REFERENCES §9.6238

9.6 CACHING AND THE SPACE-TIME TRADEOFF

9.7 KEY CONCEPTS LEARNED IN THIS CHAPTER

•

•

New vocabulary

Precise feature terminology

9-E EXERCISES

9-E.1 Vocabulary

Give a precise definition of each of the seven terms in “Precise feature
terminology” above.

9-E.2 Vocabulary

Give a precise definition of all the terms in the above “New vocabulary” list.

9-E.3 Swapping values

Assume variablesvar1 and var2 of type INTEGER, with the ordinary
arithmetic operations. Can you write instructions that will swap their values,
without using any local variables or any other entity? (The answer is an old
programming trick; can you think of any limitation?)

 Assignment Attribute Local variable Variable
Temporary variable Variable entity

Attribute Command Feature Function
Procedure Query Routine

←Asin“Swappingtwo
values”,  page 220.



§9-E EXERCISES 239

9-E.4 Terminology

1 • Is every function an entity?

2 • Is every function a query?

3 • Can a function be a query?

4 • IsResult an attribute?

5 • IsResult a feature?

6 • IsResult an entity?

7 • IsResult a variable?

8 • Are all variables local?

9 • Is every attribute an entity?

10 • Is every routine a query?

11 • Is every query an entity?

12 • Is every attribute a variable?

13 • Is every function a variable?

14 • Is every entity a variable?

15 • Can a query be a variable?

16 • Can a function be a variable?

17 • Is every variable an entity?
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10

Fundamental data structures,
genericity, and algorithm complexity

On those evenings when it seems you’ve done nothing all day but store and
retrieve things, have a kindred thought for your programs. Many of them —
like Traffic with its list-like structures representing metro lines — spend a
good deal of their time putting objects into repositories and searching for
previously stored objects.

Such a repository (whose elements we will call “items”) is known as a
container. Lists are only one example, among many kinds differing by the
speed of container operations (insert an item, retrieve an item, remove an item,
search for items satisfying certain properties, apply an operation to all
items…) and the space they require to store the items.

In this chapter we’ll study some fundamental container structures, useful
across all application areas of computers: arrays, lists of various kinds, hash
tables, stacks, queues. This will also be an opportunity to discover three
fundamental programming concepts:

• The role oftypes in the development of reliable software.

• Genericity: how to declare type-safe container classes.

• Algorithm complexity, a technique to estimate the performance of
algorithms and data structures, and naming conventions for features of
reusable components.

10.1 STATIC TYPING AND GENERICITY

The first issue container structures raise is atyping issue.
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Static typing

All the entities of our software are declared with a certain type. This rule
enables the compiler to check that any operation you want to apply to an
entityx — for example a feature call,x.f (a) — uses a feature that’s indeed
applicable to it. All the compiler needs to do is to look up the typeT with
whichx has been declared:

• There must be a class forT.

• It must contain a featuref, taking an argument of the right type.

This policy is known asstatic typing: static because type properties are
specified in the program text, and so can be enforced at compilation time. The
alternative,dynamictyping, would forsake type declarations, and wait until
run time to find out that a feature callx.f (a) tries to apply a featuref to an
object that can’t handle it.

The argument for a static typing policy is twofold:

• Clarity: by declaring every entity of the program with a precise type, and
every feature with a precise signature, we express the intent behind them
and facilitate program reading and maintenance.

• Reliability: an invalid feature call is a bug; it’s always better to find such
mistakes at compilation time than at execution time. The cost of finding
and correcting an error increases dramatically the longer you detect it in
the software project lifecycle.

Static typing for container classes

How can we apply static typing principles to containers? We’re already
familiar with lists, since that’s what instances ofMETRO_LINEare: lists of
instances of classMETRO_STATION, with features such as

Now let’s assume that you want a classLISTthat can describe lists ofanything:
a list of metro stations, a list of integers, another of objects of any given type.
The class should have the above features, but you can’t declare the argument
m to extendand the result ofitem without knowing the type of list items:
METRO_STATIONas above, orINTEGERin the second case, or any other
type that you have chosen for the objects of a particular list.

extend(m: METRO_STATION) -- A command
-- Add m at end of line

item: METRO_STATION -- A query
-- Station at current cursor position

← “Definitions:Static,
Dynamic”,  page 13.
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We could of course write distinct classes:LIST_OF_METRO_STATIONS,
LIST_OF_INTEGERSand so on. We don’t want to do that, since the class texts
would be identical except for some type declarations. Such code duplication or
quasi-duplication goes against every principle of economy and reuse.

The idea of genericity is to use a single class, hereLIST, but
parameterize it so that it can support many types without reprogramming.

Generic classes

Using genericity, we declare classLISTas

G is just a name; it’s known as aformal generic parameterfor the class. (“A”
parameter because there may be two or more.) It denotes an arbitrary type, so
that within the class we may use it for declarations, as with the argumentmof
extend and the result ofitem.

To use the classLIST in practice you will declare for example

where each example provides a type, known as anactual generic parameter
— INTEGER, METRO_STATIONin these examples — to indicate whatG
must represent, within the class, for the particular list.

This technique solves the problem of static typing for general container
classes. Assuming the entities

you may use the following valid instructions:

class LIST[ ] feature
extend(m: ) is

-- Add m at end of line
do … end

item:
-- Station at current cursor position

…Other features and invariant…
end

first_1000_prime_numbers: LIST[INTEGER]
stations_visited_today: LIST[METRO_STATION]

some_integer: INTEGER
some_station: METRO_STATION

G
G

G



FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM244

This all satisfies the type rules. The formal argument ofextendin LIST is of
type G; this meansINTEGERfor first_1000_prime_numbers, declared as
LIST [INTEGER], andMETRO_STATIONfor stations_visited_today; so it’s
appropriate to pass as actual argument an integer in the first case and a metro
station in the second case. The same applies to the result ofitem.

On the other hand, if you try either of

you won’t get past compilation:

first_1000_prime_numbers.extend(some_integer)
stations_visited_today.extend(some_station)

some_integer:= first_1000_prime_numbers.item
some_station:= stations_visited_today.item

first_1000_prime_numbers.extend( )
stations_visited_today.extend( )

some_station
some_integer
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Until the mid-eighties California drivers encountered a single interruption in
the entire stretch of Highway 101 from San Francisco through Los Angeles to
San Diego: a traffic light in Santa Barbara. This sometimes created the Santa
Barbara version of a traffic jam, both for the freeway drivers and for the locals
trying to cross over. To those who complained, Jerry Brown, the governor of
California in the nineteen-seventies, once replied in a very nineteen-seventies
mode that they should instead be grateful for the opportunity to stop and reflect
on the deeper meaning of life. This is exactly how you should react to a
compilation error such as this one. Do not curse the nasty compiler for
preventing you from bringing your program to execution; thank instead the
helpful compiler for helping you avert a potential error that could have caused
lots of trouble had the program been allowed to proceed to execution.

The techniques just introduced lead to a bit more terminology:

LIST is a generic class; the typeLIST [INTEGER], obtained fromLIST by
providing the generic parameterINTEGER, is a generic derivation ofLIST.

All the container classes studied in this chapter, such asARRAY[G],
LINKED_LIST[G], HASH_TABLE[G, H], are generic. The generic parameter
nameG will always represent the type of items in the container. This is just a
convention; you may use for a generic parameter any name that isn’t also the
name of a class in your system.

Genericity is simply the name of the mechanism allowing classes to have
generic parameters, and types, as a result, to be defined by generic derivation.

While we are on terminology: don’t confuse theargumentsof a routine, formal
and actual (representingvaluespassed to the routine by its callers), and the
parametersof a generic class, representingtypesallowing a particular use of the
class. This distinction is not universally accepted — in the literature you will find
“parameter” used for “argument” — but it’s important to keep distinct names for
distinct concepts.

Validity vs correctness

The goal of the genericity mechanism is, as noted, to ensure thetype validity
of certain kinds of programs (those involving container structures). It’s
gener i c i t y tha t makes such fea tu re ca l l s as our example
first_1000_prime_numbers.extend(some_integer) “valid”, meaning that they
satisfy the type rules of the language and the compiler will let them through.

Definitions: Generic class, generic derivation

A generic class is class that has one or more generic parameters.
A type obtained by providing actual generic parameters to a generic class is
ageneric derivation of that class.
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This doesn’t mean, however, that such instructions will always work
correctly. The target of the call,first_1000_prime_numbers, might be void at
execution time; orextendmight have a precondition thatsome_integerdoes
not satisfy. We have two different notions at play:

The second definition of correctness applies only to valid programs. Indeed,
for a statically typedlanguage (a language with precise type rules, such as
Eiffel) it makes no sense to ask about correctness unless the program has
passed validity checks.

Examples of the “certain kinds of run-time malfunctions” ruled out by
validity include the application of a feature to an object that can’t handle it.

Why do we need two notions? It would be good if validity implied
correctness, so that once your program has passed muster with the compiler
you can go home and rest assured that it will execute properly. Dream on.
Although programming languages have been getting better and better at
defining static rules that catch errors at compile time, there remain cases that
can only be detected during execution. For these, other mechanisms are
available, such asexception handling.

Devising a framework in which validity implies correctness is an old
quest, the Philosopher’s Stone of programming. For the moment, we have to
accept that they remain distinct; but you’ll quickly find out that static typing,
especially when combined with techniques of Design by Contract, gives you
an outstanding tool to kill bugs before they’ve even had a chance to attack you.

Classes vs types

With genericity we may take a closer look at the relationship between the
notions of class and type.

A type is the description of a set of run-time values: typeINTEGER
specifies the properties of integers as they will be used in your programs, type
METRO_STATIONdescribes the properties of run-time objects representing
stations, and so on.

Definitions: Validity, correctness

A program is valid if it satisfies all the type rules and other static
consistency rules of the language, guaranteeing that certain kinds of
run-time malfunctions may never happen.
A valid program iscorrect if it will always execute in accordance with the
desired behavior, and never cause a contract violation or other run-time
malfunctions leading to failure of the execution.
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A class is a program module defining a collection of features (and their
properties, such as the class invariant) applicable to a set of run-time objects.

The connection is very close: the “set of run-time objects” associated
with aclassis, at least if the class is not generic, atype. Any non -generic class
such asINTEGERandMETRO_STATIONis indeed a type, and can be used in
type declarations for entities, as in the examples used earlier:

This use of classes as both the basic units (“modules”) of program texts, a
static notion, and the typing mechanism for objects, adynamicnotion, is
central to the object-oriented style of programming, which would better be
calledclass-oriented.

The connection between classes and types remains just as strong with
genericity. What’s new is that a class such asLIST or ARRAYno longer
immediately gives us a type; it gives us a template for a type. To get an actual
type, it suffices to perform a generic derivation by providing an actual generic
parameter. For example:

• INTEGERandMETRO_STATIONare both classes and types. This is true
of any non-generic class.

• LISTandARRAYare classes;LIST[METRO_STATION], ARRAY[INTEGER]
and so on are types. This is applicable to any generic class.

We can turn this observation into a precise definition:

The notion is “class type” rather than “type” in general since there are a few other
kinds, although class types are the most important.

some_integer: INTEGER
some_station: METRO_STATION

Definition: Class type
A class type is one of:
T1 • A non-generic class.
T2 • A generic derivationof a generic class (that is to say, the class name

followed by appropriate actual generic parameters). In this case the
class type is said to begenerically derived.
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Nesting generic derivations

There remains to clarify what you may use as anactual generic parameterfor
a generic class. The answer is easy to guess: a type. You can see this in the last
examples: inLIST [METRO_STATION] the actual generic parameter
METRO_STATION is a type; so isINTEGER in ARRAY[INTEGER].

Perhaps you’re sensing something strange in these definitions:

• We’ve just defined types by stating (clauseT2) that they may be obtained
from a class and actual generic parameters.

• Now we’re defining an actual generic parameter as a type.

Is this a worthless circular definition? No. It’s just an example of arecursive
definition, one that builds new elements of a set under definition — here the
set of types — by using elements previously obtained under the same
definition. The process is clear:

• Through clauseT1 of the definition we know that, for example,
METRO_STATION, a non-generic class, is a type.

• We may now use clauseT2 to deduce thatARRAY[METRO_STATION]
is also a type.

Recursion is a fascinating technique, not just for such concept definitions but
for routines and data structures. We’ll have a fullchapter devoted to it, but this
example should suffice to show that, in the present case, there’s nothing
inconsistent or strange in the recursive definition of “type”.

The definition in fact opens interesting possibilities. The type used as
actual generic parameter inT2 can follow not just fromT1 but also again from
T2; in other words it can be generically derived. This allows types such as

and so on without limitations. This is not just a theoretically pleasant
possibility, but a practical mechanism, as we’ll encounter the need for lists of
lists, lists of arrays and other multi-level containers.

LIST [LIST[INTEGER]]
LIST [ARRAY[METRO_STATION]]
ARRAY[ARRAY[ARRAY[INTEGER]]]

→ Chapter16, in par-
ticular “Recursivedefi-
nitions”, page360and
“Bottom-up interpreta-
tion of a construct defi-
nition”,  page 392.
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10.2 CONTAINER OPERATIONS

The container structures studied in the second part of this chapter, all of
common use in programming, are quite diverse, from arrays, linked lists and
other kind of lists to hash tables and tree structures.

Why such diversity? It’s due to the difficulty of providing equally
efficient implementations for the many operations that we need to execute on
containers. For example arrays let you very quickly get to an item if you know
its index; but they are not good — read: too slow — for insertion of new items.
Linked lists are reasonable for insertion, but slower than arrays for
index-based access. When you need a container, you’ll have to choose one of
the available structures depending on the operations you require from it.

For our study of fundamental container variants we must first define these
fundamental operations. We’ll look first at queries, then at commands.G will
denotes the type of the container’s items; it’s the generic parameter of the
corresponding classes, as inARRAY[G] or LINKED_LIST[G].

Queries

We’ll need to find out if a container is empty (has no items). The query,
returning aBOOLEAN, will be calledis_empty. Its signature is just

in other words it takes no argument but is called under the formc.is_empty,
yielding a boolean value for any containerc.

To find out if a particular item appears in a container we’ll use

To find out how many items are in a container:

An invariant clause, applicable to all relevant container classes, states:

is_empty: BOOLEAN

has(v: G): BOOLEAN

count: INTEGER

is_empty= (count= 0)
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To obtain an item from the container —any item, chosen by the container’s
policy, not by the client:

Some containers let you obtain an item given by an integer index, as in “give
me the third item”. The query is:

Using the same name as for the previous operation causes no ambiguity
because the signature is different; no structure reviewed here has both variants.

An integer is only a special case of akey enabling you to retrieve an item
from some information associated with it. There are many different kinds of
keys; one of the most common is astring, as in a container representing a Web
page and allowing a search engine to ask whether certain words appear. For
string keys the query will be

We’ll learn how to generalize the key type. Here too reusing the nameitem
causes no confusion.

Commands

The creation procedure that sets up a container will usually be calledmake.
Often it has no argument, but sometimes it takes one indicating an expected
number of items:

For all the containers of this chaptern is only an indication to guide the initial
creation of the data structure,not an absolute maximum.

The most common operation for adding or replacing an item is calledput,
with one of the following signatures, matching one of the signatures foritem
but with one more argument indicating the new value:

item: G

item(i: INTEGER): G

item(i: ): G

make(n: INTEGER)

put (v: G)
put (v: G; i: INTEGER)
put (v: G; k: STRING)

STRING
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The postcondition should always include the clause

and, in addition, should express the relationship with the corresponding
version ofitem:
• item= v if put has no argument (the first case).
• item(i) = v for the version with an integer index.
• item(k) = v in the last case.
The procedureput, when present, may eitheradd an item orreplacean
existing one. Sometimes we need to distinguish, using one of

with the postcondition

or one of

with

When either ofextendandreplaceexists,put is usually a synonym for one of
them, corresponding (if both are present) to the more common use. In all
cases, the postcondition clausehas(v) expresses that after you’ve added an
item the structure must answer “yes” if asked about its presence.

The procedure to remove an item is, depending on the context, called
remove or prune.

Automatic resizing

We saw above that creation procedures (usualltymake) that specify an initial
size always mean it as an indication, not a permanent limit. The data structures
of EiffelBase (Eiffel’s container library) are almost all either unbounded or, if
they have an initial bound, resizable. Part of what defines a good programmer
is, indeed, avoidance of absolute limits.

inserted:has(x)

extend(v: G)
extend(v: G; i: INTEGER)
extend(v: G; k: STRING)

one_more:count= old count +1

replace(v: G)
replace(v: G; i: INTEGER)
replace(v: G; key: STRING)

same_count:count= old count +1



FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM252

Don’t let anyone lock you — and the users of your programs — in a fixed
box. Design your data structures, like EiffelBase, so that if the size of the data
exceeds expectations they don’t give up (as some libraries do) but just resize
their implementation whenever possible. Computers have big memories; there
are few more stupid program events than hitting a fixed limit and not being
able to reallocate the structure. As we’ll see, even arrays (often treated
elsewhere as fixed-size structures) are resizable in Eiffel.

It so happened that just during the writing of this chapter the world wasfixated on
the initially unsuccessful exploration of Mars by the NASA’s Spirit and
Opportunity rovers. Spirit was silent for more than a day, rebooting again and
again. Engineers suspected all kinds of possible equipment failures, until it
surfaced that it was a software issue: the system had room for a fixed number of
file handles, and needed more files than planned. No one had apparently thought
of using Eiffel and its resizable structures.

One year later, a few weeks after the US elections, it transpired the vote-counting
software in the San Francisco Supervisor vote had failedbecause of “ahard-coded
constant maximum number of voters that was set too low”.

Please don’t fall into such pitfalls:

Standardizing feature names for basic operations

The names cited above recur throughout the libraries. Even a casual look at
container classes through EiffelStudio will show that most of them have
features calleditem, has, put etc.

This is a deliberate choice. One could of course invent new names for
each class, reflecting the specific properties of the corresponding kind of
container. But these peculiarities are already captured by the signature, header
comments and contracts of the features, for example input for ARRAY

Touch of Methodology:
Don’t box in your users

Don’t use constant built-in limits. Let your data structures resize themselves
to adapt to the size of each instance of the problem.

put (v: like item; i: INTEGER)
-- Replacei-th entry, if in index interval, byv.

require
valid_key: valid_index(k)

ensure
replaced: item(i) = v

Seewww.newscien-
tist.com/news/news.jsp
?id=ns99994610.

Peter G. Neumann,
“Some 2004 voting
anomalies”,cat-
less.ncl.ac.uk/Risks/23.
59.html#subj2

http://www.newscientist.com/news/news.jsp?id=ns99994610
http://catless.ncl.ac.uk/Risks/23.59.html#subj2
http://catless.ncl.ac.uk/Risks/23.59.html#subj2


§10.3 ESTIMATING ALGORITHM COMPLEXITY 253

and input for STACK:

so that no confusion can result. Using consistent terminology facilitates the
library’s ease of use and ease of learning: when discovering a new class, you
can quickly identify the key features and their purpose.

10.3 ESTIMATING ALGORITHM COMPLEXITY

The various container data structures will differ by how much space they use
to store items, and how much time they require to implement the essential
operations as just reviewed.

We need a reliable way to contrast such performance for various data
structure choices. It’s not enough to measure concrete performance on specific
examples and report that “on averageitemtook 10 nanoseconds for arrays and
40 nanoseconds for linked lists”:

• To talk about averages we must have a significant statistical distribution;
there is no clear way of determining such a distribution for container sizes
(how many 10-item containers, how many with 1000 etc.).

• You can’t easily infer from the measurements how the results will scale
up. Some techniques can be very good for small structures, but what
matters in performance-critical applications is how well they do for large
sizes. (For 1000 items, almost any container will do a decent job.)

• The result is closely tied to the context of the measurements: machine,
operating system, even programming language. It is not rare to see the
same experiment give radically different outcomes on different machines.

put (v: G)
-- Pushv onto top.

require
extendible: extendible

ensure
pushed: item= v

Touch of Methodology:
Standard feature names

It is a good idea to use the standard names, when applicable, for features of
your own classes, enhancing their consistency and readability.
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The accepted measure of algorithm complexity, known asabstract
complexity — also familiarly as “Big-O notation”, sometimes written
“Big-Oh” to emphasize that theO is a letter —, provides a estimate freed from
such contingencies.

Measuring orders of magnitude

Abstract complexity relies on two principles:

• Provide the measure as a function of thesizeof the data structures under
consideration. For most of the examples in this chapter it’s a single
parameter:count, the number of items in a container.

• Define the function not by an exact formula but by anorder of magnitude,
the O in “Big-O”, as inO (count) (pronounced “O of count”).

When we say that the time for a search operation in a list ofcountelements is
O (count) we mean that for large values ofcount it grows at most
proportionally to count. Another operation may beO (count2), meaning that
its execution time grows at most proportionally to the square of the number of
elements. The same conventions are used for estimating space requirements.

In such a measure:

• Constant multiplicative factors do not matter:O (100∗ count2) means the
same asO (count2). The justification for this convention is that we can’t
attach any long-term importance to multiplication by any constant, since
the same algorithm implementation may become 100 times faster or
slower just by being moved to a different machine; but how its
computation time varies whencountgrows doesn’t depend on such
technical choices.

• Constant additive factors also do not matter:O (count2 + 10000)means
the same asO (count2). The constant may have a strong influence for
smallcount, but ascount grows it fades away.

• Similarly, any additive factor with a smaller exponent doesn’t matter:
O (count3 + count2) is the same asO (count3).

As a consequence, to express that an algorithm takes constant time — or, more
realistically since several executions are unlikely to take exactly the same
time, that its execution time isboundedby a constant — we say that it’sO (1).
We might just as well sayO (10) or O (1000), but1 is the convention.
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Mathematical basis

The Big-O notation may seem informal, but it’s possible to define it in a
completely rigorous way, as a relation between two functions:

When reading analyses of algorithm complexity you may encounter statements
such as “f (n) = g (n) + O (n2)” as an abbreviation for “f (n) = g (n) + s (n) for some
functions, wheres (n) is O (n2)”. The intent is to state thatf is “like” g except for
a term inO (n2).

As a result of the definition, if a function isO (n2) it is alsoO (n3), O (n4) and
so on. This is because the Big-O specification gives an upper bound, not a
precise estimate.

Logarithmsfrequently arise in the analysis of algorithm complexity. For
example the best algorithms forsortinga list of n values areO (n ∗ (log n)).
Such a formula doesn’t specify the logarithm base (such as 2 or 10), because
a change of base only contributes a multiplicative constant, per the formula
logb n = ∗ loga n.

Making the best use of your lottery winnings

This convention of ignoring multiplicative constants can be surprising at first.
If an algorithm takescount1.5 nanoseconds, abstract complexity considers it
less good than one taking106 ∗ countnanoseconds, even though the second
one run faster for up to one million items. What the convention gives us is an
understanding of the essential behavior of algorithms as a function of the
growth of the problem size.

The following observation helps understand the benefit. Consider four
algorithms with performance such that the biggest problem size they can
tackle in 24 hours of continuous operation on your computer is respectively
N1. N2. N3. N4. Their abstract complexities areO (n), O (n log n), O (n2), O
(2n). You win at the lottery and have the opportunity to buy a computer that’s
one thousand times faster than your current one. What does this get you?

Definition: Big-O notation for abstract complexity

Let f and g be two functions from natural numbers to non-negative real
numbers. Functionf is said to beO (g) (or, more commonly,f (n) to be
O (g (n)), spelling out the argument) if there exists a constantK such that
f (n) / g (n) < K for every natural numbern.
An algorithm isO (g (n)) in time or in space if the function giving its
execution time or space occupation in terms of the input sizen is O (g (n)).

logb a

Adapted from Aho,
Hopcroft, Ullman; see
“FURTHER READ-
ING”,  page 306.
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• With anO (n) algorithm you can now solve a problem that’s a thousand
times bigger:1000∗ N1.

• With O (n log n) the improvement is still multiplicative, with a factor that
is close to1000 for largeN2.

• With O (n2) you multiply the maximum problem size by a factor of about
32 (square root of 1000).

• With O (2n) your new dream machineincreasesN4— it’s an addition, not
a multiplication! — by just 10.

This question — how big a problem you can solve in a given time, rather than
how much time it will take to solve a problem of a given size — is often the
right way of looking at efficiency issues.

Consider for example a next-day weather forecast program. (Meteorology has
made spectacular progress in the past two decades thanks to computer modeling.)
The program works from past data collected at a number of points on a
geographical grid. More grid points means more accurate predictions. To assess
the program’s efficiency, the useful criterion is not how long it takes to process a
fixed number of grid points, since an outstanding next-day forecast won’t help if it
takes 48 hours to complete. It’s the reverse question: how many data points you can
process in a fixed time, for example one hour.

This reasoning illustrates what abstract complexity gives us: a view of
algorithm efficiency free from superficial technology considerations, but
helping to understand the benefits of potential technology improvements.

Abstract complexity in practice

When measuring the Big-O complexity of an algorithm you may be interested
in any of three variants, and should clarify which one you report:
• Average complexity, assessing the average time or space taken up by the

algorithm. As already noted this is only meaningful if we have a
probability distribution on the algorithm’s input; usually the distribution
considers all possible inputs equally likely.

• Maximum complexity, also calledworst-casecomplexity. assessing the
time or space required by the inputs that make this measure highest.

• Minimum or best-casecomplexity, less often useful in practice (other
than for programmers who believe in the Tooth Fairy), but sometimes
interesting for purposes of comparison.

Presenting data structures

In the remainder of this chapter we look at fundamental structures. The
presentation relies on theEiffelBaselibrary of data structures and algorithms,
which provides reusable classes for all the concepts under study:ARRAY,
LINKED_LIST, HASH_TABLE, STACK and so on.
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The description takes the viewpoint of theclient programmer(also
known as “you”): someone who will take advantage of these library classes to
write a new application that uses arrays, linked lists etc. Features will, as a
result, be introduced through theircontract forms.

The presentation explains basic implementation techniques but does not,
as a rule, show feature implementations. That would be the role of a
companion book (which I hope someone will write) focusing on the
fascinating topic of data structures and algorithms. Youcan see
implementations if you wish: EiffelBase is open source software, included
with any delivery of EiffelStudio, and you are welcome to explore its code,
written with the explicit goal of serving as a model of O-O style, andrefined
again and again over the years.

10.4 ARRAYS

We start with one of the most commonly useful container types, arrays.
Arrays are a software notion, but their importance comes from a hardware

property: the addressing mode of the type of main memory used in today’s
computers, known asRandom Access Memory, or just “Random Memory”. In
spite of the name this doesn’t mean that the computer throws a dice to decide
which cell to access (interesting idea, though) but that the time to access a
memory cell — either to read it or to modify it — doesn’t depend on the cell’s
address. (Understand “random” as in “you can pick an address at random and
not worry about the effect on access time”.) If you have a 2 GB memory, it
won’t make any difference whether the cell is the first (address 0), the last
(address233–1) or anywhere in-between.

Random access memory stands in contrast tosequential accessmemory,
where you access an item by first traversing a set of preceding elements.
Magnetic tapes are a typical example: the tape head reaches a particular
position by rolling the tape to that position. You may also think of analogies
in non-computer devices:

Not to imply it’s
perfect…

Sequential and
random access

(Sequential) (Random)
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Arrays take advantage of the random access property by letting you define and
manipulate structures made of a number of items stored in contiguous memory
locations, and each identified by an index:

Bounds and indexes

An array has a lower bound and an upper bound, given in the classARRAY[G]
by the queries

The invariant of the class implies thatcount, the number of items (also
accessible ascapacity), isupper – lower +1. Sincecount≥ 0, we must have

The caselower = upper corresponds to an array with one element;
lower= upper +1 corresponds to an empty array (you can visualize it, on the
last figure, aslowermoving right anduppermoving left until they cross). This
is a legitimate state for an array:

lower: INTEGER
-- Minimum index

upper: INTEGER
-- Maximum index

lower<= upper +1

Touch of Methodology:
Extreme Cases Principle

When designing object structures, for example containers, consider
extreme cases — empty structure, “full” structure if there’s a maximum
capacity — and make sure that the definition still makes sense for them.

An array

lower upper
Valid index values
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There’s a long history of bugs due to inadequate handling of extreme cases.
People will think of (and test for) cases in which an array or other structure has
items; then in an execution for some particular input data, the container
happens to be empty, and everything blows up. Following the above advice
will avoid such nasty problems.

The class invariant is your primary guide to checking that the definition
“still makes sense”. Here the caselower= upper +1 remains compatible with
the invariant clauselower <= upper +1; it’s the smallest value of
upper– lower +1 (that is to say,count) that satisfies this requirement.

To access and modify array items, you’ll use integer indexes. A query is
available to find out if an integer is a meaningful index:

Creating an array

To create an array, you’ll provide the desired lower and upper bounds:

using the creation procedure

As the first two postcondition clauses indicate, the procedure setslower and
upper to the given values,your_lower_boundandyour_upper_boundin the
example. These are arbitrary expressions; you can use constants, as in

valid_index(i: INTEGER): BOOLEAN
-- Is i within array bounds?

ensure
Resultimplies ((i >= lower) and (i <= upper))

your_array: ARRAY[SOME_TYPE]
…
createyour_array.make(your_lower_bound, your_upper_bound)

 make(min_index, max_index: INTEGER)
-- Allocate array; set index interval tomin_index..max_index;
-- set all values to default.
-- (Make array empty ifmin_index = max_index + 1).

require
valid_bounds: min_index<= max_index + 1

ensure

items_set: all_default

lower_set: lower= min_index
upper_set: upper= max_index
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where the bounds are set in the program text; but you may also use variables
and more general expressions, as in

In examples such as these the index interval has a meaning of its own, such as
directly representing the years of the 20th century. If you just want a sequence
of n values that can start anywhere, the common convention is to use the
bounds 1 andn:

The C language and its successors (C++, Java, C#) require all arrays to start their
indexes at 0. In examples such as “years of the 20th century” this means that you’ll
have to perform back-and-forth translations (here adding or subtracting 1901)
between the physical index and its intended meaning. For cases such as
simple_arraythe choice of 0 or 1 as starting index is partly a matter of taste; I
definitely prefer 1 because with the 0 convention the last item of an array of sizen
has indexn–1, a frequent source of errors.

The queryall_default, in the last postcondition clause ofmake, expresses that
all items of an array of typeARRAY[SOME_TYPE] will, on creation, be set to
the default value forSOME_TYPE: zero for INTEGERandREAL, false for
booleans, void reference for any reference type.

Accessing and modifying array items

The basic query and command to obtain and modify an array item are:

createyearly_twentieth_century_revenue.make( )

createanother_array.make( )

createsimple_array.make( )

item(i: INTEGER): G
-- Entry at indexi, if in index interval

require
valid_key: valid_index(i)

put (v: like item; i: INTEGER)
-- Replacei-th entry, if in index interval, byv.

require
valid_key: valid_index(i)

ensure
inserted: item(i) = v

1901, 2000

m, m + n

1, n

→ The declaration of
itemalso containsalias
andassignclauses; see
“Br acketnotationand
assignercommands”,
page 261below.
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Note theprecondition, requiring in both cases the index to be within bounds.
A typical use is, withyour_array: ARRAY[SOME_TYPE] properly

created as we’ve seen andyour_value: SOME_TYPE:

which sets the corresponding array item:

overwriting any value previously entered there (including the default after
initialization). Note the order of arguments: first the value to be written, then
the index at which to write it.

After this call toput, the instruction

will assign toyour_value the item found atyour_index in the array.
The postcondition ofput as shown above expresses that, immediately

after aput, theitem value at the given index is the given value.
The examples for bothput and item are only correct if the chosen

your_index is within bounds. If this not guaranteed, then you should use

and similarly foritem.

Bracket notation and assigner commands

For classARRAYand others in this chapter the following notations, using
brackets, are available:

your_array. (your_value, your_index)

your_value:= your_array. (your_index)

if your_array. (your_index) then
your_array.put (your_value, your_index)

else
…

end

your_value:= your_array
-- An abbreviation foryour_value:= your_array.item(your_index)

your_array := your_value
-- An abbreviation foryour_array.put (your_value, your_index)

← valid_index
appeared on page259.

put

Updating an
array element

lower upper
your_index

your_
value

item

valid_index

[your_index]

[your_index]
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This is convenient for example in instructions such as

more readable thana.put (a.item (i) + 1, i). In such cases including several
occurrences of array elements, especially with mathematical operations
involved, <ww-redonly>[9<ww-redonly>]is better and follows mathematical
practice.

There’s nothing magical about the bracket notation, and it’s not specific
to arrays. To make it available for any class for which it makes sense, include
analias "[]" name for the corresponding feature, as withitemin classARRAY:

Addingalias "[]" to the feature name indicates that the brackets are an “alias”
for the feature name: another way to call it. As a result the notation

is simply a synonym (an alias) for

The declaration ofitemalso specifiesassignput. You may use such a clause
for any query, listing an associatedcommand. Its effect is to make the
following assignment notation valid:

merely as an abbreviation for a call

to the commandput which theassignclause has associated withitem; such a
command is called anassigner command. Becauseitem now has both a

a [i] := a [i] + 1 [9]

item : G is
-- Entry at indexi, if in index interval

require
valid_key: valid_index(i)

do
… Implementation of the feature…

end

your_array[i]

your_array.item(i)

your_array  your_value

your_array

alias "[]" assign put

.item(i) :=

.put (your_value, i)
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bracket alias and an assigner command, it is also legitimate to use form
<ww-redonly>[9<ww-redonly>] as another synonym for the last call

which achieves full reconciliation with traditional mathematical notation for
arrays, vectors etc., while using the semantics of object-oriented operations.

A language note: most programming languages, from Pascal, C and C++
to Java and C#, offer such bracket notation for arrays, for both access
(your_array[ i]) and modification (your_array [ i] := your_value). In these
languages, however, the notation is specific to arrays, and arrays themselves
are a special built-in notion. Eiffel has a different approach, treatingARRAYas
a normal class with featuresitem andput, for consistency with other data
structures and the object-oriented approach (allowing, for example, a class to
inherit from ARRAY). The language offers bracket notation as a synonym,
through thealias "[]" construct. This construct is completely general and not
limited to arrays: it’s available in other structures studied later in this chapter,
such as hash tables and linked lists, and you can apply it to any class that you
write. In contrast, bracket notation in other programming languages is usually
built-in and limited to arrays.

Resizing an array

Arrays have at any point in time a fixedlowerandupperbounds, and hence a
fixed number (count) of items. The preconditionvalid_indexof put anditem
reflects this property. In most programming languages these properties are set
once and for all, either statically (using constants bounds) or on creation. In
Eiffel you can actually resize an array throughresize:

Resizing is often indirect, through the procedureforce. To change the value of
an item, the default mechanism isput (v, i) with the precondition we’veseen:
valid_index(i). This is usually the right approach; but it assumes that you
know in advance how many items you’ll need. If you have misestimated, and

your_array  your_value

resize(min_index, max_index: INTEGER)
-- Rearrange array to accommodate indices down tomin_index
-- and up tomax_index. Preserve existing items.

require
good_indices: min_index<= max_index

ensure
no_low_lost: lower= min_index or lower= old lower
no_high_lost: upper= max_indexor upper= old upper

[i] :=

← Page260.
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the execution finds out after filling in all the entries of a 10-million-item array
that it needs just one more, fixed-size arrays fixed-size arrays don’t leave you
any way out. Usingforce works in such cases:

Unlike put, procedureforcehas no precondition and so is always applicable.
If i falls outside of the interval lower..upper, it will call resizeto accommodate
the requested entry.

Because of the continuous-memory implementation of arrays, resizing
usually requires reallocating the array to a new place in memory and copying
the old values:

Reallocation and copying are expensive,O (count) operations. As a result,
force itself can beO (count), to be compared for the very fast,O (1) cost of a
standardput. Obviously, you should useforce with care. Note that its
implementation is prudent: if it has to callresize, it will make sure that the new
size is sufficiently bigger than the previous one, so that for example a call

increases the size by more than one; the default policy is a 50% increase. So if
you repeatedly useforce in this style to extend an array at either end, only a
few of theforce operations will cause aresize.

force(v: like item; i: INTEGER)
-- Replacei-th entry, if in index interval, byv.

ensure
inserted: item(i) = v
higher_count: count>= old count

your_array.force(some_value,

-- Always applicable: resize the array ifi falls out of current
-- bounds; preserve existing items

Reallocating an
array to resize it

min max

new_min new_max

B C DA

B C DA

resize(new_min, new_max)

your_array.count +1)
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Using arrays

An array of typeARRAY[G] represents a total function from the integer
intervallower..upperto G. If after creation the boundslowerandupperdon’t
change, or change only rarely, the implementation is highly efficient, since
every access to the function, or modification of the function’s value for a
certain index in the interval, isO (1) and very fast. Arrays are then appropriate
in situations where:

• You need to handle a set of values associated with an integer interval.

• Possibly after an initial period of allocating the array and filling up its
initial values, the dominant operations are limited to index-based access
and modification.

Because of the high cost of reallocation, arrays are not appropriate for highly
dynamic data structures where elements come and go. In particular, it’s
expensive (O (count)) to insert or delete an item if this implies renumbering
the indexes, and hence shifting all the elements to the right (or left) of the
insertion or deletion position. For structures with such behavior, you should
use other structures studied later in this chapter.

Here is a summary of the cost of array operations.

Operation Features in
classARRAY

Complexity Comments

Index-based access itemalias "[]" O (1)

Index-based replacementputalias "[]" O (1)

Index-based replacement
outside of current bounds

force O (count) Requires reallocating the
array. (Only a fraction of
successiveforce operations,
will, however, cause such
reallocation.)

New item insertion O (count) Shifting all indices; not a
common operation.

Removal Not applicable Can be done inO (count) by
shifting indices; not a
common operation.
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10.5 TUPLES

Arrays are homogeneous: in an instance ofARRAY[T], all items are of typeT,
or a type compatible withT. Tuplesare similar to arrays, but may hold values
of several specified types rather than just one. If you declare

the possible values fortup at run time are sequences of three or more
components of which the first is of typeINTEGER, the second of typeSTRING
and the third of typePERSON, assumed to be an existing class. Such tuples
could be useful, for example, in a census application, each of them recording
the observation that at a certainnumberin a certainstreetlives a certainresident.

To denote a tuple value it suffices to write the successive components in
brackets with commas in-between, yielding an expression, ormanifest tuple,
which can be used as argument to a routine call, or assigned to a tuple variable
such astup:

The term “tuple” comes from mathematics: after thepair (two values, whose order
matter) and thetriple there’s thequadruple, thequintupleand (unless the term gets
filtered out by parental controls) thesextuple, so it was natural for mathematicians
to start talking about “n-tuples” for any n, denoting ordered sequences ofn values.

Tuple types are not particularly exciting as a data structure — the way arrays,
lists, hash tables, binary search trees and others each bring an original way to
store and retrieve data, with its own efficiency advantages and limitations. In
fact a straightforward implementation of tuples is through arrays. (Ignoring
the specific type information we may look at a tuple as anARRAY[ANY] where
ANY, to be studied in more detail in later chapters, is the general high-level
type covering all possible types.) Then for the complexity of tuple operations
we can just use what we just found for arrays:

The interest of tuple types lies elsewhere: as a language mechanism that
enables you to describe simple structures in an clear and simple way, without
resorting to classes. As part of this mechanism, we have already seen manifest
tuples, as in <ww-redonly>[1<ww-redonly>] above, where the tags —
number, street, resident— did not play any role. The tags are useful to access
and set individual components of an existing (non-void) tuple; for example

tup: TUPLE[number: INTEGER, street: STRING, resident: PERSON]

tup := [99, "Rue de Rivoli",Louvre_museum_curator] [1]

Operation Tuple notation Complexity Comments
Component access t.comp O (1)

See below about the notationsComponent replacementt.comp:= value O (1)

Removal Not applicable

With thanks towww.fun-
trivia.com/playquiz/qui
z113740d078a8.html.

http://www.funtrivia.com/playquiz/quiz113740d078a8.html
http://www.funtrivia.com/playquiz/quiz113740d078a8.html
http://www.funtrivia.com/playquiz/quiz113740d078a8.html
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after [T1] tup.numberwill have the value99. For setting component values,
just note that the tags are treated exactly as attributes with associated “assigner
commands”, enabling you to write, for example

All this suggests that we could do without tuple types by usingclassessuch as

which gives us exactly the same operations oncr of typeCENSUS_RECORD
as on tup above: to access components,cr.numberand such; to set
components,cr.resident:= some_personand such. Tuples are useful when
you need composite values (sequences of components of known types) and no
other operations than component accessing and setting, withnopreconditions;
they save the need for writing simple classes such asCENSUS_RECORD. For
that reason, tuples are also calledanonymous classes. As soon as you need
anything more sophisticated, they won’t do any more: you should declare a
class — not anonymous — modeling your exact needs.

To finish with the language mechanism, note that tags do not affect the
tuple’s type; in fact they are optional. So you can also write the above type as
TUPLE [a: INTEGER, b: STRING, x: PERSON], or justTUPLE [INTEGER,
STRING, PERSON] if you don’t need to access or set the components by name.

Syntactically, such tuple types look like generically derived class types,
like LIST [T]; indeed the concepts are similar, but there is no classTUPLE
because it would have to admit an arbitrary number of parameters, whereas a
generic class always takes a fixed number (one parameter inARRAY[G] and
LIST [G], two in HASH_TABLE[G, KEY] studied below). With tuple types
you can describe sequences of any length:TUPLEwith no parameters covers
all sequences,TUPLE [T] sequences of at least one element with the first of
typeT, and so on.

This observation also determinesconformanceproperties: you may
assign an expression of typeTUPLE [T, U, V] to a variable of the same type,
of typeTUPLE [T, U], of typeTUPLE [T], or justTUPLE. As noted, there is
no classTUPLE, butTUPLEdenotes a type, which covers all possible tuples,
of any length and any component types.

We will find tuple types particularly useful in connection withagents, covering
applications such as iteration and event-driven programming.

tup.resident:= some_person

class CENSUS_RECORDfeature
number: INTEGERassignset_number
street: STRINGassignset_street
resident: PERSONassignset_resident
set_number(n: INTEGER) do number:= n ensurenumber = n end
… set_street, set_residentlike set_number…

end

← “Br acket notation
and assigner com-
mands”,  page 261.

→ Chapter20.
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10.6 LISTS: LINKED, ARRAYED, MULTI-ARRAYED

A list, also known as asequence, is a container keeping elements in a certain
order, usually the order of insertion. Mathematically, it represents a total
function from the interval1..countto G; this seems similar to arrays, but the
big difference is thatcount can vary freely, as you insert new elements.

The figure illustrates a list, made of five items. The arrow is there simply to
highlight that order matters. The same elements organized in a different order
would make up a different list.

As for arrays and other structures where elements are numbered, we systematically
start the numbering at 1. Probably because it’s convenient for the manipulation of
addresses inhardwarememory, where the units are powers of two, to count from
0 to 2n-1 for somen, C and some other programming languages force the
numbering of items in arrays and other structures to start from 0, so that a structure
of count elements will be indexed from 0 tocount–1. This means that you
constantly have to remember to add or remove one. It seems much simpler to start
from 1 and follow everyone’s understanding — going back to early childhood —
that thei-th element has indexi. On your hand the thumb is the first finger (not the
zeroth), and the middle finger is the third, not the second.

The classes representing lists in EiffelBase —LIST, LINKED_LIST,
ARRAYED_LIST, MULTI_ARRAYED_LISTand a few others — treat a list not
just as a collection of elements but as amachinewhich at any point in its
existence has astate characterized by acursor:

This notion is not new; when we manipulated a metro line as a list of stations
wealready had a cursor.

Having a cursor makes it convenient to perform the basic list operations
— accessing, inserting or deleting an item — by ensuring that the
corresponding routines have a simple specification: instead of asking you to
specify a list position, they work relatively to the cursor position, as in “delete
the element at cursor position”.

A listcount1

"Balard" "Lourmel" "Boucicaut" "Felix Faure" "Commerce"

A list with its
cursor

count1

"Balard" "Lourmel" "Boucicaut" "Felix Faure" "Commerce"

0 count
+ 1

← “Animatingametro
line”,  page 164.
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Cursor queries

As suggested by the figure we will allow the cursor to range not only from 1
to count— the position that hold items if any — but from 0 tocount+ 1: it
may fall off to the left of the first element or to the right of the last element.
You’ll quickly see the usefulness of this convention. We can express it
formally: with the query

we’ll have the invariant clauses

To characterize these extreme cases we have two queries:

Note the careful phrasing of the comments, justified by the need to cover all
cases including that of anempty list as we’ll see next.

index: BOOLEAN
-- Current cursor position

non_negative_index: index>= 0
index_small_enough: index<= count+ 1

is_before: BOOLEAN
-- Is there no valid cursor position to the left of cursor?

is_after: BOOLEAN
-- Is there no valid cursor position to the right of cursor?

“Before” and
“after” cursor
positions

count10 count
+ 1

is_before is_after
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If in the current state of a list the cursor is either “before” or “after” we say that
it is “off”:

Further invariant clauses express the properties of these queries
(postconditions are also possible):

Other queries on the cursor position include:

themselves relying on

A list can indeed be empty, in which caseis_firstandis_lastalways yield false
as implied by the relevant invariant clauses: the cursor can only be on the first
item if there is at least one item. Do not forget the Extreme CasesPrinciple: it
is essential to make sure that our conventions still work well in such border
cases. For an empty list the previous figure becomes

off: BOOLEAN
-- Is there no current item?

ensure
definition: Result= (is_afteror is_before)

before_definition: is_before= (index= 0)
after_definition: is_after= (index= count+ 1)
off_definition: off = (index= 0 or index= count+ 1)

is_first: BOOLEAN
-- Is cursor on first item?

ensure
valid_position: Resultimplies (not is_empty)

is_last: BOOLEAN
-- Is cursor on last item?

ensure
valid_position: Resultimplies (not is_empty)

is_empty
-- Are there no items?

← Page258.
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with no item. In this casecount is zero, so the maximumindexposition
satisfying the invariant,count+ 1, is one. In such an empty list the cursor can
be in either position0 or position1. In either caseoff will hold, hence the
invariant clause

Note the repeated accumulation of invariant clauses to express, little by little,
what we understand of our own object structures:

To access the list item at cursor position:

you will use

This query returns a result of typeG, the generic parameter of the list classes
(LIST [G], LINKED_LIST[G] etc.). Note the precondition: in anoff state —
including for an empty list — there is no “current item”.

empty_constraint: is_emptyimplies off

Touch of Methodology: Using invariants

Use invariant clauses to make explicit the consistency properties of the
classes you design, and to check (in particular by considering extreme
cases, in line with the Extreme Cases Principle) that these properties are
sound and compatible.

item: G
-- Item at cursor position

require
not_off:

An empty list
and its two
possible cursor
positions

0 count+ 1 = 1

A possible
cursor position
(is_before)

The other possible
cursor position
(is_after)

(No items)

Current itemitem

index count1

not off
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Cursor movement

You have a number of commands at your disposal to move the cursor around.
The following will bring the cursor to the beginning or end of a list:

A call to startensuresis_first, and a call tofinishensuresis_last, but only, for
reasons just discussed, for non-empty list. The postconditions express this.

You can also move the cursor by one position:

Note the preconditions, guaranteeing that the index remains within bounds as
specified by theearl i er invariant clausesnon_negative_indexand
index_small_enough. You may also move the cursor to a specified position:

start
-- Move cursor to first position (no effect if empty)

ensure
at_first: (not is_empty) implies is_first

finish
-- Move cursor to last position (no effect if empty)

ensure
at_last: (not is_empty) implies is_last

forth
-- Move cursor to next position

require
not_after:

ensure
moved_forth: index = old index + 1

back
-- Move cursor to previous position

require
not_before:

ensure
moved_back: index = old index – 1

go_i_th(i: INTEGER
-- Move cursor to next position

require
valid_cursor_position:i >= 0 and i <= count + 1

ensure
position_expected: index = i

not is_after
item

index count1

back
forth

not is_before

← Page269.
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Iterating on a list

One of the most common manipulations on a list is to apply a given operation
to every item in turn. Let’s assume this operation is given by a routine

In dealing with metro lines and their stations we’ve already seen the scheme
for applyingyour_operation to every list item; the general form is the loop

This is for applying an operation to some existing listyour_list from your
program. The scheme also appears within the list classes themselves to
perform traversals of thecurrent list, using unqualified callsstart, after, forth
without “your_list.” We’ll see an example shortly with the routinessearchand
has that search for a value among the items of a list.

There are other forms, for example to apply a certain operation to all
elements of a listup toand excluding the first that satisfies a certain condition:

your_operation(x: G)

from
your_list.start

until
your_list.after

variant
your_list.count – your_list.index + 1

loop
your_operation( )
your_list.forth

end

from
your_list.start

until
your_list.after

variant
your_list.count – your_list.index + 1

loop
your_operation(your_list.item)
your_list.forth

end

your_list.item

or else your_condition(your_list.item)
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Such a scheme is an example of aniterator:

Isolating general schemes is good; making them reusable, so that one doesn’t
have to code them anew each time, is better. The basic iterator mechanisms are
indeed captured by features of classLIST such asdo_all and do_if, which
capture the preceding loop structures once and for all, so that you may write
the last two examples as

whereagentyour_operationdenotes an object that represents the procedure
your_operationready to be applied to each item, andagent your_condition
similarly represents the query. To understand the details we’ll need to study
first the general notion of agent in a laterchapter. Even with agents at your
disposal, you’ll probably have opportunities to write explicit list traversals
(iterations), using the above schemes as your guides.

An example of implementation using an iterator mechanism, shared by
all the list classes, is the proceduresearchfor finding an element in a list. Its
text looks like this:

This version comparesv anditemthrough basic equality=; it’s also possible to use
object equality,~.

Definition: Iterator

An iterator on an object structure is a mechanism for applying any given oper-
ation to all items of the structure, or to all items satisfying any given condition.

your_list. (agentyour_operation)

your_list. (agentyour_operation, agentyour_condition)

search(v: G) is
-- Move cursor to first position, at or after current position,
-- whereitem value isv; if none go tois_after position.

do
from

if beforeand not is_emptythen
forth

end
until

is_afteror elseitem= v
loop

forth
end

end

do_all

do_if

→ Chapter20.
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This feature is a command, which will bring the cursor to the next position, if
any, where the list includes the sought value, and to the extreme right if there’s
none. This lets you usesearchrepeatedly to search for successive occurrences
of a value. The procedure is also used in the implementation ofhas, the query
to tell you whether a value appears at all:

As a query,hasshould leave the object structure in the state where it found it;
it uses a local variableoriginal_indexto record the initial cursor position and
return to it, throughgo_i_th, at the end.

Bothsearchandhas requireO (count) time (maximum and average).

Adding and removing elements

To add an item to a list — at the beginning, the cursor position, or the end —
you may use one of the operations with the following specifications:

has(v: G) is
-- Does structure include an occurrence ofv?

local
original_index: INTEGER

do
original_index:= index

go_i_th(original_index)
end

put_front(v: G)
-- Add v to beginning; do not move cursor

put_left(v: G)
-- Add v to left of cursor position; do not move cursor

require
not_before:not before

put_right(v: G)
-- Add v to right of cursor position; do not move cursor

require
not_after:not after

extend(v: G)
-- Add v to end; do not move cursor

start
search(v)
Result:= not is_after

Unlike the last two
examples, which
showed routine imple-
mentations, these are
just interface specifica-
tion of the correspond-
ing EiffelBase features.
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As the comments indicate, these procedures are designed to have no effect of
the cursor, since there is no reason an insertion should change the currently
active position in the list.

In many cases the implementation does change the cursor temporarily; for example
it’s possible to implementextend(v) as

with an integer variableoriginal_index, as inhas, to record the initial index
position, enabling the command to restore the cursor position at the end.

To delete elements you may use

In this case the cursor has to be moved because the item to which it was
pointing goes away:

There’s alsoremove_leftand remove_right, acting on positions next to the
cursor, which do not change the cursor position. Write their specifications
(signature, header comment, contract) as an exercise.

original_index:= index
finish
put_right(v)
go_i_th(original_index)

remove
-- Remove item at cursor position; move cursor to right neighbor
-- (or to is_after if no right neighbor).

require
item_exists:not off

ensure
removed: count= old count – 1
after_when_empty: is_emptyimplies after

Removing the
current itemRemoved item

Cursor
moves
to next
item
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Linked lists

We’ve now seen the basic properties and features of lists independent of any
implementation and turn our attention to specific implementations. As in the
rest of this chapter the implementations will not be described in detail, but
we’ll see the principal ideas. You can read the class texts from EiffelBase for
the full picture.

These classes are all “descendants” of the classLIST in the sense ofinheritance,
to be studiedsoon. This means in particular that they don’t repeat common
elements, but move them to the class at the highest level of generality in each case.

The first implementation is in classLINKED_LIST. In our work with metro
stations wesaw the technique oflinking elements of a sequential structure:

We can generalize this — thanks to the genericity mechanism — to arbitrary
structures. An instance ofLINKED_LIST[T] for some typeT will refer to zero
or more linked cells, or “linkables”, each containing a value of typeT and a
reference to a possible other such linkable:

→ Chapter18.

Linking stations

← This figure first
appeared on page118.

(STOP)

right

(STOP)

right

(STOP)

right

A linked list

"Felix
Faure""Balard" "Lour-

mel"
"Bouci-
caut"

"Com-
merce"

(LINKED_LIST[T])

active

first_element

"Felix
Faure"

(LINKABLE[T])

count
...
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As the figure indicates, the implementation involves two classes:

• The bottom object is an instance ofLINKED_LIST[T]. It provides access
to the list as a whole, but doesn’t directly contain any of the list items; its
fields denote general information about the list, such ascount, the number
of elements, if implemented by an attribute (it could also be a function),
and references to list cells such asfirst_elementindicating the first cell
andactive indicating the element at cursor position. Such an object is
known as alist header.

• The other objects represent list cells; they are instances of a class
LINKABLE, also generic and using the same actual generic parameter,
hereLINKABLE[T].

ClassLINKABLE serves implementation purposes; in normal usage client
applications that need linked lists will only seeLINKED_LIST. LINKABLE
represents a very simple notion of list cell that can be linked to other similar
cells; a typical instance looks like this:

The implementation ofLINKED_LIST routines relies on features from
LINKABLE: the queries

and the associated setter commands:

item: G
-- Value in cell

right: LINKABLE[G]
-- Next item

put (x): G
-- Set item’s value tox.

ensure
set: item= x

put_right(other: LINKABLE[G])
-- Chain toother.

ensure
set: right = other

An instance of
LINKABLE[T]right

(T) (LINKABLE[T])

item
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Here for example is a picture of how classLINKED_LISTimplements the
commandput_right, which asspecified earlier must add an element to the
right of the cursor without moving the cursor. For a linked list, it suffices to
create a newLINKABLEcell and update the chaining:

In the implementation of the routine, the illustrated operation uses two calls to
put_rightfrom LINKABLE, highlighted below. Note how it must also include
special treatment to handle theis_before case properly:

put_right(v: G)
-- Add v to right of cursor position; do not move cursor

require
not_after:not after

local
p: LINKABLE[G] -- The cell to be created

do
create p.make(v)
if  is_beforethen -- Specialis_before case:

p.put_right(first_element)
first_element:= p
active:= p

else -- The most common case:

end
ensure

next_exists: active.right /= Void
inserted: (not old is_before) implies active.right.item= v
inserted_before: (old before) implies active.item= v

end

← Page275.

Adding a cell

"Felix
Faure"

"Bouci-
caut"

active

"Felix
Faure"

count

Newly created cell

(LINKABLE[T])

right

first_element

p v

This routine is from
LINKED_LIST; it
includes three calls to a
routine with the same
name fromLINKABLE.
The reuse of the name is
part of the notational
convention(“Standard-
izingfeaturenamesfor
basic operations”,
page 252) and causes
no ambiguity sincep is
of typeLINKABLE.

p.put_right(active.right)
active.put_right(p)
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As most object structure manipulations involving some juggling of references, this
algorithm requires care to ensure that it works correctly in all details. The difficulty
is even more apparent in the next example, item removal. Programming with
references is indeed a delicate area; we’lldraw below some methodological
consequences of this observation.

The procedureremovediscards the element at cursor position; as we’ve seen,
thespecification states that the cursor will move to the position immediately
to the right:

The implementation must, as illustrated, change two references:

• It must reattach theright link of the element just before the cursor
position (with item value"Lourmel" at the bottom of the figure) to bypass
the element at cursor position.

• To update the cursor as required, it must reattach theactive link of the
LINKED_LISTobject to the element (here"Felix Faure") just after the
previous cursor position.

Here too you may look up the actual implementation — routineremovein
LINKED_LIST— but the details are more intricate than forput_right, as there
are several special cases, including when the cursor is on the first or last item.
It may help to read first the text of routineremove_right, somewhat simpler.

These examples give a good idea of what’s involved in implementing the
list operations theLINKED_LIST way. As to performance:

• The complexity isO (1) for operations that need only to perform
operations at or around the cursor position:put_left, put_right and the
removal operations. (ObtainingO (1) for some of these may require more
attributes inLINKED_LIST, for example a referencepreviousto the cell
left of cursor.) Basic cursor movementstart andforth are alsoO (1).

→ “Pr ogrammingwith
references”,  page 282.

← Page276.

Removing a cell

"Felix
Faure"

"Bouci-
caut"

active

"Felix
Faure"

count

right"Lour-
mel"
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• Operation that may need to traverse the list areO (count). This is the case,
as we’ve alreadyseen independently of the choice of implementation, for
searchandhas, and also applies here to the general cursor movement,
go_i_th, as well as tofinish (implemented asgo_i_th(count) andback
(implemented as astart followed bygo_i_th(count – 1))

An interesting case isextend, to add an element at the end of the list. Asnoted,
this can be implemented asfinish followed byput_right, and ago_i_thif we
need to restore the cursor position. All three operations areO (count). But
often you will need, for example when initializing a list, to add items
repeatedly at the end. If indeed you can let the cursor remain on the last
element (queryis_last), thenextendwill just perform aput_rightfollowed by
a forth, and hence will beO (1):

Here is the complexity summary, as for other structures in this chapter. First
the cursor-position operations:

Then cursor movements:

Operation Features in
class

LINKED_LIST

Complexit
y

Comments

Insert at cursor position put_right,
put_left

O (1)
For operations left of cursor,
obtainingO (1)may require a
previous attribute.

Remove at cursor positionremove,
remove_right,
remove_left

O (1)

Insertion at end, if cursor
already there

extend O (count)

← Page276.

Inserting at the
end, advancing
the cursor

"Felix
Faure"

active
count

first_element

v
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Finally, global operations that may require a traversal:

Programming with references

This routine provides a good illustration of techniques ofprogramming with
references: reattaching references around to perform insertions into linked
object structures and (the next example) deletions from these structures. Such
manipulations can be quite delicate, as even a basic routine such asput_right
already illustrates. You must take into account all possible cases including
empty or almost-empty structures or those in which the cursor (if any) is in a
special case, and pay special attention to the ever-present possibility of void
references, as they may not be targets of feature calls.

Such matters should not be the stuff of application programs:

Move cursor to first start O (1) For operations left of cursor,
O (1) may require aprevious
attribute.

Move cursor to last finish For operations left of cursor,
O (1) may require aprevious
attribute.

Move cursor one step rightforth O (1) For operations left of cursor,
O (1) may require aprevious
attribute.

Move cursor one step left back For put_left, relies on
previous attribute in class
LINKED_LIST.

Insert at end, if cursor not
there

extend O (count)

Search search, has O (count)

Touch of Methodology:
Reference Programming Principle

Non-trivial manipulations of references, typically, for inserting and
removing items to and from object structures, should appear not in the
application-oriented parts of programs but in library classes expressly
devised to implement such structures.

O (count)

O (count)
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The “application-oriented parts of a program” are those dealing directly with
the program’s intent: processing calls (in the software running your cell
phone), selling securities, typesetting text… This seldom directly involves
tricky reference manipulations of the kind just seen, although they are often
useful for theimplementationof application-oriented concepts. Your
text-processing system may use a linked list of paragraphs, but juggling with
the references to enter a new paragraph into the list is not a text-processing
issue, it’s a list issue, and should handled in software components that deal
with object structures in general.

If you have to implement such manipulations yourself, the Reference
Programming Principle directs you to separate them from the application
proper, putting them into special “supporting technology” clusters.

Fortunately, you often won’t have to write such support software
yourself. Modern development environments provide libraries of components
dealing with the basic kinds of object structures; EiffelBase, covering all the
structures described in this chapter and many others, is an example, developed
by many people over many years. For the common case of

A consequence of the above advice is an injunction to use such libraries:

ClassLINKABLE [G] has queries item and right and the associated setter
commands put and put_right, used by the implementation ofLINKED_LIST
routines. These

10.7 HASH TABLES

Arrays represent structures indexed by integers. What if we want some key
other than integers? Strings are a common example. You may need containers
where the access criterion is a character string, such as:

• A directory of people — a container where each object represents
information about one person; you’ll want to retrieve these objects
through people’s names, in the same way that you find a person, in a
paper directory, by looking up his name.

• A collection of Web pages, as maintained by a search engines: it’s
indexed by all the words that appear on the pages.

Touch of Methodology:
Fundamental Data Structure Library Principle

For fundamental data structures and algorithms, use components from a
basic library such as EiffelBase, if applicable, rather than developing your
own implementations.
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Assume for a moment that in the first example all the people in the directory
have names starting with a different letter:Annie, Bertrand, Caroline, … Then
you could use an array of twenty-six entries, each corresponding to a letter
code, 1 forA, 2 forB and so on:

We havehashedthe keys (the strings representing the names) into integer
values in the interval1..26. “Hashing” is taken here in the sense of mincing
up food into small pieces. Specifically:

In other words, for anykey∈ K, the function gives you a valuei = h (key) such
thata ≤ i ≤ b.

In practice the interval is usually of the form0..capacity–1for some integer
capacity, with h (key) of the formf (key) modulo capacityfor some basic function
f returning an integer. The array will then be of sizecapacity.

The example uses a very primitive hash function that simply returns, for a
string key, the integer code of the first letter, in the interval1..26. A slightly
more sophisticated hash function would take theASCII codes ofall characters
in the string and add them, then take the remainder bycapacity.

The hash function depends only on the key of each item, not on the
number of itemscount, so if count is the measure of our problem’s size its
execution will beO (1). (If we take into account the lengthl of keys, it may be
O (l), but we may assume that the hash function only uses the firstK characters
of the key for some constantK.)

Definition: Hash function

A hash function, for a setK of possible keys, is a functionh that mapsK
into some integer intervala..b.

1

2

3

4

26 A perfect hash

"Annie"

"Bertrand"

"Caroline"

"Denis"

"Yuri"

"Zoia"

← ASCII is the stan-
dard encoding of basic
characters, with values
from 0 to 255.
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The assumption behind the example was that each name started with a
different letter, giving a different hash value. A hash function that gives a
different value for every element of a given set of keys is called aperfect
hash for those keys. With a perfect hash, insertion and search areO (1).

In most cases, we won’t be able to get a perfect hash, even with a better
hash function such as the sum of all codes modulocapacity. A collision occurs
— with a non-perfect hash function — when two different keys give the same
hash value. A good hash function will cause fewer collisions (it’s in this sense
that we can say that the second example, sum modulocapacity, is generally
“better” than the first), but won’t usually avoid them completely. In fact, if the
hash function computes its result modulocapacity, collisions are inevitable as
soon as we deal with more thancapacitykeys. The implementation of hashing
must be able to handle them.

One technique isopen hashing, which combines arrays with linked lists.
In the last figure, with a perfect hash, the array directly contained items and
would have been declared as

but with open hashing we’ll use an array oflinked lists of objects:

In each entry of the array, for a certain indexi, you find the list of objects
whose keys hash toi:

ARRAY[G]

ARRAY[LINKED_LIST[G]]

0

1

2

3

capacity–1 Open hashing
using an array of
linked lists"Zoia" "Denis" "Caroline"

"Bertrand" "Yuri"

"Annie"

Linked list of items
with same hash value
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With open hashing we search for an item, or insert it, by first hashing its key
into an array index, then performing a sequential search in the associated list.
The cost isO (1) for the first operation andO (c) for the second, wherec is the
collision factor — the average number of keys hashing to a given value. If the
array sizecapacityis constant, the value ofc for a large numbercountof items
and an evenly distributed hash function will beO ( count/ capacity), that is to
sayO (count). To avoid this linear behavior we would need periodically to
resize the array; but then it’s usually better to use the other technique for
collision resolution,closed hashing.

With closed hashing — as applied by the EiffelBase classHASH_TABLE,
which you may study for a deeper understanding of hashing — there is a single
ARRAY[G]. At any time some of its positions will be occupied and some free:

If for an insertion the hash function yields an already occupied position, for
example the one markedi above, the mechanism will try a succession of other
positions —i1, i2, i3 below — until it finds a free one:

A common technique, if the hash function yields a first candidate position
i = f (key) modulo capacity, is to try successive positionsi + increment,
i + 2 ∗ increment, i + 3 ∗ incrementand so on, all modulocapacity, where
increment(2 on the above figure) isf (key) modulo . This is the
algorithm used byHASH_TABLEin EiffelBase; see its implementation
routinesearch_for_insertion if you want to study it in detail.

capacity–10

Occupied Free

Array
implementing a
hash table in
closed hashing

i

capacity–10
Looking for a
free position

i i1 i2 i3

(capacity –1)
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To guarantee that the process terminates (meaning that the corresponding
loop has a variant) the algorithm must always find an empty slot. This is
guaranteed by an appropriate choice of parameters and by a policy that
reallocates the array — —resizeis essential here — if it fills up. In fact we
mustn’t wait until the last minute: reallocation should occur as soon as the fill
factor reaches a preset limit, which classHASH_TABLEsets at 80% (see the
featureMax_occupationin the class). What’s truly amazing is that with this
policy, and a good choice of hash function, search and insertion in a hash table
are essentiallyO (1). (For the theoretical complexity analysis leading to this
property, see the references at the end of this chapter.)

This property means that for all practical purposes you may see hash
tables as almost as good as arrays, generalized to arbitrary keys, not just
integers, as long as the keys are “hashable”. Strings, for example, are hashable,
so you may consider a hash table of string-identified objects as if it were an
array indexed by strings rather than integers.

This is a remarkable result, sincereally indexing by strings would lead to
impossibly huge structures. Consider for example strings of at most 7 lower-case
letters; the number of possibilities is approximately267, or 8 billions, but it would
be absurd to use an array of that size even if we had the memory, since any practical
use needs only a small subset of these possible strings. By hashing the strings we
allocate just a little more space than what we actually need (perMax_occupation
noted above) and still get time behavior comparable to that of an array.

Finding hash functions that yield such efficient behavior is somewhat of an art;
you can again take inspiration from the function used in classHASH_TABLE.

That class,HASH_TABLE[G, KEY], is our first example with two generic
parameters rather than just one;G represents the type of items andKEY the
type of their keys. You may use it form example to declare a hash table of
objects representing persons, indexed by their names, as

Here are some of the fundamental features ofHASH_TABLE. There’s a single
creation proceduremake; to create a hash table use for example

whereinitial_sizeis some positive integer. It doesn’t matter much what value
you select; as the name suggests, this is just a hint for the initial allocation. If
you are too far below the real need, you’ll just pay for one more resizing
(automatic, of course) at run time

personnel_directory: HASH_TABLE[PERSON, STRING]

createpersonnel_directory.make( )initial_size



FUNDAMENTAL DATA STRUCTURES, GENERICITY, AND ALGORITHM288

Next, the main queries. To find out if there’s an item for a certain key use

To obtain the item associated with a given key, if any:

The postcondition indicates that if thereisn’t an item for the given key, the
result is the “default value” of typeG (zero for numbers, false for booleans,
void for references). This is not a good way to test for the presence of an item
in a hash table, since there could be an item with the default value; so if you
are not sure whether the key appears, usehas first.

Thealias"[]" specificationindicates, as withitemfor arrays, that bracket
notation is available for the item associated with a certain key: you may write

as a synonym for

The bracket form is shorter and we’ll use it whenever applicable.

To insert an item into a hash table, you will need to provide both the item
and its key, as in

has(k: KEY) BOOLEAN

item(k: KEY) alias "[]":  G assignput
-- Item associated withk, if any; otherwise default value of typeG

ensure
default_value_if_not_present:

not (has(k) implies (Result= computed_default_value)

personnel_directory

personnel_directory

personnel_directory.put (that_person, "Isabelle") [10]

← “Br acket notation
and assigner com-
mands”,  page 261.

[" Isabelle"]

.item("Isabelle")
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even if the key is in fact a property of the item, as in

The class offers four insertion operations with the same signature:

Among them,extendhas a precondition stating that it’s only applicable if the

key is not already used; the other three are always applicable. A “note” clause

at the beginning of the class explains when to use each variant; since it says

exactly what there is to say I am reproducing it here, omitting some details:

In the first two cases the procedure will set the value of the boolean query

found, enabling you to find out, after insertion, if there already was an element

with the given key.

personnel_directory.put (that_person, )

(new: G; k: KEY) -- This is the assigner command foritem

(new: G; k: KEY)

(new: G; k: KEY)
require

not_present:not has(k)

(new: G; k: KEY)

Insertion variants for hash tables
(from the text of classHASH_TABLE)

• Useput if you want to do an insertion only if there was no item with
the given key, doing nothing otherwise.

• Useforceif you always want to insert the item; if there was one for the
given key it will be removed.

• Useextendif you are sure there is no item with the given key, enabling
faster insertion.

• Use replaceif you want to replace an already present item with the
given key, and do nothing if there is none.

that_person.name

put

force

extend

replace
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Sinceitem’s declaration namedput as the associated assigner command:

whereput is declared asputalias "[]" , bracket notation is available for calling
this procedure, so that you may insert an element into a hash table through an
assignment-like form:

which is just a shorthand for the explicit call toput on the previous page
<ww-redonly>[10<ww-redonly>].

To remove an element with a given key, use

This has no effect if the key wasn’t present; you can find out afterwards
through the queryremoved.

Callingclear_all will remove all the current entries.

Throughout these operations you don’t have to worry about the size of the
data structure; thanks to the resizable nature of Eiffel arrays, the routines will take
care of maintaining enough space for all the current items, plus some breathing
space as required by the algorithms (fill factor of at mostMax_occupation).

If you explicitly want to change the size, a call toaccommodate(n: INTEGER) will
ensure that the table can accommodaten items; it won’t discard any existing one.

Here is a summary of the cost of hash table operations.

item(k: KEY) alias "[]":  G
-- Item associated withk, if any; otherwise default value of typeG

ensure
default_value_if_not_present:

not (has(k) implies (Result= computed_default_value)

personnel_directory

remove(k: KEY)

Operation Feature in class
HASH_TABLE

Complexity Comment
s

Key-based access item, has O (1)

Key-based insertion put, force, extend O (count)

Key-based replacement replace O (1)

Removal remove O (1)

assignput

[" Isabelle"] := that_person
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As you start working on systems that manipulate large numbers of objects that
must be easily stored and retrieved based on their actual contents, you are sure
to find in hash tables one of your most consistently useful tools.

10.8 DISPENSERS

Arrays and hash tables areindexed structures:
• When inserting an item, you give some identifying information, such as

the index in an array and the key in a hash table.
• To access an item, you must provide the associated key or index.
The next (and last) structures we’ll study follow a different policy. There’s no
key or other identifying information for items; you’ll insert an item just by
itself, typically through a procedure

then to retrieve an item you don’t have any influence on which one you’ll get;
the basic query is

with no argument (compare withitem (i : INTEGER): G for arrays and
item(k: KEY): G for hash tables). We call such structuresdispensers, by
analogy with a simple vending machine as illustrated: the provider loads the
machine with cans of soft drinks; after putting a coin, the customer will get a
can —anycan — from those in the machine. The machine, not the customer,
chooses which can to deliver if more than one is available.

Dispensers differ in the policy the machine uses to select the item to deliver:

put (x: G)
-- Add x to current structure.

item: G
-- Item obtained from current structure.

require
not is_empty

A dispenser
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• Last-In First-Out: choose the element inserted most recently. A dispenser
with a LIFO policy is called astack.

• First-In First-Out: choose the oldest element not yet removed. A
dispenser with a FIFO policy is called aqueue.

• With a priority queue , items are assumed to have an associated
“priority” (an integer or real number); the query item will return the
element with highest priority. Although this case seems closer to indexed
structures, it’s still an example of dispenser, as the priority is an intrinsic
property of each item, rather than information added for storing it into the
data structure.

For all dispensers, the four basic features areput anditemwith the signatures
and precondition shown above, the boolean query

and a command to remove an element:

Just asitemdoesn’t let you choose which element to access,removedoesn’t
let you choose which element to remove; but as the comment indicates, the
element removed is the one thatitem, called just before, would have yielded.

A good implementation of dispensers should make all these operations
execute in constant (O (1)) time; we’ll see examples below.

In some libraries you will find an operation that combines the effect of
removeanditem: it’s a function, sayget, that removes an item, and return as
its result the value of that item. We could implement such a function in terms
of remove anditem:

is_empty: BOOLEAN
-- Are there no items?

remove
-- Removeitemfrom current structure.

require
not is_empty

get: G is
-- Side-effect-producing function, violates style rules!

do
Result:= item
remove

end
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We won’t use any such function, however, since it violates the
Command-Query Separation principle, by both changing the structure and
returning a result. For reasons explained in an earlier chapter, it is preferable
to let clients access and remove items through two separate features.

The next two sections covers stacks and queues. We won’t examine
priority queues in detail, but you may study the EiffelBase class
PRIORITY_QUEUE.

10.9 STACKS

A stack is a dispenser applying a LIFO policy: the item that you can access at
any given time is the one added most recently. The place of access is called the
“top” of the stack, and indeed the natural image is that of a stack in the
ordinary sense, for example the set of dictionaries on my desk, assuming I can
only pick the top element:

The “Towers of Hanoi” studied in a later chapter to illustrate recursion also
function as stacks.

Another visual illustration, more related to the notion of dispenser, is a
piggybank-like device where you insert and retrieve coins at the same end:

A stack

→ See the figure on
page365.

A stack
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Stack basics

The stack operations are often known as:
• Push an item to the top of the stack (commandput).
• Pop the top item (commandremove).
• Access thetop element (queryitem).
which you may visualize as this:.

Using stacks

Stacks have many applications in computer science. Here are two examples.
Assume you want to evaluate a mathematical expression inPolish notation, a
parenthesis form often used by pocket calculators, or as internal form by a
compiler or interpreter, because it is unambiguous without needing to use
parentheses: each operator applies to the previous two operands, and the result
of evaluating defines an operand for the next operator. For example the
expression2 + (a + b) ∗ (c – d) is represented in Polish notation as

with the following meaning, corresponding to the intended value: the first+
applies to the previous two operands, leading to the new operanda + b; the–
operators applies to the previous two operands, leading to the new operand
a – b; then the∗ applies to these two resulting operands, leading to the new
operand(a + b) ∗ (c – d); the final + yields the sum of2 (the first of all
operands) and this result. The following algorithm, using a stack of operands
s, evaluates a general Polish expression:

2 a b + c d –∗ +

Conceptual
image of a stack

Body (what would
remain afterpopping)

Top A new item would
bepushed here
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This uses two local variablesop1andop2representing operands, and assumes
a functionapplicationthat yields the result of applying a binary operator to
operands, for exampleapplication(‘+’, 2, 3) is 5. The following figure shows
the algorithm’s key operation, as expressed by theelseclause, at the time of
processing the∗ operator in the example expression.

A proper implementation of the algorithm must handle erroneous input (by
checking fors.is_emptybefore usingitemandremove, and checking in theelse
clause thatx is an operator), and consider unary as well as binary operators.

Our second example underlieseverymodern programming language
implementation and is present in every operating system (that’s a strong
statement, but I can’t think of a counter-example). Consider a programming
language such as Eiffel, where a routine can call a routine, which can call a
routine, which….; this is known as thecall chain:

from
until

“All terms of Polish expression have been read”
loop

“Read next termx in Polish expression”
if  “x  is an operand” then

s.put (x)
else -- x is a binary operator

-- Obtain and pop the two top operands:
op1:= s.item; s.remove
op2:= s.item; s.remove

-- Apply operator to operands and push result:
s.put (application(x, op1, op2))

end
end

Polish
expression
evaluation

a + b

c – d

2

a + b ∗ c – d

2

Pop two, push one
op1

op2

Call chain

Routine call

p
q

r
s

t
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At any run-time moment several routines —p to t in the figure — have been
started and not yet finished; the last one that started, heret, is the “current
routine”. Consider any of its instructions, say an assignmentx := y + z. Unless
the entitiesx, y, zare attributes of the enclosing class, they must belong to the
current routine, either asarguments (exceptx, since we can’t assign to
arguments) orlocal variables. Let’s use the term “locals of the current
routine” for both categories. To perform instructions such as this assignment,
the code generated by the compiler must have access to all the locals. The
solution is, on every routine call, to create anactivation record containing the
routine’s locals:

The structure on the right is theheap, which contains the objects allocated
throughcreateinstructions or equivalent. Of interest for the present discussion
is therun-time stack(or just “The Stack”), containing the activation records
for all currently active routines. Because no routine execution terminates until
the execution of all the routines it has started terminates, the routine activation
scheme is LIFO, and a stack is the appropriate structure.

In many programming languages routine texts can benested(enclosed in others);
then an instruction may refer not only to locals of the current routine but also to
locals of any enclosing routine. This means that the execution may need access not
only to the top activation record, but also to a few others below it. In this scheme
the activation record structure — still called “the stack” — uses a slightly extended
notion of stack. Eiffel doesn’t need routine nesting.

On routine entry, the mechanism creates a new activation record for the routine
(with the local variable entries set to the default initial values, and the
argument entries set to the values of the actual arguments for the call) and
pushes it onto the stack. On routine return, it pops the stack.

The run-time
stack and heapTop

Activation records
(local variables and
arguments)

p

q

r

s

t

The heap

The stack
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A benefit of using a run-time stack is that the activation records are not
required to represent different routines — only different routineexecutions. As
a result, this technique supportsrecursive routines: routines that call
themselves, directly or indirectly. Allocating a new activation record for every
new call allows each recursive call to use its own set of locals, distinct from
any locals used by previous, still active incarnations of the same routine,
which have their own activation records further down in the stack. Recursion
is the topic of an entire chapter, and its implementation — based largely on
stacks — ofone of the chapter’s sections.

Implementing stacks

As with several other structures of this chapter, there are two general
categories of stack implementations: arrayed and linked.

By far the most common implementation uses an arrayrep of type
ARRAY[G] and an integercount, with the invariant

wherecapacity is the number of array items (upper – lower+ 1). With the
array indexed from one (lower = 1), the stack items if any are stored in
positions1 to count of the array:

In classARRAYthe number of items is known as bothcountandcapacity, with an
invariant stating they are equal. This should not be confused with thecountof
stacks, which gives the number of stack items — in the arrayed implementation,
the number of array positions occupied by stack elements.

count>= 0
count<= rep.capacity

→ “THE IMPLEMEN-
TATION OF RECUR-
SIVE ROUTINES”,
16.7, page 396.

← See page258.

capacity

count

Arrayed
implementation
of a stack

1

Occupied

Free

Top

rep
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In this implementation, the queryitem giving the top item simply returns

rep.item(count) the array item at positioncount; the commandremovecan be

implemented as simplycount:= count –1, andput (x) as

using the commandforce of arrays that will perform a resizing ifcount

outgrows the current arraycapacity.

This implementation is what you’ll find in the EiffelBase class

ARRAYED_STACK. (This class does not actually needrep since it inherits

from classARRAY, but this is conceptually equivalent and we haven’t studied

inheritance yet.) The use offorce for the algorithm ofput means you don’t

have to worry about dimensioning the array properly; the array just starts out

with a default size and gets resized as needed when you push items.

Of course, the available memory is limited in the end, so you still have to ensure

the total size of your data structures remains within control.

Array resizing is not commonly available outside of Eiffel, so most other

arrayed implementations of stacks use a fixed-size array, which may be

inevitable in some cases anyway (even in Eiffel) if you need to control

memory tightly. The corresponding EiffelBase class isBOUNDED_STACK.

For a bounded stack there is, along withcount, a querycapacity(implemented

in the arrayed representation asrep.capacity) and a boolean queryis_full,

whose value iscount= capacity. Then in the same way thatremovehas the

preconditionis_empty, the commandputnow has the preconditionnot is_full,

and its array implementation (see<ww-redonly>[11<ww-redonly>] above)

usesput rather thanforce; this is correct since ensuringnot is_full will

guarantee that the call torep.putsatisfies thepreconditionvalid_index(count)

of put, which here means thatcountmust be between 1 andcapacityinclusive.

All the operations cited areO (1) in time.

count:= count +1 [11]
rep.force(x, count)

← Page292.

← Page260.
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A variant of the arrayed representation, bounded or not, has the stack
grow downward:

In this representation,countis no longer an attribute; it’s replaced by a secret
attributefreegiving the index of the first free position. Querycountmust still
be available, of course; it is a function that returnscapacity – free. The
invariant will state thatfree >= –1 and free <= capacity(compare with the
requirement oncount in the previous representation). The casefree = –1
corresponds tois_full, andfree= capacityto is_empty; the items, if any, are in
positionscapacitydown to free + 1. The implementation ofremoveis
free:= free+ 1, and the implementation ofpush is

If you have limited space available andtwostacks, you can store both of them
in a single array, using the upward scheme for one and the downward scheme
for the other (appearing as rightward and leftward on the following figure):

rep.force(x, free) -- A bounded version will useput
free:= free –1

capacity Downward
arrayed
implementation
of a stack

1

Occupied

Free

Top

rep

free

Stack growth

capacity1

Two stacks in
one array

Stack 1 items

Top of stack 1 Top of stack 2

Stack 2 items
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The advantage of this technique over two separate arrays is that it achieves a
better use of space if the two stacks do not reach their maximumcount
together. Denoting bymax(x) the maximum value of a mathematical variable
x, we note that

so that a one-array representation of size2 ∗ n might still have space available
if one of the stacks has more thann items, whereas with two arrays of sizen
we run out of space as soon as either stack reachesn. An exercise asks you to
write a classTWO_STACK implementing this idea.

Along with arrayed implementations, you can use a linked representation
for stacks. Indeed a linked list as studied earlier in this chapter provides a
ready-made implementation of a stack, as shown in the next figure: the first
cell is the top, the rest of the list is the stack body.

The operationput (x) is implemented simply asrep.put_front(x), whererep is
the linked list;item is just rep.first (wherefirst for linked lists yields the first
element,i_th (1)); and so on. ClassLINKED_STACK, in EiffelBase, provides
such an implementation. The basic operations are stillO (1), although
significantly slower than in the arrayed versions; for example,put_frontof
LINKED_LISTand henceput of LINKED_STACKmust allocate a new
LINKABLE cell.

All the basic operations are indeed constant-time in the various
implementations of stacks we have seen with, as noted, the occasional
exception of a call toforce in a resizable stack:

max(count1 + count2) ≤ max(count1) + max(count2)

Operation Feature in stack
classes

Complexit
y

Comments

Access top item O (1)

Push to top put O (1) With automatic resizing,
occasionallyO (count)

Pop remove O (1)

→ 10-E.2, page 308.

Linked stackright right rightTop
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10.10 QUEUES

With their First-In First-Out policy, queues are useful in many applications.
Two typical examples:
• In simulationapplications, especially the variant known asdiscrete-event

simulation, a program perform steps simulating what’s happening in
some process — a assembly line producing cars from parts, a network
transmitting messages, a store serving customers — to analyze waiting
times and remove inefficiencies. Often, the handling of events (parts
arriving on the assembly line for processing, messages arriving on the
network, customers arriving at the store) is first-in first-out; a queue will
represent the pending events.

• A similar situation arises in a Graphical User Interface (GUI) system,
where the events triggered by users — mouse clicks, cursor movements,
key presses — should be processed in the order of arrival.

• In operating systems and other cases of concurrent programming, a
frequently useful scheme isproducer-consumercommunication where
one process, the producer, generates some information, which another,
the consumer, reads and processes in the order of production. The
structure used for the exchange of information is a queue, in a variant
known as thebuffer, adapted for concurrent processing.

The last figure can serve as a conceptual representation of any queue, not just
a buffer: insert items at one conceptual end, remove them at the other end.

As with stacks, we may use linked and arrayed representations. A linked
implementation is straightforward:

Consumer-
producer
communication
through a buffer

Producer deposits
items

Consumer accesses
and remove items

Linked queueright right right
Insert
here

Access and
remove here
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For example the operationput (v) will just be rep.put_front(v) (if as usualrep
is the implementing structure, here a linked list),itemmust return the last item
of the list, andremovemust remove it. The EiffelBase implementation, class
LINKED_LIST, maintains the invariant

meaning that the list cursor is always past the last item.

The arrayed representation is a little more tricky than for stacks because
we must remove elements at one end and insert new ones at the other. Instead
of just one integer markercountwe should maintain two, which the class
ARRAYED_QUEUEcalls in_indexandout_index, both secret attributes. (The
public querycount is still there, giving the number of items.) It’s not good
enough, however, to use the interval in_index..out_indexto store items, as in
this simple picture

(with the obvious implementation ofremoveasout_index:= out_index+ 1 and
put (x) asin_index:= in_index + 1; rep.put (x, in_index, whererep is an array),
since we would quickly run out of space after a fewputeven if, as a result of one
or moreremove there’s unused space at the beginning of the array:

The solution: when thein_indexmarker reaches pastcapacity, the nextput
should make it cycle back to the beginning of the array, and similarly with
removefor out_index. Conceptually it’s as if we wrung the array to bring its
two ends together, turning it into a ring:

is_always_after:not emptyimplies rep.after

capacity1 A possible state
for an arrayed
queue

Queue items in_index

count

out_index

capacity1
Arrayed queue
reaching right
end of array

in_indexout_index

Unused space
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Here for example isput from ARRAYED_QUEUE:

The first instruction reallocates the array if we truly run out of space. (“Don’t
boxusin”.)When we incrementin_indexin the highlighted instruction, we do
it modulocapacity: i \\ j is the integer remainder ofi by j, asi // j is their integer
quotient. The implementation is tuned (see the finalif …) to an arrayrep
indexed from 1 tocapacity; it’s also possible — and a recommendedexercise
— to see what it gives for an array indexed from zero, and to write the
correspondingremoveimplementation.

Queues, with proper representation, yield the same performance as stacks

put (v: G) is
-- Add v as newest item.

do
if  count +1 = rep.countthen growend
rep.put (v, in_index)

if  in_index= 0 then in_index:= capacityend
end

Operation Feature in queue
classes

Complexit
y

Comments

Access oldest item item O (1)

Add item put O (1) With automatic resizing,
occasionallyO (count)

Remove oldest item remove O (1)

Portrait of the
array as a
doughnut

Queue items

in_index

out_index

in_index:= (in_index + 1) \\ capacity

← “Automatic resiz-
ing”,  page 251.

→ 10-E.3, page 308.
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10.11 OTHER STRUCTURES

The data structures that we have seen are among the most important in
programming, but by no means the only ones. We’ve already had a glimpse of
trees(in the form of abstract syntax trees) and will see more of them in
connection with recursion. Trees have many variants, such as binary trees and
B-trees. A generalization of trees, useful in many applications (for example
networking) is the notion ofgraph, directed or not, andmultigraph.

The bibliographical section cites books that review the fundamental data
structures, usually in connection with fundamental algorithms. In addition a
number of textbooks address the “Data Structures and Algorithms” courses
offered by most computer science curricula.

10.12 ITERATING ON DATA STRUCTURES

Container data structures such as the ones we’ve studied in this chapter are
repositories of objects. A common need, on such structures, it to apply a
certain operation repeatedly to all these objects. This is known asiteratingon
a data structure. Here is a general definition:

A simple example of iterator is the routine thatcomputed the total travel time
on a metro line. In this case the “operation on individual elements” updates the
travel time, as computed so far, by adding the travel time to the next station.
More generally, ifyour_list is aLINKED_LIST[T] or more generally aLIST
[T] (in any implementation of lists) and there is a procedure

Definition: Iterator

An iterator is a mechanism that can yield, from one or more operations
applicable to individual elements of a container data structure, an operation
applicable to the structure as a whole.

some_operation(x: T) …

← Functiontotal_time,
page215.
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the following scheme williteratethe operation over the list

Alternatively, you may want to apply the operation only to items that satisfy a
certain condition. given by a functionyour_test (x: T): BOOLEAN; the loop
body then changes to

Other variants of iteration include:

• Apply an to all items until the first one that satisfies, or doesn’t satisfy, a
certain condition.

• Find out if at least one item, or all items, satisfy a condition.

In classes such asLISTandLINKED_LISTyou will find iterator features —
coming from their ancestorLINEAR — that provide these mechanisms:
do_all, do_if, do_if, do_while, do_until, for_all, there_exists. They use loops
such as the above (as you’ll see from a glance at their implementations), so that
you don’t have to write these loops in your own client software. Indeed you
can obtain the effect of the first example, applying an operation to all items,
simply by writing, in our two examples

from
your_list.start

variant
your_list.count – your_list.index + 1

invariant
-- All elements before cursor have been subjected tosome_operation

until
your_list.after

loop

your_list.forth
end

your_list.do_all (agentsome_operation)
your_list.do_if (agentsome_operation, agent some_test).

some_operation (your_list.item)

if  some_test (your_list.item)then
some_operation (your_list.item)

end
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We haven’t seen theagentnotation and indeed to understand the interface of
features such asdo_all we’ll need a little more baggage. In a nutshell, such
iterator features need an argument representing an operation or test. A routine
such assome_operationcan’t directly serve as argument because it denotes
code, not an object. Anagentis precisely an object that is associated with a
feature;agentsome_operationrepresents the routinesome_operationand so
can be passed as argument to iterators such asdo_allanddo_if. To understand
the details you’ll need to wait until thechapter on agents; but you can already
use simple iterator schemes as in these two examples, by providing features
with the right signatures, for a list or similar structure whose items are of a
typeT: procedures such assome_operation, taking a single argument of type
T; functions such assome_test, taking an argument of typeT and returning a
boolean value.

10.13 FURTHER READING

Donald W. Knuth:Fundamental Algorithms, volumes 1 (Fundamental
Algorithms) and 3 (Sorting and Searching) of The Art of Computer
Programming, 3rd edition; Addison-Wesley, 1997.

Widely considered the ultimate reference on algorithms and data

structures. Part of a planned 7-volume set of which only 3 have appeared.

Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman:The Design and Analysis
of Computer Algorithms, Addison-Wesley, 1974.

A compact survey of the most important algorithms and data structures.

Still an excellent survey of the field, suitable after a first introduction as

given in this chapter.

Bertrand Meyer:Reusable Software, Prentice Hall, 1994.

A presentation of design principles for building quality reusable libraries,

illustrated through the example of EiffelBase.

→ Chapter20.
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10.14 KEY CONCEPTS LEARNED IN THIS CHAPTER

• Static typing makes program clearer and makes it possible to catch errors
at compile time.

• A generic class has one or more parameters representing types. This
provides an extra degree of flexibility and is particularly useful for classes
describing container structures.

• Data structures should support resizing.

• For the consistency of a library, it is desirable to stick to a standard feature
naming policy.

• Abstract complexity estimates the performance of algorithms,
independent of hardware choices, by focusing on algorithm behavior for
large data sizes and ignoring constant multiplicative and additive factors.

• “Big-O” notation, as inO (n2), expresses abstract complexity.

• Arrays provide fast, constant-time access and replacement of items
known through their indexes in a given range. Although they can be
reallocated, they are not suited for the representation of structures with
frequent item insertions and deletions.

• Hash tables generalize arrays to indexes that can be almost arbitrary
“keys”, for example strings (not just integers), while keeping access and
replacement time essentially constant.

• Lists, especially in linked representation, serve to describe sequential
structures, and support insertions and deletions.

• Dispensers let you access, insert and remove elements at only one place.
The policy can be Last-In First-Out, yielding stacks, or First-In First-Out,
yielding queues.

• Stacks are particularly useful to represent nested structures and have
applications throughout operating systems and compilers. An array
implementation is the most common; a single array can huse two stacks.

• Queues are particularly useful in modeling, and in concurrent
programming as “buffers”. With an array implementation, array indexes
should cycle past the upper bound after repeated insertions and deletions.
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New vocabulary

10-E EXERCISES

10-E.1 Vocabulary

Give a precise definition of all the terms in the above “New vocabulary” list.

10-E.2 Two in one

Write a classDOUBLE_STACK[G] implementing two stacks in a single
array; you may call the featuresput_1, put_2, remove_1, remove_2and so on.
The stacks are of bounded size; make sure to include the right preconditions
and invariant clauses.

10-E.3 Indexing from zero

The implementation of arrayed queues, drawn from the EiffelBase class
ARRAYED_QUEUE, uses an arrayrep indexed from one.

1 • Using for inspiration the implementation ofputgiven in the text, write the
routineremove, and a creation proceduremakesetting up the queue as
empty of any items.

2 • Rewrite all three routines so that the implementation array is indexed
from zero.

Abstract complexity Activation record Actual generic parameter
Array Call chain Complexity
Correctness Cursor Dispenser
Dynamic typing FIFO Formal generic parameter
Generic class Generic derivation Genericity
Hash table Heap Linked list
LIFO List Parameter
Priority queue Queue Run-time stack
Stack Static typing Validity

← Page260.

← Page303.
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11

Input, output and exceptions

11.1 READING FROM A FILE

11.2 WRITING OUT

11.3 ABNORMAL CASES: WHEN THE CONTRACT IS BROKEN

11.4 RECOVERING FROM EXCEPTIONS
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PART II:

How things work

We start with the essentials of programming: objects, classes, interfaces and
contracts, and supporting concepts including logic and some elements about
hardware.
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12

Just enough hardware

There would be no software without computers. To understand what it takes
to develop good programs, we must have a basic understanding of the
underlying machinery — the hardware — on which they will run. In this
chapter we’ll take a look at some of the essentials of what you must know
about that hardware, detailing some elements of our earlier overall picture:

In particular, we’ll try to get a feel for theorder of magnitudeof hardware
phenomena: how much information you can represent through computer data,
how fast you can access such data and execute operationson it.

We limit ourselves to properties of direct relevance to programmers and
to the topics in the rest of this book. Along with learning to program, you
should be taking a course on a topic such as Introduction to Computer
Architecture, which will go far deeper into the details.

Processors

Memories

Communication

Rest

world

devices
Components of
a computer
system

of the
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12.1 CODING DATA

The data that we store in our computers’ memories represents information of
very diverse nature, from employee records, images and sounds, texts in
human languages with formating information (fonts, layout), to numerical
values used in scientific computation — not to forget programs. We need a
general way to represent this information and interpret the corresponding data.

The binary system

Part of what made the computer revolution possible was the discovery of a
simple and general way to represent information as data: the binary system.

The basis of the binary system is a set of two values (hence “binary”).
These values have no intrinsic meaning, so we might call them Black and
White, , Tom and Jerry or maybe Isis and Osiris. What matters is that they be
unambiguously different. In fact we call them 0 and 1 (zero and one).

The termbit denotes a mathematical variable whose possible values are
just these two. The word was made up by engineers in the late 1940s as a
contraction ofbinary digit, to indicate that a bit is like a digit of ordinary
arithmetic (0, 1, ... 9) but with 0 and 1 the only possible values.

“Bit” also denotes, by extension, a physical device that has two possible states,
and hence can be used to represent a mathematical bit once we agree on which
will be one and which zero. A cardboard sign on your door with a little flag
that you can move to read either “The doctor is IN” or “The doctor is OUT” is
a bit. More relevant to the computer industry are electronic bits (obtained for
example by transistors), where the two states correspond to two different
voltages, and magnetic bits, for example small areas of magnetic tape or disk,
where the states are magnetized and unmagnetized.

A bit (low-tech
version)
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The reason why the binary system works so well is that today’s electronics
industry lets us:
• Build such physical bit representations and pack many of them in a small

area. To be more precise: packverymany of them in averysmall area.
We’ll see some figures below.

• “Write” these bits (change their values) and “read” them (obtain their
values) quickly. Very quickly.

• Build many such collections of bits, cheaply. Very cheaply.
These properties have ensured the success of the binary system. Some early
computers used adecimalsystem; this seemed more natural since computers
were largely then seen as counting machines, and when people count they will
probably — computers or not — continue to use a decimal system for a long
time, if only because we have ten fingers, not two or eight or sixteen. (The
word digit itself comes from the Latin for “finger”.) But for automatic
computers built with the devices of electronics, the binary system long ago
displaced all its competitors.

To what extent is this relevant to programmers? More than you might
think at first. True, we work on programs in their source form expressed in a
pleasant programming language, where the connection toinformationis clear,
so that we write numbers, for example, in the usual decimal notation:10, or
–1, or 3.1415926524. But as soon as we consider how data is represented in
memory, and in particularwhereit is stored, we’ll have to remember that the
basic numbering system is the one that’s natural for computers and strange to
people, rather than the other way around.

That’s why we’ll take a look now at some of the properties of the binary
system and its associates, although this is not a substitute for the more detailed
knowledge you’ll gain from courses on logic and digital design.
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Binary basics

Unless all the information you ever deal with is the result of a single toss of a
coin, two possibilities isn’t much. The basic combinations, out of which you
can encode finite data of any size, are:

• Thebyte, or sequence ofeight bits.

• Theword, usually denoting a sequence of four bytes, orthirty-two bits.

Early on, the definition of “word” was not so universal; some computers used
different word lengths. You can still encounter such cases, but they are rare. Bytes
have always been 8 bits and are also calledoctets.

How many possible values can such a sequence of bits represent? One bit has
two possible values, 0 and 1. Put two bits together; for their combined values
there are four possibilities:

More generally for a sequence ofn bits for any integern > 0 there are2n (two
to the powern) possibilities, as is easily proved by induction.

Basic representations and addresses

For the basic units:

• A byte, with eight bits, has 256 (28) possible values.

• A collection of 32 bits has232 possible values; that number, given in the
table below, is on the order of four billions.

For example if we want to storecharactersmaking up a text, we’ll use one
byte for each character. 256 possibilities might seem a luxury, but in fact it’s
just about what we need once we have included the ten digits, special symbols
on your keyboard —~, !, @ etc. —, the 26 lower-case and 26 -upper-case
letters of the Roman alphabet, and the most common accented letters of
Western languages (é, Ä and so on). The standard assignment of each possible
8-bit configuration to represent each one of these characters is known as
extended ASCII; the originalASCII used only 7 bits (128 possibilities) and had
no support for accented letters.

0 0

0 1

1 0

1 1

“American Standard
Code for Information
Interchange”. You may
see the ASCII byte code
assignments at
www.asciitable.com.

http://www.asciitable.com
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For languages with other character sets, such a Cyrillic, or ideograms,
such as Chinese, extended ASCII doesn’t suffice any more; the standard there
is Unicode, which uses two or more commonly four bytes for a single
character, supporting a large set of possibilities that cover the most important
written languages.

Our programs will use the nameCHARACTERto denote the type of value
that can be stored to represent a character; depending on a configurable setting
this may be either extended ASCII or Unicode.

For numeric information, the common practice is to use aword to
represent an integer variable. The mathematical set of integers is of course
infinite, but in the memory of a computer we’ll have room for only a finite set
of values; using a word, we can represent about two billion negative values and
two billion positive ones, which is usually enough. The type for such data, in
our programs, will be writtenINTEGER.

A word can also serve to represent non-integer numerical values,
mathematically corresponding torationals, such as as3/2, andreals, such as
π. Such values are particularly useful in “scientific computation”, the use of
computers for solving problems with a strong numerical component in
physics, biology, engineering or even finance. The corresponding type in our
programs is calledREAL; it uses a representation of non-integer values known
as “floating-point”. For many applications, however,232 as provided by a
word doesn’t give us any precision in modeling the real numbers; the type
DOUBLEuses two words, with264 possible combined values, and is usually
the one you need for serious numerical computations.

The starting position at which a data element appears in memory is called
its address. The example of data typesCHARACTER, INTEGER, REALand
DOUBLEindicates that data elements may be of different sizes (in these cases
one byte, four bytes, four again and eight). To provide a uniform way of
denoting addresses, the convention is always to count in bytes, and to start at
zero (rather than one). So if the memory starts with a thousand values of type
INTEGER, the first element that follows them will be at address4000.
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Powers of two

If only because of the property just seen (n bits can have2n values), the powers
of 2 are important to the binary system. Here are the first ten and other
important ones:

You need to remember the first ten values, the order of magnitude of the others
listed, and the abbreviations (kilo etc.).

n 2n Approximation by
power of 10

Common name
(abbreviation)

0 0

1 1

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024 103 (thousand) Kilo (K)

16 65536

20 1,048,576 106 (million) Mega (M)

30 1,073,741,824 109 (billion) Giga  (G)

32 4,294,967,296 4 x 109(4 billions)

40 1012(trillion) Tera  (T)

50 1015 Peta  (T)
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From cherries to bytes

In the ordinary, decimal way of counting things, abbreviations like “kilo”
represent powers of ten, more precisely the powers of103 which serve as
natural milestones: a kilogram of cherries at the market is one thousand grams
(103), one million dollars (106) won’t buy you anything decent in Southern
California, one billion Swiss francs (109) might prolong the life of a failing
airline by a few weeks.

This also applies to computer-related measurements other than memory:

• A transmission line functioning at 1 Mbps (Megabit per second) can
transmit one million bits each second.

• A CPU with a speed of 1GHz (one Gigahertz) can execute one billion
basic processor instructions per second. “Hertz”, number of events per
second, is a frequency measure borrowed from physics.

While memory sizes and addresses are expressed inbytes(abbreviationB),
transmission speeds are usually given inbits per second orbps, where the
abbreviation for “bit” isb. So a “56K modem” — if functioning at its highest rate,
which it usually doesn’t — would transmit 56,000 bits each second.

To express memory size, computer engineers prefer to use the powers of two.

To connect the two systems, decimal and binary, we note in the preceding
table that the tenth power of two,210, is 1024, slightly over103, a thousand.
As a consequence,220 is of the same order of magnitude as a million,106, and
230 as a billion,109; see the exact values in the table. This explains the last
column: for memory measurement we reuse the common abbreviations of
decimal powers, but to represent the closestbinary powers.

To avoid any confusion, remember that the binary interpretations are only
used formemorymeasurements. For anything else the usual decimal meanings
continue to apply. If the ad for that 1-GHz laptop, which executes a billion
operations per second, also says it has 1 GB of memory, you will actually be
getting more than a billion bytes; about 73 million more.

In most practical cases the difference doesn’t matter: between friends,
what’s a few millions?

“Real” numbers

[TO be completed] More precisely,REALdescribes a finite set of values
— a large set, with as many as 232 or 264 values, but still finite —, so:

• If x is a mathematical real number, what we can store on the computer is
the closest tox of these values; this introduces a small error.
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• If x and y are two mathematical numbers andx’ and y’ the values
associated with them on the computer, the programming language
notationx + y does not denote the mathematical sum ofx andy; it
generally does notevenrepresent the exact value of the mathematical
sumx’ + y’, since that value may not be directly representable on the
machine; it’s only a close approximation of it. The same holds for other
arithmetic operations. What this means in practice is that every
application of such an operation may introduce a small numericalerror .
This is a typical example of thedistinction betweeninformation anddata.

In computations using real numbers — “scientific computation” for science
and engineering but also, for example, financial modeling — approximations
are usually acceptable; the problem is that in an actual computation
performing millions or billions of elementary operations the errors,
individually small, may accumulate to the point where they seriously affect the
validity of the results. Numerical programming requires careful techniques to
fight this phenomenon; we’ll encounter a typical one in theexample of an
integration routine, leading to an important methodology principle.

12.2 MORE ON MEMORY

Memory is where we put and access the data. At the most elementary level it
holds basic data elements such as characters and integers, but to our programs
it will be the place where we create and findobjects. Let’s see what memories
can do for us.

Persistence

The diagram of computer organization shows two symbols for memories,
and , to emphasize that some kinds aretransientand otherspersistent,
supporting data with different requirements:
• Transient data is created and manipulated by a program’s execution, but

is not guaranteed to survive that execution. With some memory
technologies, powering off the memory unit will lose the data.

• Persistent data remains forever unless expressly deleted; switching off
power has no effect on this property.

Why have transient data at all? It might be simpler to make all data persistent
by default, and delete what we don’t need any more. The answer is
technological and economic. Memories that processors can access at a
reasonable speed for their data-processing operations are transient, and
expensive; persistent memories are cheaper, so that we can (thankfully) use
them to store large amounts of data — representing text, images, music, flight
tables, personal information ... — which we’ll have to access more slowly.

← “Definitions: Data,
information”, page10.

→ “AGENTS FOR
NUMERICAL PRO-
GRAMMING”,  19.4,
page 473.

← Page313.
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Words like “reasonable” or “slower” speed, “large” or smaller amounts
of data, “cheap” or not, should be put in context. As rough estimates in today’s
technology:

• A good computer for software development, possibly a laptop, might
have a transient memory capable of holding one to two GB (gigabytes) at
a cost of 200 dollars or euros for the memory. The time to access a
character might around 10 nanoseconds, meaning 100 million accesses
per second. (A nanosecond or ns is10–9 seconds.)

• The computer might have adisk (persistent memory) that is sixty times
as big (60 GB), costs twice as little ($100), and has an average access time
on the order of a millisecond — a thousand accesses per second.

The ratio of access times is remarkable. If we scaled up to human-level
magnitudes, the program would be like a worker who has some papers
accessible on a shelf within reach of hand, say within one meter (three feet),
and a much larger archive, almost unbounded for practical purposes, in a
storage roomone hundred kilometersaway (100.000 times as far), reachable
only by walking. Clearly, the choice of what you keep in your office and what
you store away is going to have some effect on your productivity.

This property is directly relevant to the programmer. Programs that
manipulate large amounts of data cannot ignore the issue of their distribution
between transient and persistent memory; they must keep transfer times under
control, for fear of damaging execution speed.

Transient memory

Processor operations, as noted, will access and modify data in transient
memory. This key component of computations has several names:

• Main memory.

• Primary memory.

• RAM, for Random Access Memory.

The term has a historical origin: initially, non-primary memory was implemented
with technologies such as magnetic tape or, even earlier,punched tape(paper tape
with holes to represent bits, where the presence of a hole can mean 1 and its
absence 0; in such cases data access issequentialin the sense that elements are
accessed one after the other, in the order of their appearance on the tape. Starting
from the beginning, the time to access an element is proportional to its address
(since you must first go over all the ones before it). In contrast, main memory is
“random”, meaning that it takes the same time to access any element, regardless of
its address. Many non-primary memories, such as disks presented below, are now
random as well, but RAM has stuck.
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• Core memory, or just “core”. This term to points back to an older
technology, little magnetic elements or “ferrite cores” of many years ago,
but you’ll still hear that a certain set of data is “in core”. Just understand
“core” as meaning central, as in “core competence”.

The photograph below shows a main memory “chip” containing xxx bytes. Its
access time is yyy.

Persistent memory

Persistent memory really consists of two kinds:
• Some elements are intended to remain attached to a computer during its

operation. They are calledsecondary memoryto emphasize that they
really serve as extension of the primary memory, with cheaper costs per
gigabyte and hence more space available, slower access, and persistence.

• Others are meant to be connected to a computer only episodically so that
data can be copied onto them, then removed from the computer, and later
on connected again to the same computer or another, enabling reading the
data back. So they serve as devices for data “backup” (long-term
preservation and storage) and interchange. They are calledremovable
memory, or removable storage devices. “Storage” is just a synonym for
memory.)

The most common form of secondary memory is thedisk. A more correct
term is “disk device” since “the disk” on your computer is actually a pile of
magnetized disks, all rotating a speed of 4,000 to 12,000 runs per minute, with
reading heads that can move back and forth over disk surfaces to access the
data, a bit being represented by the magnetized or demagnetized state of a tiny
area. If power is switched off the heads obviously won’t work, but
magnetization isn’t lost, making disks suitable for persistent data.

A memory chip
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The disk device pictured above has xx disks and can store yyy gigabytes. It’s
access time is xxx ms (milliseconds). Note that this is only an average; one of
the characteristics of disk access is that there is alatencytime necessary to get
the head to the right position; after that, you can access even a large amount of
data much faster if it’s all contiguous. When writing programs that mae heavy
use of disk data you may have to take this property into consideration for
optimized performance.

Although technologies other than disk, such as semiconductor memories,
are available for secondary memory, disk devices remain the dominant kind.

There are many kinds of removable memory. Disk devices themselves are
often removable. Others include “USB memory sticks”, which connect to the
“Universal Serial Bus” connector on a personal computer; the USB stick
pictured below can hold 128 MB. Next to it is a removable disk device that
connects to another port available on laptops, the “PCMCIA” port, . “ZIP
drives”, and the old paper tapes mentioned earlier are other examples of
removable storage devices.

12.3 COMPUTER INSTRUCTIONS

12.4 GETTING A CONCRETE FEEL FOR COMPUTERS’ POWER

12.5 MOORE’S “LAW” AND THE EVOLUTION OF COMPUTERS

12.6 KEY CONCEPTS LEARNED IN THIS CHAPTER

•

A disk

For “Personal Com-
puter Memory Card
International Associa-
tion”althoughyoumay
prefer the unofficial
version: “People Can’t
Memorize Computer
Industry Acronyms”



JUST ENOUGH HARDWARE §12.6324

A memory stick
and a PCMCIA
disk



§12-E EXERCISES 325

New vocabulary

12-E EXERCISES

12-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

12-E.2 Measurements

How many bytesexactlyis:
1 • One kilobyte
2 • One megabyte
3 • One megaword (1 word = 4 bytes)
4 • One gigabyte

12-E.3 Your new laptop

The computer catalog advertises a laptop with 1.3 GB of memory:
1 • How many bytes, exactly, does the memory contain?
2 • How many bits, exactly, does the memory contain?
3 • Assume you use the entire memory to represent a single variable. How

many possible values can that variable have? You are not asked to write
down the exact number (Hint: don’t try unless you own a paper factory)
but the best approximation you can of the form10n for somen.

4 • If you did want to write the number on paper, 100 digits per line and 60
lines per page, how many pages would you need?

12-E.4 Size and transmission speed

You must transmit 128MB of data using a 128-Mb modem working at full
capacity. How much time (within one second) will it take?

Address Bit Byte
Core Disk Kilo
Giga Mega Persistent
Primary memory RAM Read
Removable memory Secondary memory Storage
Transient Word Write
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12-E.5 Octal arithmetic

1 • What is the octal representation of the decimal number300,000?
2 • What decimal number does the octal number74,223 represent?
3 • What is, in both octal and decimal, the sum of the two octal numbers and

277,091?

12-E.6 Hexadecimal arithmetic
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13

Describing syntax

With the study of control structures and assignment we have started to
encounter language constructs with an elaborate syntax structure, which
programmers can nest within one another. Other syntactically interesting
concepts will follow.

To reason about such constructs we need a better way of specifying
syntax. Informal descriptions as in thepresentationof controlstructures — “A
Conditionalconsists of the keywordif followed by...” — are useful as
explanations but not good enough as specifications.

BNF (Backus-Naur Form) is available for that purpose. We’ll
complement its study by an examination of related techniques for describing
abstract syntax.

13.1 THE ROLE OF BNF

BNF lets us describe thesyntaxof programs and other texts with a precisely
set structure. We’veseen that the full description of a language must also cover
lexical andsemantic properties; for these we’ll need other tools.

Before proceeding, make sure you the basic syntax concepts introduced
in that earlier discussion are fresh in your mind: construct, terminal,
nonterminal, specimen, syntax tree.

Touch of history:
The original BNF

The history of programming languages starts in the nineteen-fifties. The
first to achieve widespread recognition was FORTRAN, intended for
scientific computation and designed by a team led by John Backus at IBM
in 1954, with the compiler shipping in 1956. This success sparked the
design of many new programming languages.

← For example“Syn-
tax: Conditional”,
page 179.

← Chapter3..

Backus
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Languages and their grammars

For our purposes a language is simply a set of “phrases”, where each phrase is
a finite sequence oftokens from a certain “vocabulary”. For example in the
Eiffel language a phrase is a class text, such as

the simplest one we can produce, made of just three tokens (two keywords and
an identifier). The phrases encountered in practice — texts of useful classes —
have many more tokens.

Not every sequence of tokens from the language’s vocabulary is a phrase
of the language:endA classandclass class classare not class texts. To define
the syntax of a language is to specify which token sequences are phrases, and
which are not. Such a specification is called agrammar:

Soon American and European groups joined forces to design an
international standard language which became known in 1958 as Algol 58.
(The name stands forALGOrithmic Language, and was ALGOL in upper
case.) Its most influential version was the following revision,Algol 60.
The preparation of the Algol 60 specification revealed the need for better
ways of describing syntax than the largely informal techniques used until
then. John Backus, by then a member of the Algol committee, proposed a
notation for describing the language, which became known as Backus
Normal Form, the original BNF.
A 1964 letter to theCommunications of the ACMfrom Donald Knuth (a
professor of computer science at Stanford) suggested acknowledging the
contributions of another committee member, Peter Naur from Denmark, by
retaining the acronym but making it stand for “Backus-Naur Form”.
Many variants of BNF have been proposed since then. In the specification
of his Pascal programming language (a descendant of Algol, first published
in 1960) Niklaus Wirth from ETH Zurich used a graphical variant which
has also been widely used.

class A end

Grammar
A grammar for a language is a finite set of rules for producing sequences of
tokens from the language’s vocabulary, such that:
1 • Any sequence obtained by a finite number of applications of rules from

the grammar is a phrase of the language.

2 • Any phrase of the language can be obtained by a finite number of
applications of rules from the grammar.

Naur

← This is a more
detailed version of the
original definition on
page44.
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So by applying the rules we get all of the desired language (clause2 of this
definition) and only the desired language (clause1).

Most languages of interest are potentially infinite; for example there’s an
infinite set of possible Eiffel class texts. But that theoretical possibility doesn’t
cause any practical problem, first because in our lifetime we’ll deal only with
a finite set of programs, but more importantly because everyphrase— here
every class text — is itself afinite sequenceof terminals. The sequence might
be very long, but it can’t be infinite.

With a finite set of rules and an infinite language, you would have to keep
applying the rules forever to produce all possible phrases, for example all Eiffel
class texts. That again doesn’t bother us: we don’t need all classes, we only
need those of interest to us — once we know that the rules are capable in
principle of describing every possible class.

BNF is a notation for defining grammars. It’s an example of a
metalanguage: a languageserving to describe otherlanguages, such as
programming languages.

BNF and the other techniques of this chapter apply not only to programming
languages but to allformal language: artificial notations with a rigorously defined
structure. HTML, the basic format of Web pages, and XML, a general-purpose
format for structured data, are examples of formal languages that are not
programming languages in the usual sense. In fact theoriginal research was
directed at understandingnatural languages — whose complexity and irregularity
exceed, however, the modeling power of BNF.

BNF basics

To describe grammars we’ll use a form of BNF called BNF-E, which serves in
particular for the standard description of Eiffel. There are many other variants,
such as Extended BNF (EBNF) defined by the International Standards
Organization. “BNF” in the rest of this discussion means any BNF variant; any
property specific to BNF-E is signaled as such. The differences are matters of
style rather than substance.

BNF enables us to define a grammar for a language.A grammar, notthe
grammar, since different grammars may yield the same language.

A BNF grammar consists of the following parts, each a finite set:

• A finite set ofdelimiters; aswe’ve seen these are the basic, fixed tokens
of the language’s vocabulary, such as keywords (class, if …) and special
symbols (period, colon,…).

→ See at the end of this
chapter:“Touch of
history: Classes of
languages and gram-
mars”,  page 349.

← “T OKENS AND
THE LEXICAL
STRUCTURE”,  page
47.



DESCRIBING SYNTAX §13.1330

• A finite set ofconstructsrepresenting structures of the language. Examples
includeClass, representing class texts, andConditional, representing
conditional instructions. The BNF-E convention is to start construct names
with an upper-case letter and write them inGreen. As you will remember,
a particular instance of a construct is called aspecimenof the construct; for
example any conditional instruction is a specimen ofConditional.

• A finite set ofproductions, each associated with a particular construct
and specifying the form of its specimens. For example a production for
Conditionaldefines the form of any conditional instruction: first the
keywordif , then a specimen ofBoolean_expression and so on.

Each production defines the syntax of specimens of a particular construct, in
terms of other constructs and delimiters. Here for example is the production
for Conditional:

This says that any specimen ofConditional— any conditional instruction —
consists of the keywordif , a delimiter, followed by a specimen of the construct
Then_part_list, followed optionally (the brackets signal an optional
component) by a specimen of the constructElse_part, followed by the keyword
end. The constructsThen_part_listandElse_parthave their own productions.

Every production defines a single construct, hereConditional, appearing
to the left of the symbol , read “is defined as”; the BNF expression on the
right specifies the structure of the construct’s specimen. This use of
productions to define some constructs enables us to distinguish between the
two kinds of construct:
• A construct that is defined by a production of the grammar is a

nonterminal construct.

• Other constructs areterminals, for example (in the Eiffel grammar)
Identifier, whose specimens are identifiers such asPREVIEW, and
Integer, whose specimens are natural integers such as34. Since the
grammar doesn’t provide a definition for a terminal construct, we must
look elsewhere to know its syntax. The description will be provided at the
lexical level.
The notions of terminal and nonterminal construct are not new; we saw them
earlier in relation to abstract syntax trees, where terminals represent leaves and
nonterminal represent internal nodes.

The reason for treating certain constructs as terminals and defining their
properties outside of BNF is pragmatic: these constructs have a simple
structure for which the full power of BNF (aimed at the description of
potentially nested and complex structures such as those of classes and
instructions) would be overkill. For example, an identifier is simply a sequence

Conditional=∆ if Then_part_list [Else_part] end

← Page44.

=∆

← “Levelsof language
description”,  page 48.

← “ABSTRACT SYN-
TAXTREES”,page45.
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of one or more characters, of which the first has to be a letter and any
subsequent ones are letters, digits or underscores. This can be expressed easily
by lexical techniques studied in a latersection of this chapter.

In the BNF grammar we simply take the terminal constructs for granted.
The grammar as a whole defines the form that specimens of any construct

may take, in the end in terms of terminals alone. Of particular interest will be
the nonterminals describing the top-level structures of a language, such as
Classin Eiffel; we’ll call them top constructs. Thephrasesof the language
— class texts in this example — are the specimens of the top construct.

Distinguishing language from metalanguage

The production forConditionalillustrates that a BNF grammar includes three
kinds of symbol:
• Languageelements denoting delimiters of the language being described,

for example — if the language is Eiffel — the keywordsif andend in a
production forConditional, and special symbols such as:= in a
production forAssignment.

• Metalanguage symbols: those of BNF itself, serving to express the
productions. In theConditionalexample they are and the brackets [ ]
enclosing an optional part.

• Names ofconstructs, both terminal and nonterminal, which belong to the
metalanguage where they denote elements from the programming
language. Terminals directly denote tokens, such as identifiers and integers;
non-terminals denote sub-structures (for example every specimen of
Conditionalincludes a substructure that is a specimen ofThen_part_list).

Because of this mix of symbols from language and metalanguage we must be
careful to avoid confusion. The rules are the following:
• Metalanguage elements (the symbols of BNF-E itself) appear in black.
• Names of constructs, such asConditional(nonterminal) andIdentifier

(terminal), appear ingreen.
• Special symbols appear — like all programming language elements in

this book — inblue. But this is not quite enough for symbols like
brackets which would be easy to mistake for a metalanguage symbol. So
they will be enclosed in straightquotes: for example ":" denotes a colon
as it will appear in the Eiffel text; and a production for any Eiffel
construct that uses an opening bracket will denote it as "[" to avoid any
confusion with the metalanguage bracket signaling an optional part.

• For the other kind of delimiter, keywords such asif andthen, we don’t
need quotes because the keywords are always written inboldface blue,
avoiding any confusion. So we just let the keywords stand for themselves.

→ “THE LEXICAL
LEVEL AND REGU-
LAR AUTOMATA”,
13.6, page 343.

=∆
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The termspecimen, which may have surprised you thefirst time around, is
similarly intended to avoid confusion. A specimen of a construct is a language
structure that satisfies the properties of the construct, for example a particular
Conditional instruction. The word “instance” would capture this notion, but it
is already used to denote run-time objects corresponding to a class. An
instance of a class is not the same thing as an instance of the constructClass!
(One is a run-time object, the other a program text.) Using “specimen” for
constructs removes any ambiguity.

13.2 PRODUCTIONS

A production defines the syntax of specimens of one construct. It is of the form

where the left-hand sideConstructstates the construct being defined, and
Definition specifies the syntax, in terms of constructs — terminals and
nonterminals — and delimiters. Depending on the form of theDefinitionthere
are three kinds of production: Concatenation, Choice, Repetition.

Concatenation

A Concatenationproduction lists zero or more constructs in a certain order,
some possibly enclosed in brackets [...] and then said to beoptional. Our first
production,Conditional, was an example::

Such a production specifies that every specimen of the new construct consists
of a sequence (“concatenation”) of specimens of each the constructs listed, in
the order given, except that the specimens of any of the optional constructs
may be missing. In the example every specimen ofConditionalconsists of the
concatenation of the keywordif (a terminal), a specimen ofThen_part_list,
optionally a specimen ofElse_part, and the keywordend.

“Concatenation” simply means the linking of two or more elements as in a chain
— catenain Latin. The word is often used in a programming: toconcatenatetwo
character strings is to join them into a single string. Its use for BNF is a bit
pretentious, as we could talk of “sequenceproductions”. But in the programming
language we also havesequencesof instructions, our first control structure. Again
to avoid confusion between language and metalanguage, we use “Sequence” for
the Eiffel construct and “Concatenation” for BNF productions. In a similar way the
Choice productions evoke conditionals, and the Repetition productions evoke
loops, but the terminology is distinct to avoid confusion. The analogies are,
however, interesting, and will be explored furtherbelow.

Construct=∆ Definition

Conditional=∆ if Then_part_list [Else_part] end

← “GRAMMAR,
CONSTRUCTS AND
SPECIMENS”,  page
43.

→ “TURNING A
GRAMMAR INTO A
PARSER”,  13.5,
page 342.
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Choice

A Choiceproduction lists one or more constructs, separated by vertical bars |.
An example is the production defining instructions::

A Choice production specifies that every specimen of the new construct
consists of exactly one specimen of one of the constructs listed. (For that
reason, the order of their listing is, in this case, irrelevant.) In the example a
specimen ofInstructionis a specimen ofeither Conditional, or Loop etc. In
ordinary language, we would say “An instruction is one of: a conditional, a
loop, a compound, an assignment or a call”.

We may indeed from now on say “AnX”, for some construct nameX, as an
abbreviation for “A specimen ofX”; for example: “AConditional”.

Repetition

Finally, aRepetition production lists two constructs, one a nonterminal to be
repeated, and the other, usually a terminal, serving as separator. For example
we may specifycompound instructions (instruction sequences) as

meaning: a specimen ofCompoundis made of a succession of zero or more
specimens ofInstruction, each separated from the next, if any, by a semicolon.
According to this rule, possible specimens ofCompound are of the forms:

• Nothing at all (Repetition of zeroInstruction specimens)

• inst1

• inst1; inst2

• inst1; inst2; inst3

• etc.

whereinst1, inst2, inst3… are instructions.

We saw that the semicolon is optional. Although this property can be expressed
through the grammar, it’s more convenient to use the above production and add a
separate non-BNF tolerance rule stating that a missing semicolon is harmless.

The asterisk — a well-established symbol from the mathematical theory of
formal languages — means “zero or more”; the three dots suggest repetition;
the braces { } are just for grouping.

Instruction=∆ Conditional| Loop | Compound|
Assignment| Call

Compound=∆ { Instruction ";" …}*

→ This is only an exam-
ple, omitting a few of
thekindsof instructions
available in Eiffel.

← “SEQUENCE
(COMPOUND
INSTRUCTION)”, 7.4,
page 145.
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With this production, the repetition may be empty; the syntax indeed
allows for an emptyCompound. This is convenient for such cases as

where the emptythen part is legal since syntactically it’s a just an empty
Compound. (In terms of programming style this is not a tidy structure and if it
is to persist you should clean it up, for example to

but the first form [1] with an emptyCompoundcan be useful when you are
changing your software, moving instructions around, and aCompoundlike the
then part of [1], previously containing instructions, temporarily finds
itself empty.)

For some constructs an empty repetition is not desirable. Then you’ll use
a variant of the Repetition that instead of the asterisk * uses a+, also a standard
symbol from mathematical language theory, meaning “one or more”. Here for
example is the production forThen_part_list, given with the other constructs
related to conditional instructions (which we can now see in full since all types
of production have been introduced):

if some_condition then [S1]

else
instruction_1
instruction_2

end

if then [12]
instruction_1
instruction_2

end

Conditional=∆ if Then_part_list [Else_part] end

Then_part_list=∆ { Then_partelseif…} +

Then_part=∆ Boolean_expressionthen Compound

Else_part=∆ elseCompound

not some_condition
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The Repetition production forThen_part_listindicates that a specimen of this
construct — a more complete name would be “then and possibly elseif part
list” — is of one of the forms

• cond1then inst1
-- One specimen ofThen_part

• cond1then inst1elseif cond2then inst2
-- Two specimens ofThen_part

• cond1then inst1elseif cond2then inst2elseif cond3then inst3
-- Three specimens ofThen_part

and so on, for boolean expressionscond1, … and instructionsinst1, … Note
that theThen_part_listis not optional in the Concatenation production for
Conditional, so there will always be at least oneThen_part, of the form
some_conditionthen some_compound; if there’s more than one they will be
separated byelseif as shown.

Rules on grammars

In BNF — any variant — an obvious rule on productions is that every
component appearing on the right-hand side (theDefinition of a construct)
must be one of: a delimiter; a terminal construct; a nonterminal construct.

This corresponds to the three sets thatofficial ly make up a BNF:
delimiters, terminals, nonterminals. To define a grammar in pratice it suffices
to list the productions, which yield these three sets through simple conventions:

1 • Delimiters are self-describing, with the conventionsdefined: keywords
stand out, special symbols appear "in quotes".

2 • Any otheridentifier appearing in a production denotes a construct.

3 • If such a construct appears on the left-hand side of at least one
production, it is anonterminal (since the production defines a structure
for its specimens, in terms of other elements).

4 • Otherwise the construct is aterminal . In that case its definition must
appear in the lexical part of the language specification.

Case3 assumes that a given nonterminal may appear on the left of more than
one production. This is permitted by most BNF variants other than BNF-E,
with the convention that two separate productions for the same construct

• A =∆ Def1

• A =∆ Def2

← “BNF basics”,
page 329.

← “Distinguishinglan-
guage from metalan-
guage”,  page 331.
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are to be interpreted as

Alternatively or in addition, such BNF variants allow mixing the various
production mechanisms — Concatenation, Choice, Repetition — in a single
production, as in

BNF-E disallows such mixing of production styles:

So for the example given you must use three productions:

Along with a few notational conventions, this is the major specificity of
BNF-E among BNF variants.

In writing language definitions I have found that while this rule
introduces more nonterminal constructs — such asConcatandRepethere, and
Then_part_listin the earlier example — it yields simpler, more
understandable and more effective language descriptions.

It also leads to a better assessment oflanguage size. If you can stuff different
mechanisms into a single production, you may give the impression of a small
language whereas it’s actually quite complex. Since you can’t do that with BNF-E,
the number of productions is a good indicator of the actual syntactical complexity,
as the extra nonterminals do represent real concepts. In other words, the notation
keeps the language designer honest.

A =∆ Def1 | Def2

A =∆ B | C [D] { E ";" …}*

Touch of Methodology:
BNF-E rules

• Every nonterminal must appear on the left-hand side of exactly one
production, called its “defining production.

• Every production must be of one kind: Concatenation, Choice or
Repetitition, following the rules defined above.

A =∆ B | Concat

Concat=∆ C [D] Repet

Repet=∆ { E ";" …}*

WARNING: Not permit-
ted. See next..

The correct form.
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13.3 USING BNF

We have now seen all of BNF. The following pragmatic observations will help
you apply the techniques effectively.

Applications of BNF

BNF descriptions enable you to:
• Understand the syntax description of existing languages, in particular

(but not only) programming languages.
• Define the syntax of languages you need to design.
• Write syntax analyzers, orparsers.
The second application is not as far-fetched as it sounds. Although you may
not have to design a general-purpose programming language — a competitor
to C, Java or Eiffel — as part of your first job, programmers have to define
“ little languages” all the time. Whenever you write a program that will process
some data, the format of the data is a language, and if that format isn’t trivial
BNF is often the right way to define it. Exercises in this chapter ask you to
write the BNF specifications of a few such examples.

The third application, parsing, is useful for writing writingcompilersand
other tools that must process languages. One of the first tasks of such a tool is
to reconstruct the structure of the text — in the form of anabstract syntax
tree — from the external appearance of the text. That’s what the parser does,
as studied in thechapter on programming tools. Any parser needs a formal
description of the language it’s supposed to parse; this will come from a
grammar in BNF.

Language generated by a grammar

We may see a BNF grammar in two complementary ways, following from the
two clauses in thedefinition of the notion of grammar:
• It is a recognitionmechanism: to determine whether a certain sequence

(and terminal specimens and delimiters) is a phrase of the language, and
if so to reconstruct its syntactic structure. This is the view of interest
when you are, for example, writing a parser.

• The grammar is also agenerationmechanism: by applying its rules you
may produce, one after the other, all the phrases of the language.

The second view is less often useful in practice but important all the same.
Let’s explore it a bit further. To produce all the possible specimens of any
nonterminal — in particular the top symbol — it suffices to look up the
production defining it (remember that in BNF-E there’s only one):

→ “Parsing”, page356.

←“Grammar”,page328.
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P1 • For a Concatenation, the specimens are all possible sequences of
specimens of the constructs listed, including those where optional ones
are ignored.

P2 • For a Repetition, the specimens are all sequences of zero or more (one or
more in the case of “+”) specimens of the construct listed, with the given
separator in-between.

P3 • If at any step of the previous steps you encounter a nonterminal, apply the
same process to it so as to get its own specimens.

P4 • For a Choice, apply the previous steps to all the the constructs listed, and
collect all the specimens that you get from any of them.

These four phrase-generation mechanisms, carried out as long as at least one
of them is applicable, will eventually yield all the phrases of the language.
This is a potentially infinite process, as indeed we have seen that most
languages of interest are infinite.

In carrying out this process for a nonterminalA whose production uses
B, you may have to apply the same rules — in stepsP3 and P4 — to
other constructs.

Recursive grammars

The last observation may raise some alarm. What if, applying the process to
A, we have to apply to another constructB and in so doing we encounterA
again? We must make sure that this will terminate.

The production ofCompound provides a good example. It reads:

involving the constructInstruction; but that construct is itself defined as

involving Compound, as well asConditionalwhose definition also uses
Compound. If we try to understandCompound, by looking for its specimens
according to the rules given above, we’ll need to determine the specimens of
Instruction; but then this will require us — by the same rules — to look for
specimens ofCompound. This seems like circular and meaningless reasoning.

Such a definition, appearing to define a concept in terms of itself (directly
or, as here, indirectly) is said to berecursive. Recursion — the use of recursive
definitions — pops its head in almost all areas of programming and we’ll have
an entirechapter devoted to it. But since there is almost no useful grammar
without recursion we should already convince ourselves that such grammars
can actually make perfect sense.

Compound=∆ { Instruction ";" …}*

Instruction=∆ Conditional|Compound|…Other choices…

→ Chapter16.
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Let’s see the concepts on a smaller example. Consider a mini-language
with three keywordsheads, tails andstop, no other terminals, andGameas its
top construct defined by the following grammar involving one Choice and two
Concatenation productions:

This is similar to the situation withCompound, InstructionandConditional:
three nonterminal constructs defined in terms of each other.

Because of the recursion the grammar might seem meaningless. But let’s take
a pragmatic view by asking if we can use the grammar, through the
construction process described above, togeneratespecimens. Notice that in
the production forGameone of the branches,stop, is a terminal. So we do
have a first phrase (specimen ofGame):

• stop

But now since bothHead_startandTail_startare defined in terms ofGame, we
can use the information just gained aboutGameto get a specimen of each of
these constructs: the productions tell us thatheads stopis a specimen of the
first, andtails stopof the second. Now we bring this information back into the
production forGame, which has these two constructs among its choices, to get
two new specimens ofGame:

• heads stop

• tails stop

Applying the same process again, on toHead_startandTail_startand back to
Game, gives us four more specimens:

• heads heads stop

• heads tail stop

• tails heads stop

• tails tails stop

Game=∆ Head_start | Tail_start | stop

Head_start=∆ headsGame

Tail_start=∆ tails Game

Quiz time!

Can you find examples of specimens ofGamein the language defined by
the above grammar? What specimens doHead_start andTail_start have?
(The answer follows.)
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And so on. At this point we see the pattern: a specimen ofGameis any
sequence of one or more occurrences ofheadsand tails (arbitrarily
intermixed), followed bystop. Moreprecisely: from what we’ve seen it’s easy
to prove that any such sequence is a specimen; a slightly more delicate
question is whether, conversely, these are the only possible specimens.

The very simple language defined by this grammar for the top construct
Gamemight represent all the possible coin-tossing sequences by a player who
at some point gives up, crying “stop!”. The non-recursive grammar

generates the same language through three productions, one each of
Concatenation, Repetition (with empty separator) and Choice.

This example illustrates the earlier remark that it makes no sense to talk ofthe
grammar for a language, since any non-trivial language, even one as simple as this
example, can be generated by many possible grammars. The other way around, of
course, a grammar defines just one language.

In applying the production rules to generate the language, we have used a
strategy that favored terminals (here delimitersstop, headsandtails, but other
terminals would play the same role) over nonterminals. By choosing a
different policy, we would get into an infinite cycle without every producing a
phrase: start by choosing the first possibility,Head_startfor Game; for
Head_start, we getheadsGame; for Game, choose againHead_start; and so
on forever, without ever generating a phrase. To avoid such situations, a
language generation strategy needs strategies, orheuristics; a possible one is,
for a Choice, always to start (at stepP4) with a production using terminals
only, if there’s one, and otherwise with a production that starts with a token.

Even with such heuristics the process will not yield anything if a
grammar isentirely recursive. It needs at least some token choices to get the
process started. Grammars such as

Game1=∆ Throw_sequencestop

Throw_sequence=∆ { Throw …} +

Throw =∆ heads| tails

A =∆ A

→ Exercise13-E.3,
page 351.

→ On this notion see
also“Interpretation vs
compilation”, page446.
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or

are useless. These issues will be discussed further in thechapter on recursion.

A more delicate case is a grammar that does have tokens but is
left-recursive, as in

where for simplicity we takeAssignmentas a terminal (meaning we accept it’s
defined somewhere else). This grammar is meaningful, since it permits
instructions of the form

• assignment_1

• assignment_1; assignment_2

and so on. To obtain a constructive view of such recursive definitions, we need
a general theory of recursive definitions,sketched later.

One form of grammars that avoids these complications and makes it possible to
write simple parsers is known asLL (1) , characterized by the property that the first
terminal starting a phrase is enough to choose between variants of any
nonterminal. Eiffel is close to LL (1): restricting ourselves to instructions, we
know that we have aConditionalif the first token isif , a Loop if it is from and
so on.

13.4 DESCRIBING ABSTRACT SYNTAX

The syntax that we have studied in this chapter is theconcretesyntax of a
program: it describes the full structure of program texts, including keywords
— if , do, class… — and other delimiters that serve a purely syntactic role:
they avoid syntactic ambiguity but do not carry any semantics of their own.

Earlier we have encounteredabstract syntax, which discards these
elements and retains the structurally meaningful ones only.

A =∆ B

B =∆ A

Instruction=∆ Compound| Assignment

Compound=∆ Instruction";" Compound

→ Chapter16.

→ “MAKING SENSE
OF RECURSION”,
16.5, page 384.

← “ABSTRACT SYN-
TAXTREES”,page45.
Original figure on page
46.
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We saw how to describe the resulting syntactic
structures throughabstract syntax trees, such as the
one representing our examplePREVIEW1class,
reproduced on the right.

As noted then, it’s easy to deduce a notion of
concretesyntax tree, which returns all the symbols of
the input text. Some compilers indeed construct such a
tree, but this is usually not necessary: in subsequent
phases of compiling, such as semantic analysis, code
generation and optimization, the syntactic markers
don’t play any role; all that’s needed is a representation
of the program’s structure, which the abstract syntax
tree precisely provides.

If we want directly to describe the abstract syntax of a language, without
going through concrete syntax, we don’t need a new formalism. It suffices to
use BNF, omitting all tokens that are not constructs of the lexical grammar, in
particular keywords; the right-hand side of the last production shown, for
Compound, would now be justInstruction Compound. Such a grammar is not
useful for applications such as parsing and compiling input texts — which
obviously require a concrete grammar as those discussed elsewhere in this
chapter — but it is appropriate to capture the structural properties of texts,
unaffected by details of their physical appearance.

13.5 TURNING A GRAMMAR INTO A PARSER

One of the applications of BNF is, as we have have noted, to guide the
construction of compilers, starting with theparsingphase. Compilers are
usuallysyntax-driven: the parsing phase constructs an abstract syntax tree,
and successive compilation phases continue to work on this data structure,
repeatedly adding semantic information (this is known asdecoratingthe tree).

A detailed discussion of how to build such a syntax-driven compiler, or
just a parser, is beyond our scope here, but to get an idea of possible techniques
you may wish to look at theEiffelParse library. EiffelParse is not the most
efficient parsing mechanism available (for a widely used Eiffel parsing tool
based on more traditional techniques, look up the “Gobo” library), but it
provides a clear, practical illustration of how to apply the object-oriented
principles of this book in full to parsing and compiling.

The idea behind EiffelParse is to turn a BNF-E grammar directly into a
set of classes. For each construct of the grammar, you will write a small class
that inherits from one of the EiffelParse classesAGGREGATE(for
concatenation productions),CHOICE and REPETITION. In the
AGGREGATEcase, for example, the class will simply list the various

Class declaration

Class
name Inheritance Features of the class

Feature declaration

Feature
name

Header
comment

Feature
body

InstructionInstruction
(feature call) (feature call)

Target
Feature

Target
Feature

Paris display Louvre spotlight

explore Show city and ...

PREVIEW1 Class
name

TOURISM

Root
Internal node
(Nonterminal)
Leaf
(Terminal)

Figure from page46.

archive.eiffel.com/prod
ucts/parse.html
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components of the production’s right-hand side, each associated with a class
similarly describing a construct. You have to be a bit careful about left
recursion, but otherwise the classes are a mirror image of the BNF-E
productions; in fact a translator, YOOC, from Monash University, can produce
the classes directly from the grammar.

To parse an input text, it then suffices to call the EiffelParse procedure
parseon the construct of interest. This produces an abstract syntax tree. You
can then addsemanticprocessing of any kind through procedures of the syntax
classes. The process shows the power and elegance of object-oriented
modeling for language processing.

13.6 THE LEXICAL LEVEL AND REGULAR AUTOMATA

For terminal constructs such asIdentifierandInteger, the BNF grammar does
not provide a production, leaving the specification instead to the lexical level.
For that reason the terminal constructs are also calledlexical constructs.
Their specification appears in a “lexical grammar” complementing the
BNF grammar.

Lexical constructs in BNF

At the syntax level and hence in BNF, tokens were terminals: atoms with no
further structure of interest. At the lexical level, we become interested in their
internal makeup. For example (using Eiffel conventions):

• An Identifieris a sequence of one or more characters, of which the first is
a letter (upper or lower case) and any subsequent one is a letter, digit or
undercore “_”.

• An Integeris a sequence of one or more decimal digits (0 to 9), which
may also contain underscore characters to separate groups of digits,
usually three by three, in long numbers:123_456_789.

• An Integer_constantis anInteger optionally preceded by a sign,+ or –.

It is in fact possible — as anexercise invites you to check for yourself — to
specify such terminal constructs in BNF. That is not, however, the usual
practice. For such simple constructs, language definitions generally take
advantage of specificlexical techniques, which we’ll now study. This avoids
loading the grammar with productions for basic structures that can be
described more simply, and reserves the BNF grammar for specifying the
higher-level structures of the language, in particular those permitting an
arbitrary level of nesting.

Correspondingly, compilers don’t use the parser to decode specimens of terminals,
but a simpler tool known as alexical analyzer.

→ “BNF for lexical
grammars”,  13-E.2,
page 351.
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Regular grammars

We may express the structure of lexical constructs such as the examples above
through aregular grammar, a toned-down version of BNF.

The non-terminals of such a grammar are constructs such asIdentifier
andInteger_constant, which will be used as terminals in the BNF. To express
their structure the regular grammar has its own lower-level terminals, usually
character categories such as

each expressed as a Choice betweensingle characters, shown in quotes. Such
constructs arereally terminal (atomic): we can’t decompose them any further.

It is common to provide a special notation for consecutive characters, so
that we may rewrite the production forLetter as

using this opportunity to add the upper-case variant, and similarly define
Decimal_digit as'0' ..'9'

A regular grammar may have the same kinds of production as in BNF, but
with slightly different conventions and significant restrictions:
• You can use aChoiceas just seen, possibly with character intervals.
• You may define a lexical construct byConcatenation, but this doesn’t

assume breaks (spaces, new lines etc.) between the concatenated
elements. If you define a construct asA B, any of its specimens will be
made of a specimen ofA followed by a specimen ofB with nothing
in-between. (If you want to introduce breaks you can define this notion in
the regular grammar.)

• A Repetition will take a simpler form: justA* or A+ where A is a
previously defined construct, with no notion of delimiter. These two
forms denote “zero or more specimens ofA” and “one or more specimens
of A”, with no notion of delimiter, and again no intervening break.

• No recursion is permitted in the grammar: you can’t have the definition
of A useB and conversely (including when they are the same). A simple
way to ensure this is to make theorderof the rules significant — in BNF
it’s not — and add the rule that a construct definition may only use
previously defined constructs.

Letter =∆ 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j' | 'k' | 'l' | 'm' |
'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't' | 'u' | 'v' | 'w' | 'x' |'y' |'z'

Decimal_digit=∆ '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

Underscore=∆ '_'

Letter =∆ 'a' ..'z' | 'A' ..'Z'

Letter andDecimal_
digithave a simpler def-
inition, see below.



§13.6 THE LEXICAL LEVEL AND REGULAR AUTOMATA 345

Unlike BNF-E, a regular grammar allows mixing the different kinds of
production (since the formalism is much more restricted).

With such a regular grammar we can give a precise definition of the
lexical notions of identifier and integer constant:

The expressions permitted by the rules just defined are calledregular
expressions. A language that can be described by a construct of a regular
grammar is aregular language. We may note the following property:

Proof: this is a simple consequence of the prohibition of recursive definitions.
Starting from a regular grammar, order the productions, as discussed above, so
that any non-terminal appearing on the right-hand side of any production has
been defined by a previous production. Then for each production in turn, if the
right-hand side has a non-terminalN, replace it by the right-hand side forN.
Since the same process has already been applied toN, we’ll get terminals only.

For example with

this process yields the alternative — not necessarily clearer — definition

which generates the same language. Another way of stating the theorem is that
any regular language can be described by asingle regular expression (the
right-hand side forC in the last production above).

Identifier =∆ Letter(Letter| Digit | Underscore)*

Integer_constant=∆  Decimal_digit+

Theorem:
Canonical form of a regular language

Any regular language can be described by a regular grammar whose
production right-hand sides do not include any non-terminal.

A =∆ T1 | T2 | T3*

B =∆  T4+| A

C =∆  A B

A =∆ T1 | T2 | T3* -- No change

B =∆  T4+| T1 | T2 | T3* -- Obtained by replacingA

C =∆ (T1 | T2 | T3*) (T4+| T1 | T2 | T3*)

← “TouchofMethodol-
ogy: BNF-E rules”,
page 336.
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The theorem illuminates the principal restriction of regular languages:
they don’t support recursive nesting. We saw that programming languages
such as Eiffel haveConditional instructions that may contain other
instructions of the same kind, or of different kinds such asLoopwhich in turn
can contain conditionals, allowing nesting up to any desired depth. With BNF
we can describe this finitely through recursively defined productions. With
regular grammars we can’t.

Regular grammars are well suited, however, for defining the usually
simple tokens that make up the elementary fabric of programs. To express that
a certain kind of token has specimens made up (say) of one or more character
of a certain kind, followed by any of 3 specified characters, followed
optionally by characters of another kind, regular expressions are just the ticket.

Finite automata

Behind regular expressions stands the mathematical theory offinite automata.
Let’s take a glimpse at it, if only for the visual illustration that it provides.
(There’s much more to the theory than this brief introduction.)

A finite automaton is a kind of graph with nodes representing states and
edges labeled by elements of some basic set, here characters or character
categories. The following example corresponds to the structure of qualified
feature calls in Eiffel, possibly with arguments,as in Line8.extend
(new_station):

Without spaces, for sim-
plicity.

Finite
automaton for
recognizing
feature calls

Letter

Letter

Digit'_'

'.'

Digit'_'

Letter

Letter '('

Digit

'_'

Letter

Letter

','

')'

States:
Initial

Final

other

1 2 3 4 5

67
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As the name suggests, we can view a finite automaton as a machine to process
input strings. The automaton will start from the state markedinitial and then,
at each step, follow an edge, if any, labeled by the next symbol from the input.
This is called atransition . For the inputx9.f_g(aa), the above automaton
starts in state1; the input symbolx causes a transition to state2; then9 causes
a transition from state2 to itself; the period takes us to state3, thenf to 4,
where it stays for_ andg; the argument list then causes successive transitions
to 5, 6, 6 again for the seconda, and the state7, marked as afinal state.

The language recognized by a finite automatonis the set of strings
which, as in this example, will take the automaton to a final state through a set
of transitions. A string doesnot belong to that language if, when trying to
apply this process to the string:
• Either the automaton reaches a state that has no transition matching the

next input symbol (as with theinput string a.b.c, wherea.b takes the
automaton to state4, from which there’s no edge labeled with a period).

• Or, having consumed all symbols from the input, it reaches a non-final
state (as with the input stringa.b (, taking us to state5 which is not final).

A basic theorem states that for any language described by a regular grammar
is recognized by a finite automaton, and conversely. Without proving the
theorem, we may illustrate it by noting that the language recognized by the
above automaton is also the language generated by the last construct of the
following regular grammar:

The feature calls recognized by this grammar are only a subset of those
possible in Eiffel, where expressions, like instructions, can be nested: a feature
argument can also be an expression, as inx.f (y.h (z.i)), which the above
lexical grammar and the associated finite automaton can’t handle since they
limit any argument to a single identifier. As soon as you venture beyond
tokens, you’ll want the full power of BNF. (Note also how the convention for
repetitions, with its provision, is more convenient in BNF-E, where the
equivalent of the aboveArgument_listwould be defined by a single
production with the right-hand side {Identifier"," …} +.)

The above automaton isdeterministicin the following sense: it has only one initial
state, and from any state there is at most one edge for any given character; as a
result, the recognition process illustrated above can take, at any step, at most one
transition.Nondeterministicfinite automata don’t have these properties. It turns
out, however, that they do not change the class of languages that can be recognized.

Identifier =∆ Letter(Letter| Digit | Underscore)*

Another_argument=∆ "," Identifier

Argument_list=∆ "(" Identifier Another_argument*  " )"

Feature_call=∆  Identifier"." Identifier[Argument_list]

Actually legalEiffel,but
not included in this
mini-language of fea-
turecallswhereweonly
accept single-dot calls.
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Finite automata provide the basis forlexical analyzers, the part of compilers
that takes care of recognizing tokens. It is indeed not hard to see how to define
a finite automaton from a regular expression, and from that definition build a
program that will recognize tokens through the process just illustrated.

Context-free properties

The theory of formal languages distinguishes a number of levels including,
from simplest to more sophisticated:
• Regular languages— those which can be described by a regular

grammar.
• Context-free languages, which can be described by a grammar made of

production rules with possible recursion, as in BNF.
• Context-sensitive languages, for which such production rules are no

longer sufficient.
As an example of why context-free languages are not enough, consider the
type rulesthat govern many programming languages. Eiffel indeed requires
that whenever you use an entityx, for example in an expression such as
some_function (x)or an instruction such asx.some_procedure, there must
have been, in an enclosing program unit — the enclosing routine, or the
enclosing class — a declaration of the form

specifying thatx is a formal argument or local variable of the routine, or an
query of the class. Otherwise, as you know, your program is illegal and
compilers are required to reject it. But this is different from an error such as

which violates the BNF grammar (whose production specifies anInstruction
afterthen, whereasa + b is anExpression).

There are many more examples of construct specimens that conform to
the BNF but are not acceptable, such as an instruction using a variablex that
hasn’t been declared, or has been declared with a type that doesn’t permit what
the instruction does with it.

Context-free grammars and BNF can’t capture such type rules; a grammar
to handle them would have to be context-sensitive. Where BNF rules define a
nonterminalA as a sequenceγ of terminals and non-terminals, a
context-sensitive grammar has rules allowing replacement ofα A β by α γ β;
hereα andβ are the “context” aroundA.

x: SOME_TYPE

if  c then enda + b
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In practice, no context-sensitive grammar formalism exists that that
matches the simplicity and practicality of BNF. Because programming
languages need type rules and other context-sensitive properties, the solution
adopted in practice by compilers is to:

• Rely on regular grammars to describe the tokens of the language, and
build lexical analyzers on the basis of associated finite automata.

• Rely on BNF or equivalent to handle the context-free aspects of the
language — the overall, usually nested, structure of programs — and on
associated techniques for parsing that structure.

• Enforce all other checks — the context-sensitive aspects, such as type
rules — through additional mechanisms, either based on formalisms for
the description of context-sensitive aspects (such as “attribute
grammars”) or programmed in adad hocway in the compiler.

13.7 FURTHER READING

Dick Grune, Henri E. Bal, Ceriel J.H. Jacobs and Koen G. Langendoen:
Modern Compiler Design; Wiley, 2000.

A good description of current compiler technology.

Steven S. Muchnick:Advanced Compiler Design and Implementation;
Morgan Kaufmann, 1997.

Another recent text, up to date on many important compiler techniques.

Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman :Compilers: Principles,
Techniques and Tools, Addison-Wesley, 1986.

An older textbook on compilers, still considered standard.

Touch of history:
Classes of languages and grammars

The classification of languages into regular (Type 3), context-free (Type 2),
context-sensitive (Type 1) and unrestricted (Type 0, recognizable by any
general automaton or “Turing machine”), comes from articles published in
1956 and 1959 by Noam Chomsky, then as now a professor at MIT, and
Marco Schützenberger from the University of Paris. Chomsky, also famous
as a political activist, was interested in the structures ofhumanlanguages,
for which his work started a whole new school of linguistics; but it also
proved seminal for the understanding of programming languages and other
artificial notations.

Chomsky
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13.8 KEY CONCEPTS LEARNED IN THIS CHAPTER

• A formal language, such as a programming language, is a set ofphrases
built from a basic vocabulary according to precise rules.

• Most interesting formal languages are infinite.

• BNF is a formalism for describing a formal language from a finite set of
rules called “productions”.

• Each production of a BNF grammar describes the structure of a certain
construct, or “non-terminal”, from other non-terminals as well as atomic
constructs or “terminals”

• A production defines a construct by one of: concatenation of other
constructs, possibly with optional components; choice between other
constructs; or repetition of another construct.

• Compilers and other language analysis tools use grammars for decoding,
or “parsing”, the structure of input texts.

• BNF can also describe abstract syntax which (unlike “concrete” syntax)
discards keywords and other elements that do not directly carry a
semantic value of their own.

• For the elementary components of input texts, such as identifiers and
constants, BNF is usually overkill; simpler descriptions can be obtained
throughregulargrammars, where productions can’t be recursive and as a
result do not support nesting. Regular expressions are closely associated
with mathematical devices known as finite automata.

• BNF covers the class of “context-free” languages but does not capture
“context-sensitive” aspects such as type rules.

New vocabulary

(Also remember, from thepresentation of basic syntax concepts: Construct,
Lexical, Nonterminal, Specimen, Syntax, Terminal.)

Choice production BNF Concatenation production
Defining production Grammar Lexical construct
Lexical grammar Metalanguage Phrase
Production Recursive grammar Repetition production
Top construct Vocabulary

← “NESTING AND
THESYNTAXSTRUC-
TURE”,  page 44.
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13-E EXERCISES

13-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

13-E.2 BNF for lexical grammars

Write a BNF grammar that fully describes the Eiffelforms of Identifier,
Integer andInteger_constant.

13-E.3 Language defined by a recursive grammar

Consider the language defined by thegrammar with top constructGame:
1 • Prove that any specimen ofGame1in the non-recursive grammar, that is

to say any sequence of one or moreheadsor tails followed by a single
stop, is a specimen ofGame.

2 • Conversely, is any specimen ofGamea specimen ofGame1? Prove your
answer.

13-E.4 Regular grammar

Define the language generated by theGameconstruct through a single
regular expression.

← “Lexicalconstructs
in BNF”,  page 343.

← In “Recursive
grammars”, page338.

← In “Recursive
grammars”, page338.



DESCRIBING SYNTAX §13-E352



Draft 16.06, 3 December 06 17:35 (Zürich)

14

Programming languages



PROGRAMMING LANGUAGES §14354



Draft 16.06, 3 December 06 17:35 (Zürich)

15

Compilers and friends: the basic
software tools

15.1 COMPILATION VS INTERPRETATION
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15.2 ESSENTIALS OF A COMPILER

Lexical analysis, regular languages and finite automata

Parsing

Semantic analysis, code generation and optimization

What else a compiler does

ww

15.3 LOADING, LINKING AND ALL THAT

15.4 TEXT AND PROGRAM EDITORS

15.5 CONFIGURATION MANAGEMENT

15.6 VIRTUAL MACHINES

15.7 SOFTWARE DEVELOPMENT ENVIRONMENTS
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Algorithms and data structures
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Recursion and trees

This 1921 advertising gimmick, still doing verywell thank you, is an
example of a structure definedrecursively, in the following sense:

“Recursion” — the use of recursive definitions — has applications throughout
programming: it yields elegant ways to definesyntax structures; we’ll also see
recursively defineddata structuresandroutines.

We may say “recursive” as an abbreviation for “recursively defined”:
recursive grammar, recursive data structure, recursive routine. But this is only
a convention, because we can’t say that a concept or a structure is by itself
recursive: all we know is that we candescribeit recursively, according to the
above definition. Any particular notion — even the infinite Laughing Cow
structure — may have both recursive and non-recursive definitions.

When proving properties of recursively defined concepts we will use
recursiveproofs, which generalize inductive proofs as performed on integers.

Recursive definition
A definition for a concept is recursive if it involves one or more instances
of the concept itself.

www.bel-group.com.

The cow shown laughing on the Laughing
Cow box holds, as if for earrings, two
Laughing Cow boxes each featuring a cow
shown laughing and presumably — I say
“presumably” because here my eyesight fails
me, I don’t know about yours — holding, as if
for earrings, two Laughing Cow boxes each
featur ing a cow shown laugh ing and

presumably… (by now you get the idea).

www.bel-group.com
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Recursion isdirect when the definition ofA cites an instance ofA; it is
indirect if for 1 ≤ i < n (for somen ≥ 2) the definition of everyAi cites an
instance ofAi+1, and the definition ofAn cites an instance ofA1.

In this chapter we are interested in notions for which a recursive
definition is elegant and convenient. Important examples will indeed include
recursive routines, recursive syntax definitions (of which we have already seen
examples), and recursive data structures.

One class of recursive data structures, thetree in its various guises,
appears in many applications and embodies the very idea of recursion. It’s also
studied in this chapter.

16.1 BASIC EXAMPLES
At this stage you may be wondering whether a recursive definition makes any
sense at all. How can we define a concept in terms of itself? Does such a
definition mean anything at all, or is it just a vicious circle?

It’s right to wonder. Not all recursive definitions define anything at all.
When you ask for a description of someone and all you get is “Sarah? She is
just Sarah, what else can I say?” you’re not learning much. So we’ll have to
look for criteria that guarantee that a definition is useful even if recursive.

Before we do this, however, let’s convince ourselves in a more pragmatic
way by looking at typical examples where recursion is obviously useful and
seems, just as obviously, to make sense. This will give us a firm belief — little
more than a belief indeed, the kind that’s based on hope and a prayer — that
recursion is a practically useful way to define grammars, data structures and
algorithms. Then it will be time tolook for a proper mathematical basis on
which to establish recursive definitions.

Recursive definitions
With the introduction of genericity, we wereable to define atype as either:
T1 • A non-generic class, such asINTEGER or METRO_STATION.
T2 • A generic derivation, of the formC [T], whereC is a generic class andT

is a .
This is a recursive definition; it simply means, using the generic classesARRAY
andLIST, that valid classes are:
• INTEGER, METRO_STATIONand such: non-generic classes, per caseT1.
• Through caseT2, direct generic derivations:ARRAY [INTEGER],

LIST[METRO_STATION] etc.
• Applying T2 again, recursively:ARRAY[LIST[INTEGER]] , ARRAY

[ARRAY[LIST [METRO_STATION]]] and so on: generic derivations at
any level of nesting.
You may consider using a similar technique to answer theexercise which, in the
first chapter, asked you to define “alphabetical order”.

→ “MAKING SENSE
OF RECURSION”,
16.5, page 384.

← “Definition: Class
type”,  page 247.

type

← 1-E.3, page 16.



§16.1 BASIC EXAMPLES 361

Recursively defined grammars

Consider an Eiffel subset with just two kinds of instruction:

• Assignment, of the usual formvariable:= expression, but treated here as
a terminal since we don’t need to specify it further.

• Conditional, with only athen part (noelse) for simplicity.

A grammar defining this language is:

For our immediate purposesConditionis, like Assignment, a terminal. This
grammar is recursive, since the definition ofInstructioninvolvesConditional
as one of the choices, andConditional, in turn involvesInstructionas part of
the aggregate. But since there’s a non-recursive alternative,Assignment, the
grammar productions clearly specify what an instruction may look like:

• Just an assignment.

• A Conditionalcontaining an assignment:if c then a end.

• The same with any degree of nesting:if c1 then if c2 then a end end,
if c1 then if c2 then if c3 then a end end end and so on.

Recursive grammars are indeed an indispensable tool for any language that —
like all significant programming languages — supports nested structures.

Recursively defined data structures

The classMETRO_STOPrepresented the notion of stop in a metro line:

A naïve interpretation would deduce that every instance ofSTOPcontains an
instance ofSTOP, which itself contains another ad infinitum, as in a Laughing
Cow scheme. This would indeed be the case ifSTOPwere an expanded type:

Instruction=∆ Assignment|

Conditional=∆ if Condition then  end

class STOPcreate
…

feature

next:
-- Next stop on same line

… Other features omitted (see page124) …
end

Conditional

Instruction

← Page124.

STOP
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This is impossible, however, andSTOPis, in any case, areferencetype, like
any other type defined asclassX … with no other qualification. So the real
picture is the oneoriginally shown:

Recursion in such a data structure definition simply indicates that every instance
of the class contains a reference to a potential instance of the same class —
“potential” because the reference may be void, as for the last stop in the figure.

In the same chapter we encountered another example of self-referential
class definition: a classPERSON with an attributespouse of typePERSON.

This is a very common case in definitions of useful data structures. From
linked lists totreesof various kinds (such as the binary trees studied later in this
chapter), the definition of many useful object types includes references to objects
of the type being defined, or (indirect recursion) a type that depends on it.

Recursively defined algorithms

The famous Fibonacci sequence, enjoying many beautiful properties and
many applications to mathematics and the natural sciences, has the
following definition:

F0 = 0
F1 = 1
Fi = Fi–1 + Fi–2 -- For i > 1

Touch of History:
Fibonacci’s rabbits

Leonardo Fibonacci from Pisa (1170-1250) played the key role in making
Indian and Arab mathematics known to the West and, through many
contributions of his own, helping to start modern mathematics. He stated
like this the problem that leads to his famous sequence (which was already
known to Indian mathematicians):

Nested fields
(not the correct
interpretation)

(STOP)

next

(STOP)

next
(STOP)

next…

Other fields

← Page118.

A linked line

(STOP)

next

(STOP) (STOP)

nextnext

About Fibonacci:
www.mcs.sur-
rey.ac.uk/Per-
sonal/R.Knott/Fibonac
ci/fib.html; about the
sequence:www-gap.dcs
.st-and.ac.uk/~his-
tory/Mathemati-
cians/Fibonacci.html

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fib.html
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Fibonacci.html
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The answer is that the pairs at monthi include those already present at month
i – 1 (no rabbits die), numberingFi–1 , plus those begot by pairs already
present at monthi – 2 (since pairs are fertile starting the second month),
numberingFi–2. This gives the above formula; successive values are0, 1, 1, 2,
3, 5, 8 and so on, each the sum of the previous two.

The formula readily yields a recursive routine computingFn for anyn:

The function includes two recursive calls, highlighted. That it works at all may
look a bit mysterious (that’s why it’s good to check it for a few values); as you
progress through this chapter the legitimacy of such recursively defined
routines should become increasingly convincing.

The prime argument in favor of writing the function this way is that it
elegantly matches the original, mathematical definition of the Fibonacci
sequence. On further look, however, it’s not that exciting, because a
non-recursive version is also easy to obtain.

A man put a pair of rabbits in a place surrounded on all sides by a
wall. How many pairs of rabbits can be produced from that pair in
a year if every month each pair begets a new pair which from the
second month on becomes productive?

fibonacci(n: INTEGER): INTEGERis
-- Element of indexn in the Fibonacci sequence

require
non_negative: n >= 0

do
if  n = 0 then

Result:= 0
elseif n = 1 then

Result:= 1
else

Result:=  +
end

end

Programming Time!
Recursive Fibonacci

Write a small system that includes the above recursive routine and prints out
its result. Try it for a few values ofn — including 12, as in Fibonacci’s
original riddle — and verify that the results match the expected values.

Programming Time!
Non-recursive Fibonacci

Can you write (without first looking at the solution overleaf) a function that
computes any Fibonacci number, using a loop rather than recursion?

Fibonacci

fibonacci(n –1) fibonacci(n –2)
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The following function indeed yields the same result as the abovefibonacci
(try it too for a few values):

For convenience this version assumesn ≥ 1 rather thann ≥ 0. Thanks to the
initialization rulespreviousstarts out as zero, ensuring the initial satisfaction of the
invariant sinceF0 = 0. The variablesecond_previousis set anew in each loop
iteration and doesn’t need specific initialization.

This version, just a trifle more remote from the original mathematical
definition, is still simple and clear (note in particular the loop invariant). Some
may still prefer the recursive version, but it’s largely a matter of taste
especially since (as we’ll see) that version might, depending on the compiler,
be less efficient at run time.

Taste and efficiency aside, if it were only for such examples we would
have a hard time convincing ourselves of the indispensability of recursive
routines. We need cases in which recursion provides a definite plus, for
example because any non-recursive competitor is significantly more complex.

There are indeed many such problems. One that concentrates many of the
interesting properties of recursion with the least irrelevant detail arises from
an attractive puzzle: the Tower of Hanoi.

fibonacci1 (n: INTEGER): INTEGERis
-- Element of indexn in the Fibonacci sequence
-- (non-recursive version)

require
positive: n >=

local
i, previous, second_previous: INTEGER

do
from

i := 1 ; Result:= 1
invariant

Result= fibonacci(i)
previous= fibonacci(i – 1)

variant
n – i

until  i = n loop
i := i + 1
second_previous:= previous
previous:= Result

end
end

1

Result:= previous + second_previous
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16.2 THE TOWER OF HANOI

In the great temple of Benares, under the dome that marks the center of the
world, three needles of diamond are set on top of a brass plate. Each needle is
a cubit high, and thick as the body of a bee. One one of these needles God
strung, at the beginning of ages, sixty-four disks of pure gold; the largest disk
rests on the brass and the others, ever smaller, rest over each other all the way
to the top. It is the sacred tower of Brahma.

Night and day the priests, following one another on the steps of the altar,
work to transfer the tower from the first diamond needle to the third, without
deviating from the rules just stated, set by Brahma. When all is over, the tower
and the Brahmins will fall, and it will be the end of the worlds.

In spite of its oriental veneer, this story is thecreation of the French
mathematician Édouard Lucas (signing as “N. Claus de Siam”, anagram of
“Lucas d’Amiens”, after his native city). On a market in Thailand — Siam indeed
— I bought the above rendition of his tower. The labelsA, B andC are my
addition. I won’t expand on why I choose a model made of wood rather than
diamond, gold and brass, but it is legitimate, since I did have a large suitcase, to
ask why it has only nine disks:

Quiz time!
Hanoi tower size

Why do commercially available models of the Towers of Hanoi puzzle have
far fewer than 64 disks?
(Hint: the game comes with a small sheet of paper listing a solution to the
puzzle, in the form of a sequence of moves:A to C, A to B etc.)

Tower of Hanoi
(or should it be
Benares?) with
9 disks, initial
state
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To answer this question, let’s try to assess the minimal numberHn of individual
“move” operations required — if there is a solution — to transfern disks from
needleA to needleB, using needleC as intermediate storage and following the
rules of the game;n is 64 in the original version and 9 for the small model.

We observe that any strategy for movingn disks fromA to B must at
some point move the largest disk fromA to B. This is only possible, however,
if needleB is free ofanydisks at all, andA contains only the largest disk, all
others having been moved toC — since there is no other place for them to go:

What is the minimum number of moves to reach this intermediate situation?
We must have transferredn –1 disks (all but the largest) fromA to C, usingB
as intermediate storage; the largest disk, which must stay onA, plays no role
in this operation. The problem is symmetric betweenB and C; so the
minimum number of moves to achieve the intermediate situation isHn-1.

Once we have reached that situation, we must move the largest disk from
A to B; it remains then to transfer then – 1 smaller disks fromC to B. In all,
the minimum number of movesHn for transferringn disks, forn > 0, is

(Hn–1 moves to transfern – 1 disks fromA to C, one move to take the largest
disk fromA toB, andHn–1again to transfer then –1smaller disks fromA to C).
SinceH0 = 0, this gives

Hn = 2∗ Hn–1+ 1

Hn = 2n – 1

Intermediate
state
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and, as a consequence, the answer to our quiz: remembering that210 (that is,
1024) is over103, we note that264 is over1.5∗1019; that’s a lot of moves.

A year is around 30 million seconds. At one second per move — very efficient
priests — the world will collapse in about 500 billion years, close to 50 times the
estimated age of the universe.

This reasoning for the evaluation ofHn wasconstructive, in the sense that it
also gives us apractical strategy for movingn disks (forn > 0) from A to B
usingC as intermediate storage:
• Move n – 1 disks fromA to C, usingB as intermediate storage, and

respecting the rules of the game.
• ThenB will be empty of any disk, andA will only have the largest disk;

transfer that disk fromA to B. This respects the rules of the game since
we are moving a single disk, from the top of a needle, to an empty needle.

• Then moven – 1 disks fromC to B, usingA as intermediate storage,
respecting the rules of the game;B has one disk, but it will not cause any
violation of the rules of the game, since it is larger than all the ones we
want to transfer.

This strategy turns the number of movesHn = 2n – 1 from a theoretical
minimum into a practically achievable goal. We may express it as a recursive
routine, part of a classNEEDLES:

The discussion of contracts for recursive routines will add more precondition
clauses and a postcondition.

By convention, the needles are represented by characters, as in'A', 'B', 'C'. The
routine contains two recursive calls, highlighted.

hanoi(n: INTEGER; source, target, other: CHARACTER) is
-- Transfern disks fromsource to target, usingother as
-- intermediate storage, according to the rules of the
-- Tower of Hanoi puzzle.

require
non_negative: n >= 0
different1: source/= target
different2: target/= other
different3: source/= other

do
if  n > 0 then

(n–1, source, other, target)
move(source, target)

(n–1, other, target, source)
end

end

hanoi

hanoi

→ “CONTRACTS FOR
RECURSIVE ROU-
TINES”, 16.6,page395.
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The basic operationmove(source, target) moves a single disk, the top one
on needlesource, to needletarget; its precondition is that there is at least one
disk onsource, and that ontargeteither there is no disk or the top disk is larger
than the top disk onsource. If you have access to the wireless network of the
Great Temple of Benares you can programmoveto send an SMS to the cell
phone or Bluetooth-enabled PDA of the appropriate priest, directing him to
move a disk fromsourceto target. For the rest of us you can writemoveas a
procedure that displays a one-disk-move instruction in the console:

For example executing the call

will print out thesequence of fifteen (24 – 1) instructions

which indeed moves four disks successfully fromA to B, respecting the rules
of the game.

move(source, target: CHARACTER) is
-- Prescribe move fromsource to target.

do
io.put_character(source)
io.put_string(" to ")
io.put_character(target)
io.put_new_line

end

Programming Time!
The Tower of Hanoi

Write a system with a root classNEEDLESincluding the procedureshanoi
andmoveas shown. Try it for a few values ofn.

hanoi(4, 'A', 'B', 'C')

A to C
A to B
C to B
A to C
B to A

B to C
A to C

C to B
C to A

B to A
C to B
A to C
A to B
C to B

Shown here split into
three columns; read it
column by column, top
to bottom. The move of
the biggest disk has
been highlighted.

A to B
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One way to look at the recursive solution — procedurehanoi— is that it
works as if it were permitted to move the topn–1 disks all at once to a needle
that has either no disk, or only the biggest disk. In that case we would start by
performing this operation fromsource to other (hereA to C):

Then we would move the biggest disk fromA to B, our final target; this
single-disk move is clearly legal since there’s nothing onB. Finally we would
again perform a global move ofn–1 disks fromC, where we’ve parked them,
to B, which is OK because they are in order and the largest of them is smaller
than the disk now onB.

Of course this is a fiction since we are only permitted to move one disk at
a time, but to moven–1 disks we may simply apply the same technique
recursively, knowing that the target needle is either empty or occupied by a
disk larger than all those we manipulate in this recursive application. Ifn = 0,
we have nothing to do.

Don’ be misled by the apparent frivolity of the Tower of Hanoi example.
The solution serves as a model for many recursive programs with important
practical applications. The simplicity of the algorithm, resulting from the use
of two recursive calls, makes it an ideal workbench to study the properties of
recursive algorithms, as we’ll do when we return to it later in this chapter.

Fictitious initial
global move
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16.3 BINARY TREES

If the Tower of Hanoi solution is the quintessential example of a recursive
routine, the binary tree is the quintessential example of a recursive data
structure. We may define it as follows:

It’s easy to express this as a class skeleton, with no routines yet:

where a void reference indicates an empty binary tree. We may illustrate a
binary tree — here overINTEGER — as follows:

Definition: binary tree

A binary tree overG, for an arbitrary data typeG, is a finite set of items
callednodes, each containing a value of typeG, such that the nodes, if any,
are divided into three disjoint parts:

• A single node, called theroot of the binary tree.
• (Recursively) two overG, called theleft subtreeand

right subtree.

class BINARY_TREE[G] feature
item: G
left, right:

end

binary trees

BINARY_TREE [G]

35

23 54

41 7818

12 60

Right subtreeLeft subtree

67

A binary tree
(“branching”
representation)

90

item

left right

Convention:



§16.3 BINARY TREES 371

This “branching” form is the most common style of representing a binary tree,
but not the only one; asin thecase of abstract syntax trees, we might also opt
for anested representation, which for this example would look like this:

The definition explicitly allows a binary tree to be empty (“the nodes, if any”).
Without this, of course, the recursive definition would leave to an infinite
structure, whereas our binary trees are, as the definition also prescribes, finite.

If not empty, a binary tree may have: no subtree; a left subtree only; a
right subtree only; or both. This property also holds anywhere in the tree, but
to express it more generally we need the notion of “child” and “parent”.

A recursive routine on a recursive data structure

Many routines of a class that defines a data structure recursively will follow
the definition’s recursive structure. A simple example is a routine computing
the number of nodes in a binary tree. The node count of an empty tree is zero;
the node count of a non-empty tree is one — corresponding to the root — plus
(recursively) the of the left and right subtrees, if any. We may use
this observation to include a recursive function in the classBINARY_TREE:

Note the similarity of the recursive structure to procedureHanoi.

count: INTEGERis
-- Number of nodes

do
Result:= 1
if  left /= Void then Result:= Result + end
if  right /= Void then Result:= Result + end

end

← “NESTING AND
THE SYNTAX STRUC-
TURE”,  page 44.

35

23

18

12

54

41

78

60 90

67

A binary tree in
nested repr-
esentation

Left subtree

Right subtree

Convention:

node counts

left.count
right.count
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Children and parents

Thechildren of a node — nodes themselves — are the root nodes of its left
and right subtrees, if any:

If C is a child ofB, thenB is theparent of C. “The” parent because of the
following result:

The theorem seems obvious from the picture, but we have to prove it; this
gives us an opportunity to encounterrecursive proofs.

Recursive proofs

The recursive proof of the Single Parent theorem follows the structure of the
recursive definition.

Unless it is empty (in which case the theorem trivially holds) a binary tree
consists of a root and two disjoint binary trees; we assume — this is the
“recursion hypothesis” — that they satisfy the the theorem. From the
definitions of “binary tree”, “child” and “parent” it follows that a nodeC may
have a parentP in the binary tree only through one of the following three ways:

P1 •P is the root of the binary tree, andC is the root of either its left subtree
or its right subtree.

P2 • They both belong to the left subtree, andP is the parent ofC in that subtree.

P3 • They both belong to the right subtree, andP is the parent ofC in that subtree.

In caseP1, C has, from the recursion hypothesis, no parent in its subtree; so it
has one parent, the root, in the binary tree as a whole. In casesP2 andP3, again
by the recursion hypothesis,P was the single parent ofC in their respective
subtree, and this is still the case in the whole tree.

Theorem: Single Parent

Every node in a binary tree has exactly one parent, except for the root which
has no parent.

Right childLeft child

A binary tree
(“branching”
representation)

Parent
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Any nodeC other than the root fall into one of these three cases, and
hence has exactly one parent. In none of these cases canC be the root which,
as a consequence, has no parent. This completes the proof.

Recursive proofs of this kind are useful when you need to establish that a
certain property holds for all instances of a recursively defined concept. The
structure of the proof follows the structure of the definition:

• For any non-recursive case of the definition, you must prove the property
directly. (In the example the non-recursive case is an empty tree.)

• A case of the definition is recursive if it defines a new instance of the
concept in terms of existing instances. For those cases you may assume
that the property holds of these instances (this is therecursion hypothesis)
to prove that it holds of the new one.

This technique applies to recursively defined concepts in general. We’llsee its
application to recursively defined routines such ashanoi.

More binary tree properties and terminology

A node of a binary tree may have:

• Both a left child and a right child, like the top node,
labeled35, of our example.

• Only a left child, like all the nodes of the left
subtree, labeled23, 18, 12.

• Only a right child, like the node labeled60.

• No child, in which case it is called aleaf. In the
example the leaves are labeled12, 41, 67 and90.

We define anupward path in a binary tree as a sequence of zero or more
nodes, where any node in the sequence is the parent of the previous one if any.
In our example, the nodes of labels60, 78, 54 form an upward path. We have
the following property, a consequence of the Single Parent theorem:

Proof: consider an arbitrary nodeC and the upward path starting atC and
obtaining by adding the parent of each node on the path, as long as there is one;
the Single Parent theorem ensures that this path is uniquely defined. If the path

Theorem: Root Path

From any node of a binary tree, there is a single upward path to the root.

(From the figure on page370.)

35

23 54

41 7818

12 60

67

90
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is finite, its last element is the root, since any other node has a parent and hence
would allow us to add one more element to the path; so to prove the theorem
it suffices to show that all paths are finite.

The only way for a path to be infinite, since our binary trees are finite sets
of nodes, would be to include acycle, that is to say if a noden appeared twice
(and hence an infinite number of times). This means the path includes a
subsequence of the formn … n. But thenn appears in its own left or right
subtree, which is impossible from the definition of binary trees.

Considering downward rather than upward paths gives an immediate
consequence of the preceding theorem::

Theheight of a binary tree is the maximum number of
nodes on a downward path from the root to a leaf. In our
basic example, reproduced again on the side, the height
is 5, obtained through the path from the root to the leaf
labeled67.

It is possible to define this notion recursively, following
again the recursive structure of the definition of binary
trees: the height of an empty tree is zero; the height of a
non-empty tree is one plus the maximum of
(recursively) the heights of its two subtrees. We may
add the corresponding function to classBINARY_TREE:

Theorem: Downward Path

For any node of a binary tree, there is a single downward path connecting
the root to the node through successive applications ofleft andright links.

height: INTEGER is
-- Maximum number of nodes on a downward path

local
lh, rh: INTEGER

do
if  left /= Void then lh := end
if  right /= Void then rh := end
Result:= 1 + lh.max(rh)

end

35

23 54

41 7818

12 60

67

90

left.height
right.height

x.max(y) is the maxi-
mum ofx andy.
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This adapts the recursive definition to the convention used by the class, which
only considers non-empty binary trees, although either or both subtrees,left
andright, may be empty. Note again the similarity tohanoi.

Binary tree operations

ClassBINARY_TREEas given so far only has queries. The following two
procedures, to be added to the class, let us add a left or right child:

using the creation procedure

Traversals

Being defined recursively, binary trees, not surprisingly, lead to many
recursive routines. Functionheightwas one; here is another. Assume that you
are requested to print all theitemvalues associated with nodes of the tree. The
following procedure, to be added to the class, does the job:

add_left(x: G) is
-- Create left child of valuex

require
no_left_child_behind: left = Void

do
create left.make(x)

end

add_right… Same model…

make(x: G) is
-- Initialize with item valuex.
do

item:= x
ensure

set: item= x
end

print_all is
-- Print all node values

do
if  left /= Void then end
print (item)
if  right /= Void then end

end

print_all (left)

print_all (right)
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This uses the procedureprint (available to all classes through their common
ancestorANY) which prints a suitable representation of a value of any type; here
the type isG, the generic parameter inBINARY_TREE[G].

The structure is in line withhanoi and the preceding binary tree routines.

Although the business ofprint_all is to print every node item, the
algorithm scheme is independent of the specific operation, hereprint, that we
perform onitem. The procedure is an example of a binary treetraversal: an
algorithm that performs a certain operation once on every element of a data
structure, in a precisely specified order.

For binary trees, three such traversal orders are often useful:

In these definitions, “visit” means performing the individual node operation,
such asprint in the print_all example; “traverse” means a recursive
application of the algorithm to a subtree, or no action if the subtree is empty.

The procedureprint_all is an illustration of inorder traversal. We may
easily express the other two variants in the same recursive form; for example,
a routinepost for postorder traversal will have the routine body

wherevisit is the node operation, such asprint.

In the quest for software reuse, it is undesirable to write a different routine for
variants of a given traversal scheme just because thevisit operation changes. To
avoid this, we may use the operation itself as an argument to the traversal routine.
This will be possible through the notion ofagent in a laterchapter.

Binary tree traversal orders

• Inorder : traverse left subtree, visit root, traverse right subtree.
• Preorder: visit root, traverse left, traverse right.
• Postorder: traverse left, traverse right, visit root.

if  left /= Void then end
if  right /= Void then end
visit (item)

post(left)
post(right)

→ Chapter20,
Event-driven design.



§16.3 BINARY TREES 377

Binary search trees

For a general binary tree, procedureprint_all, implementing inorder traversal,
prints the node values in an arbitrary order. For the order to be significant, we
must move on from binary trees to binarysearch trees.

The setG over which a general binary tree is defined can be any set. For
binary search trees, we assume thatG is equipped with atotal order relation
enabl ing us to compare two arbitrary elements ofG with the boolean
expressiona < b, such that exactly one ofa < b, b < a andequal(a, b) is true.
Examples of such sets includeINTEGERor REAL, with the usual< relation,
butG could be any other set on which we know a total order.

As usual we writea <= b for (a < b) or equal(a, b), anda > b for b < a.

Over such totally ordered sets we may define binary search trees:

The node values in the left subtree are less than the value for the root, and those
in the right subtree are greater; this property must apply not only to the tree as
a whole but also, recursively, to any of its immediate or indirect subtrees. We
will call it the Binary Search Tree Invariant.

This definition implies that all theitemvalues of the tree’s node are different. This
is the convention that we will take, largely for simplicity. It is also possible to
accept duplications; then the conditions in the definitions becomele <= r and
r <= ri . An exercise asks you accordingly to adapt the binary search tree
algorithms that we are going to see.

Our example binary tree of integers is a binary search tree:
all the values in the left subtree are less than the root value,
35, all those in the right subtree are greater, and again
recursively in every subtree.

The procedureprint_all, applied to a binary search tree,
will print all the node items in order, from smallest
to greatest.

Definition: binary search tree
A binary search tree over a totally ordered setG is a binary tree overG such
that, for any subtree of rootitem valuer:

• The item valuele of any node in the left subtree satisfiesle < r.
• The item valueri of any node in the right subtree satisfiesri > r.

→ We’ll learn more
on total orders in the
study of topological
sort: “Total orders”,
page 418.

→ Exercise16-E.3,
page 405.
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Performance

Let’s look more closely at why binary search trees are useful as container
structures — a potential competitor to hash tables. The reason is that they
usually provide much better performance than sequential lists. Assuming
random data, a sequential listprovides us with

• O (1) insertion (if we keep the elements in the order or insertion)

• O (n) search

With a binary search tree, both operations can beO (log n), which is much
better thanO (n) for largen. (Remember that in big-O notation it doesn’t
matter what base we choose for the logarithms.) Here is the analysis for afull
binary tree, that is to say one in which both subtrees of any given node have
exactly the same heighth:

It is clear, by induction onh, that the number of nodesn in a full tree of height
h is 2h – 1 (in the above figure,h is 3 andn is 7). This implies that for a given
number of nodesn the height islog2 (n + 1), which isO (log n). In a full tree,
both a search and an insertion — using algorithms given below, which you can
already guess — will start from the root and go to a leaf, takingO (log n) time.
This is the major attraction of binary search trees.

Of course most practical binary trees are not full; if you are out of luck
with the order of insertion, the performance can in fact be as bad as with
sequential lists,O (n) — with added storage costs since each node has both a
left field and aright field where a linked list cell has just one. The following
figure shows such cases: insertions in descending order(A), ascending order
(B), greatest then smallest then second greatest and so on(C).

Programming Time!
Printing values in order

Using the procedures given so far, write a program that builds the example tree,
then prints the node items usingprint_all. Check that the values are in order.

← The performance
tables were on pages
281 and282.

A full binary tree
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With a random enough order of insertions, however, the binary search tree will
remain sufficiently close to full to ensureO (log n) behavior. You can actually
guaranteeO (log n) insertions, searches and deletions by using theAVL
variant of binary search trees, which remain near-full (or “balanced”), as
detailed in theappendix to this chapter.

Inserting, searching, deleting

Here is a recursive routine for searching a binary search tree (again to be added
to classBINARY_TREE, as the following ones):

There is noelseclause: if none of the conditions hold the result will be false.
The algorithm isO (h) whereh is the height of the tree, meaningO (log n) for
full or near-full trees.

has(x: G): BOOLEANis
-- Doesx appear in any node?

require
argument_exists:x /= Void

do
if  x = itemthen

Result:= True
elseif x < itemand left /=Void then

Result:=
elseif x > itemand right /= Void then

Result:=
end

end

Some binary
search tree
schemes causing
O (n) behavior

(A) (B) (C)

→ “APPENDIX: AVL
TREES”,  16.10, page
403.

left.has(x)

right.has(x)
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A non-recursive version, using a loop, is also possible:

For inserting an element, we may use the following recursive procedure::

has1(x: G): BOOLEANis
-- Doesx appear in any node?

require
argument_exists:x /= Void

local
node: BINARY_TREE[G]

do
from

node:= Current
until

Resultor node= Void
invariant

-- xdoesn’t appear abovenodeon downward path from root
variant

-- (Height of tree) – (Length of path from root tonode)

loop
if  x < itemthen

node:= left
elseif x > itemthen

node:= right
else

Result:= True
end

end
end

put (x: G) is
-- Insertx if not already present.

require
argument_exists:x /= Void

do
if  x < itemthen

if left = Void then
add_left(x)

else

end

← Aboutadd_left and
add_rightsee page375.

left.put (x)
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The absence of anelseclause for the outermostif reflects thedecision to ban
duplicate information. The non-recursive version is left as anexercise.

The next natural step after insertion is to write a deletion procedure
remove(x: G). This is less simple because we can’t just remove the node
containingx (unless it’s a leaf and not the root, in which case we make the
correspondingleft or right reference void); we can’t either leave an arbitrary
value there since it would destroy the Binary Search Tree Invariant.

Actually we could put a special boolean attribute in every node, indicating whether
theitemvalue is meaningful, but that makes things too complicated and affects the
other algorithms.

What we should do is reorganize the node values, moving
up some of those found in subtrees of the node where we
find x to reestablish the Binary Search Tree Invariant. In
the example binary search tree, a callremove(35),
affecting the value in the root node, might either:

• Move up all the values in the left subtree (where
each node has a single child, on the left).

• Move up the value in the right child,54, then
recursively apply a similar choice to move up
values in one of its subtrees.

Like search and insertion, the process should beO (h) whereh is the height of
the tree. Since this is particularly interesting in the case of AVL (balanced)
trees the algorithm will appear in the corresponding section, but since you
have all the elements to write a first version I strongly suggest you try your
hand at it now, following the inspiration of the preceding routines:

elseif x > itemthen
if right = Void then

add_right(x)
else

end
end

end

Programming Time!
Deletion in a binary search tree

Write a procedureremove(x: G) that removes from a binary search tree the
node, if any, of item valuex, preserving the Binary Search tree Invariant.

right.put (x)

← See page377.

→ 16-E.4, page 405.

35

23 54

41 7818

12 60

67

90

(From the figure on page370.)
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16.4 FROM LOOPS TO RECURSION

We have seen that some recursive algorithms — Fibonacci numbers, search
and insertion for binary search trees — have a loop equivalent. What about the
other way around?

It is indeed not hard to replaceany loop by a recursive routine. Consider
an arbitrary loop, given here without its invariant and variant (although we will
see their recursive counterparts later):

We may replace it by

with the procedure

In some programming languages known asfunctional languages(the best
known are Lisp, Scheme, Haskell, ML) this recursive form is the preferred
style, even if loops are available for convenience. We could use it too in our
framework, replacing for example the first completeexample of the discussion
of loops, which animated a Metro line by moving a red dot, by

from Init until Exit loop Bodyend

Init
loop_equiv

loop_equivis
--Emulate a loop of exit conditionExit and bodyBody.

do
if not Exit then

Body

end
end

Line8.start
animate_rest(Line8)

Loop_equiv

← Page166.
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with the auxiliary routine

(A more complete version would restore the cursor to its original position.)

The recursive version is elegant, but there is no particular reason in our
framework to prefer it to the loop form; indeed we will continue to use loops.

The conclusion might be different if we were using functional programming
languages, where systematic reliance on recursive routines is part of a distinctive
style of programming. You should definitely, as part of your further programming
education, take a course in functional programming, and discover for yourself the
inner consistency of that approach.

Even if just for theoretical purposes, it’s interesting to know that loops are
conceptually not needed if we have routines that can be be recursive. As an
example, recursion gives us a more concise version of the loop-basedroutine
paradoxdemonstrating the unsolvability of the Halting Problem:

Knowing that we can easily emulate loops with recursion, it’s natural to ask
about the reverse transformation. Do we really need recursive routines, or
could we use loops instead? We’ve seen the straightforward cases mentioned
above (hasandput for binary search trees,Fibonacci) but others suchhanoi,
height, print_all don’t seem to have an obvious recursion-free equivalent. To
understand what exactly can be done we have to look more closely into the
meaning and properties of recursive routines.

animate_rest(line: METRO_LINE) is
-- Animate stations ofline from current cursor position on

do
if not  line.after then

show_spot(line.item.location)
line.forth

end
end

recursive_paradoxis
-- Terminate if and only if not.

do
if terminates("C:\your_project") then

end
end

animate_rest(line)

← “AN APPLICA-
TION: PROVINGTHE
UNDECIDABILITY
OF THE HALTING
PROBLEM”,  page

recursive_paradox
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16.5 MAKING SENSE OF RECURSION

The experience of our first few recursive schemes allows us to probe a bit
deeper into the meaning of recursive definitions.

Vicious circle?

First let’s go back to the impolite but basic question: does a recursive definition
mean anything at all? The examples, especially those of recursive routines,
should by now — I hope — be sufficiently convincing to suggest a positive
answer, but we should still retain a healthy dose of doubt. After all we are
never very far from definitions that make no sense at all — vicious circles.
With recursion we try to define a concept in terms of itself, but we can’t just
define itas itself. If I say

I have not defined anything at all, just stated a tautology; not one of those
tautologiesof logic, which are things to prove and hence possibly interesting,
just a platitude. If I refine this into

I have added some usable elements but still not produced a satisfactory
definition. Recursive routines can, similarly, be obviously useless, as:

which for any value of the argument would execute forever, never producing
any result.

We’ll see that “forever” in this case means, for a typical compiler’s implementation
of recursion on an actual computer, “until the stack overflows and causes the
program to crash”. So in practice, given the speed of computers, “forever” doesn’t
last very long.

How do we avoid such obvious misuses of recursion? If we try to understand
why the recursive definitions seen so far seem intuitively to make sense, we
can nail down three interesting properties:

“Computer science is the study of computer science”

“Computer science is the study of programming, data structures, algorithms,
applications, theories and other areas of computer science”

p (x: INTEGER) is
-- What good is this?

do p (x) end

← “Definition: Tautol-
ogy”,  page 80.



§16.5 MAKING SENSE OF RECURSION 385

For a recursive routine, the change of “context” (R2, R3) may be that the call
uses a different argument, as will a callr (n–1) in a routiner (n: INTEGER);
that it applies to a different target, as in a callx. r (n) wherex is not the current
object; or that it occurs after the routine has changed at least one object field.

The recursive routines seen so far satisfy these requirements:
• the body ofHanoi (n, …) is of the formif n > 0 then … end where the

recursive calls are in thethen part, but there is noelsepart, so the routine
does nothing forn = 0 (R1). The recursive calls are of the form
Hanoi (n–1, …), changing the first argument. and also switching the
order of the others (R2). Replacingn by n–1brings the context closer to
the non-recursive casen = 0 (R3).

• The recursivehas for binary search trees has non-recursive cases for
x = item, as well as forx < item if there is no left subtree, andx > item if
there is no right subtree (R1). It calls itself recursively on a different
target,left or right rather than the current object (R2); every such call
goes to the left or right subtree, closer to the leaves where the recursion
terminates (R3). The same scheme governs other recursive routines on
binary trees, such asheight.

• The recursive version of the metro line traversal,animate_rest, has a
non-recursive branch (R1), doing nothing, for a cursor that’safter. The
recursive call doesn’t change the argument, but it is preceded by a call
line.forth which changes the state of theline list (R2), moving the cursor
closer to a state satisfyingafterand hence to the non-recursive case (R3).

R1 andR2 also hold for recursive definitions of concepts other than routines:
• Themini-grammar forInstructionhas the non-recursive caseAssignment.
• All our recursively defined data structures, such asSTOP, are recursive

throughreferences(never expanded values), and references can be void.
Void values indeed serve as terminators of linked structures.

In the case of recursive routines, combining the above three rules suggests a
notion ofvariant similar to theloopvariants through which we guarantee that
loops terminate:

Touch of Methodology:
Well-formed recursive definition

A useful recursive definition should ensure that:
R1 •There is at least one non-recursive branch.

R2 •Every recursive branch occurs in a context that differs from the original.

R3 •For every recursive branch, the change of context (R2) brings it closer
to at least one of the non-recursive cases (R1).

← Page367.

← Page379.

← Page374.

← Page383.

← Page361.

← Page361.

← “Loop termina-
tion”,  page 159.
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The variant may involve the arguments of the routine, as well as other parts of
its environment such as attributes of the current object or of other objects. In
the examples just reviewed:
• ForHanoi (n, …), the variant isn.
• For has, height, print_all and other recursive traversals of binary trees,

the variant isnode_height, the longest length of a path from the current
node to a leaf.

• For animate_rest, the variant is, as for the correspondingloop,
Line8.count – Line8.index + 1.

There’s no special syntax for recursion variants, but we’ll use a comment of
the following form, here forhanoi:

Boutique cases of recursion

The well-formedness rules seem so reasonable that we might think they are
necessary, and not just sufficient, to make a recursive definition meaningful.
That’s indeed the case with the first two properties:
• R1: if all branches of a definition are recursive, it can’t ever yield any

instance we don’t already know. If what’s being defined is a recursive
routine, its execution will not terminate, except possibly through a crash
following memory exhaustion.

• R2: if a recursive branch applies to the original context, it can’t ever yield
an instance we don’t already know. For a recursive routine — sayp (x: T)
with a branch that callsp (x) for the samex with nothing else changed —
this means that the branch, if taken, would lead to non-termination. For
other recursive definitions, it means the branch is useless.

The story is different forR3, at least if we take this rule to mean that there is
a clearly visible recursion variant, such as the argumentn for Hanoi. Some
recursive routines which do terminate violate this property. Let’s see two
examples. They have no practical application, but highlight general properties
of which we must be aware.

Touch of Methodology:
Recursion Variant

Every recursive routine should be declared with an associated recursion
variant, an integer quantity associated with any call, such that:

• The routine’s precondition implies that the variant is non-negative.
• If an execution of the routine starts with a valuev for the variant, the

valuev’ of the variant for any recursive call satisfies 0≤ v’ < v.

-- variant n

← Page166.
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McCarthy’s 91 functionwas devised by John McCarthy, a professor at
Stanford University, designer of the Lisp programming language (where
recursion plays a prominent role) and one of the creators of Artificial
Intelligence. We may write it as follows:

The value forn > 100is n – 10, but it’s far less obvious — from a computation
shrouded in two nested recursive calls — that for any integer up to 99, including
negative values, the result will be 91, explaining the function’s name. The
computation indeed terminates on every possible integer value. Yet it doesn’t
have any obvious variant;mc_carthy(mc_carthy(n + 11)) actually uses as
argument of the innermost recursive call ahigher value than the original.

Here is another example, also a mathematical oddity:

This uses the operator// for integerdivision, rounded down (5 // 2 and4 // 2
are both2), and a boolean expressioneven(n) to denote whethern is an even
integer;even(n) could also be expressed asn \\ 2 = 0, using the integer
remainder operator\\. Note that the two cases of a// division in the algorithm
apply to even numbers, so they are exact.

mc_carthy(n: INTEGER): INTEGER is
-- McCarthy’s 91 function

do
if n > 100then

Result:= n – 10
else

Result:= mc_carthy(mc_carthy(n + 11))
end

end

bizarre(n: INTEGER): INTEGER is
-- A function that can yield only a 1

require
positive:n >= 1

do
if n = 1 then

Result:= 1
elseifeven(n) then

Result:= bizarre(n // 2)
else --i.e. forn odd andn > 1

Result:= bizarre((3 ∗ n + 1) // 2)
end

end

n / 2, using the other
division operator /,
would give aREAL
result; for example5 /2
is 2.5.
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What’s clear about this function is that if it gives any result at all (for a
non-negative integer argument) that result can only be1, the value produced
by the sole non-recursive branch. What’s not so clear is that it will give this
result — that is to say, terminate — foranyargument to which it is applied.
This indeed seems to be the case; if you write the program, and try it on sample
values, including large ones, you’ll be surprised to see how fast it converges.
Yet there is no obvious recursion variant; the new argument in the second
recursive branch,(3 ∗ n + 1) // 2, is indeed larger thann!

These are boutique examples, but we must take their existence into
account in any general understanding of recursion. They mean that some
recursive definitions exist that donot satisfy the seemingly reasonable
methodological rules discussed above — and still yield well-defined results.

Note that such examples, if they terminate for every possible argument,
do have a variant: since for any execution of the routine the number of
remaining recursive calls is entirely determined by the program’s state at the
time of the call, it’s a function of the state, and can serve as a variant. Rather,
it could serve as a variant if we knew how to express it. If we don’t, its
theoretical existence doesn’t help us much.

You will have noted that it’s not possible to determine automatically — through
compilers, or other program analysis tools — whether a routine has a recursive
variant, even less to determine such a variant automatically: that would mean that
we can solve theHalting Problem.

In practice we will just dismiss such examples and limit ourselves to recursive
definitions that possess the above properties, guaranteeing that they are safe.
In particular, whenever you write a recursive routine, you must always — as
in the examples of the rest of this chapter — explicitly list a recursive variant.

Keeping definitions non-creative

Even with well-formedness rules and recursion variants, we’re not yet off the
hook in our attempts to use recursion and still sleep at night. The problem is
that a recursive “definition” is not a definition is the usual sense because it can
becreative.

An axiom in mathematics is creative: it tells us something that we can’t
deduce without it, for example (in the standard axioms for integers) thatn < n’
holds for any integern, wheren’ is the next integer. The basiclawsof natural
sciences are also creative, for example the rule that no object can travel faster
than the speed of light.

Theoremsin mathematics, and specific results in physics, are not creative:
they state properties that can be deduced from the axioms or laws. They are
interesting on their own, and may start us on the path to new theorems; but they
do not add any assumptions, only consequences of previous assumptions.

← “AN APPLICA-
TION: PROVINGTHE
UNDECIDABILITY
OF THE HALTING
PROBLEM”,  page
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A definition too should be non-creative. It gives a new name for an object
of our world, but all statements we can express with the definition could be
expressed without it. We don’twantto express them without it —otherwise we
wouldn’t have introduced the definition — but we trust that in principle we
could. If I say

I haven’t added anything to mathematics; I am just allowing myself to use the
new notatione2, for any expressione, in lieu of the multiplication. Any
property that can be proved using the new form could also be proved — if
more clumsily — using the form that serves to define it.

The symbol , which we have taken to mean “is defined as”, assumes
this principle of non-creativity of definitions. But now consider a recursive
definition, of the form

wheresome_expressioninvolvesf. It doesn’t satisfy the principle any more! If
it did we could replace any occurrence off by some_expression; this involves
f itself, so we would have to do it again, and so on ad infinitum. We haven’t
really defined anything.

Until we have solved this issue — by finding a convincing, non-creative
meaning for “definitions” such as [1] — we must be careful in our
terminology. We’ll reserve the symbol for non-recursive definitions; a
property such as [1] will be expressed as an equality

which simply states a property of the left- and right-hand sides. (We may also
view it as anequation, of whichf must be a solution.) To be absolutely safe, in
talking about recursive “definitions” we’ll quarantine the second word in quotes.

The bottom-up view of recursive definitions

To sanitize recursive definitions and bring them out of the quarantined area, it
is useful to take abottom-up view of recursive routines and, more generally,
recursive definitions. I hope this will remove any remaining feeling of
dizziness that you may still experience when seeing concepts or routines
defined — apparently — in terms of themselves.

Definex2 , for anyx, asx ∗ x

f =∆ some_expression [D1]

f  some_expression [D2]

=∆

=∆

=



RECURSION AND TREES §16.5390

In a recursive definition, the recursive branches are written in atop-down
way, defining the value of a concept in terms of the value of the same concept
for a “smaller” context — smaller in the sense of the variant. For example,
Fibonacci for n is expressed in terms ofFibonacci for n – 1 andn – 2; the
moves ofHanoi for n are expressed in terms of those forn –1; and the syntax
for Instruction involves aConditional that contains a smallerInstruction.

The bottom-up view is a different interpretation of the same definition,
treating it the other way around: as a mechanism that, fromknownvalues,
gives new ones. Here is how it works, first on the example of a function. For
any functionf we may build thegraph of the function: the set of pairs
[x, f (x)] for every applicablex. The graph of the Fibonacci function is the set

consisting of all pairs[n, Fibonacci(n)] for all non-negative integersn. This
graph contains all information about the function. You may prefer to think of
it in the following visual representation:

The twop row lists possible arguments to the function; for each of them, the
bottom rows gives the correspondingfibonacci number.

To give the function a recursive “definition” is to say that its graphF —
as a set of pairs — satisfies a certain property

for a certain functionh applicable to such sets of pairs. This is like an equation
thatF must satisfy, and is known as afixpoint equation.

For example to “define” the Fibonacci function recursively as:

is to state that its graphF — the above set of pairs [1] — satisfies the fixpoint
equationF = h (F) [2] whereh is a function that, given such a set of pairs, yields
a new one containing the following pairs:

F =∆ {[0, 0], [1, 1], [2, 1], [3, 2], [4, 3], [5, 5], [6, 8], [7, 13]… } [B1]

F = h (F) [B2]

fib (0) = 0
fib (1) = 1
fib (i) = fib (i – 1) + fib (i – 2) -- For i > 1

INTEGER …

INTEGER …

0 1 1 3 82 5 13

0 1 2 4 63 5 7
A function graph
(for the Fibonacci
function)
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G1 •[0, 0] -- The pair forn = 0: [0, fib (0)]

G2 •[0, 1] -- The pair forn = 0: [1, fib (1)]

G3 •Every pair already inF.

G4 •Every pair of the form[i, a + b] for somei such thatF contains both a
pair of the form[i – 1, a] and another of the form[i – 2, b].

We can use this view to give any recursive “definition” a clear meaning, free
of any recursive mystery. Let’s start from the function graphF0 that is empty
(it contains no pair). Next we define

meaning, sinceG3 andG4 are not applicable in this case (asF0 has no pair),
thatF1 is simply{[ 0, 0], [1, 1]} , with the two pairs given byG1 andG2. Next
we applyh once more to get

hereG1 andG2 give us nothing new, since the pairs[0, 0] and[1, 1] are
already inF1, butG4, applied to these two pairs fromF1, adds toF2 the pair
[2, 1]. Continuing like this, we define a sequence of graphs:F0 is empty, and
eachFi+1 for i > 0, is defined ash (Fi). Now consider the infinite unionF of
all theFi for every natural integeri: F0∪ F1∪ F2∪ …, more concisely written

whereN is the set of natural integers. It is easy to see that thisF satisfies the
propertyF = h (F) [2]. This is the non-recursive interpretation we give to the
recursive “definition” of Fibonacci.

In the general case, a fixpoint equation of the form [2] on function graphs,,
stating thatF must be equal toh (F), admits as a solution the function graph

whereFi is a sequence of function graphs defined as above:

F1 =∆ h (F0)

F2 =∆ h (F1)

F =∆

F0 =∆ { } -- Empty set of pairs

Fi =∆ h (Fi – 1) -- For i > 0

∪
i ∈N

Fi

∪
i ∈N

Fi

The empty set can, of
course, be written also
as∅. The notation{ }
emphasizes taht it’s a
set of pairs.
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This fixpoint approach is the basis of the bottom-up interpretation of recursive
computations. It removes the apparent mystery from these definitions because
it doesn’t any more involve defining anything “in terms of itself”: it simply
views a recursive definition as a fixpoint equation, and admits a solution
obtained as the union (similar to the “limit” of a sequence in mathematical
analysis) of a sequence of function graphs.

This immediately justifies therequirement that any useful recursive definition must
have a non-recursive branch: if not, the sequence, which starts with the empty set
of pairsF0 = { }, never gets any more pair, because all the cases in the definition
of h are likeG3 andG4 for Fibonacci, giving new pairs deduced from existing
ones, but there are no pairs to begin with.

This technique reduces recursive “definitions”, with all the doubts they raise
as to whether they define anything at all, to the well-known, traditional notion
of defining a sequence by induction.

The Fibonacci function provided a good example of this, but it’s not in itself
exciting since the usual definition of the function, in mathematics textbooks, is
already by induction; it’s only computer scientists who look at it in a recursive
way. What we saw is that we can treat its recursive “definition” as an inductive
definition — a good old definition, without the quotes — of the function’s
graph.This didn’t teach us anything about the function itself, other than a new
viewpoint. Let’s see what we can learn about a couple of our other examples.

Bottom-up interpretation of a construct definition

Understood in a bottom-up spirit, the recursive definition of “type” has a clear
meaning. As you willremember, it said that a  is either:

T1 • A non-generic class, such asINTEGER or METRO_STATION.

T2 • A generic derivation, of the formC [T], whereC is a generic class andT
is a .

T1 is the non-recursive case. The bottom-up perspective enables us to
understand the definition as building the set of types as a succession of layers.
Limiting ourselves for simplicity to at most one generic parameter:

• Layer L0 has all the types defined by non-generic classes:INTEGER,
METRO_STATION and so on.

• LayerL1 has all the types of the formC [X], whereC is a generic class
andX is at levelL0: LIST [INTEGER], ARRAY[METRO_STATION] etc.

• More generally, layerLn for anyn > 0, has all the types of the formC [X],
whereX is at levelL i for i < n.

This way we get all possible types, generically derived or not.

← R1, page 385.

← “Definition: Class
type”,  page 247.

type

type
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The towers, bottom-up

Consider the Tower of Hanoi solution from a bottom-up perspective. We may
understand the routine as recursively defining a sequence of moves. Let’s
denote such a sequence — move a disk from the top of needleA to B, then one
from C to A and so on — as<A → B, C → Α, …>. The empty sequence of
moves will be< > and the concatenation of sequences will use a simple “+”,
so that<A → B, C → Α> + <B → A> is <A → B, C → Α, B → A>. Then we
may express the recursive solution to the Towers of Hanoi problem as a
function han with four arguments (an integer and three needles), yielding
sequences of moves, and satisfying the fixpoint equation

defined only when the values ofs, t,o(short forsource, target,other) are different
— we’ll take them as before to range over‘A’ , ‘B’ , ‘C’ — andn is positive.

Thebottom-upconstructionof the function thatsolves thisequation issimple.
[1] lets us initialize the function’s graph to all pairs forn = 0, each of the form

for s, t, o ranging over all permutations of‘A’ , ‘B’ , ‘C’ . Let’s callH0 this first
part of the graph, made of six pairs.

Now we may use [2] to obtain the next partH1, containing all the values
for n = 1; they are all of the form

since for any sequencex the concatenationx + < > is x itself. The next iteration
of [2] gives usH2, whose pairs are of the form

for all s, t, o such thatH1 contains both a pair of the form[(1, s, o, t), f1] and
one of the form[(1, o, t, s), g1].

han(n, s, t, o) =

< > -- If n = 0 [N1]

han(n –1, s, o, t) +  + han(n –1, o, t, s) -- If n > 0 [N2]

[( , s, t, o), ]

[( , s, t, o), ]

[( , s, t, o), f1 +  + g1]

<s → t>

0 < >

1 <s → t>

2 <s → t>
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Iterating again will give usH3 and subsequent elements of the graph. The
complete graph — infinite of course, since it includes pairs for all possible
values ofn — is the set of all pairs in all elements of the sequence, .

Here I strongly suggest that you get a concrete grasp of the bottom-up
view of recursive computation by writing a program that actually builds
the graph:

A related exercise asks you to determine (without programming) the
mathematical properties of the graph.

Another important exercise directs you to apply a similar analysis to
binary tree traversals. You’ll have to devise a model for representing the
solution, similar to the one we’ve used here; instead of sequences of moves
you’ll simply use sequences of nodes.

Grammars as recursively defined functions

The bottom-up view is particularly intuitive for a recursive grammar, as in our
small example:

distilled even further here:ifc represents “if Condition then” and ast
representsAssignment, both treated as terminals for this discussion.

It’s easy to see how to generate successive sentences of the language by
interpreting these productions in a bottom-up, fixpoint-equation style:

and so on. You can also look again, in light of the notion of bottom-up
recursive computation, at theearlier discussion of the littleGame language.

It is possible to generalize this approach to arbitrary grammars by taking
a matrix view of a BNF description.

Programming time:
Producing the graph of a function

Write a program (not using recursion) that produces successive elements
H0, H1, H2 … of the function graph for the recursive Hanoi solution.

Instruction=∆ ast | Conditional

Conditional=∆ ifc Instruction end

ast
ifc ast end
ifc ifc ast end end
ifc ifc ifc ast end end end

∪
i ∈N

Hi

→ Details in exercise
16-E.6, page 406.

→ 16-E.5, page 405.

→ 16-E.7, page 406.

← Actual version
on page361.

← “Recursive gram-
mars”,  page 338.

→ Exercise16-E.9,
page 406.
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16.6 CONTRACTS FOR RECURSIVE ROUTINES

We have learned to equip our classes and their features withcontractsstating
their correctness properties: routine preconditions, routine postconditions,
class invariants; the same concerns applied to algorithms gave us loop variants
and loop invariants. How does recursion affect the picture?

We havealready seen the notion ofrecursion variant. If a routine is
recursive directly or indirectly, you should include a mention of its variant. As
noted, we don’t have specific language syntax for this but add a clause

to the routine’s header comment.
A recursive routine may have a precondition and postcondition like any

other other routine. Because ensuring a precondition is always the
responsibility of the caller, and here the routine is its own caller, the novelty is
that you must ensure that all calls within the routine (or, for indirect recursion,
in associated routines) satisfy the precondition.

Here is the Towers of Hanoi routine withmore complete contracts; the
new clauses, all expressed as comments, are highlighted.

-- variant : integer_expression

hanoi(n: INTEGER; source, target, other: CHARACTER) is
-- Transfern disks fromsourceto target, usingotheras intermediate
-- storage, according to rules of Tower of Hanoi puzzle

require
non_negative: n >= 0
different1: source/= target
different2: target/= other
different3: source/= other

do
if  n > 0 then

hanoi (n–1, source, other, target)
move(source, target)
hanoi(n–1, other, target, source)

end
ensure

end

← “TouchofMethodol-
ogy: Recursion Vari-
ant”,  page 386.

← The original was on
page367.

-- variant : n
-- invariant : disks on each needle are piled in decreasing size

-- source hasn disks; any disks ontarget andother are all
-- larger than all the disks onsource.

-- Disks previously onsource are now ontarget, in same order,
-- on top of those previously there if any;other is as before
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A recursive routine often has arecursion invariant : a set of properties that
must hold both before and after each execution. In the absence of a specific
language mechanism they will just appear twice, in the precondition as well as
the postcondition; for clarity we may also, as here, include them in the header
comment under the form

Since this is not a language construct we will use the following convention:

• If the recursion invariant is just a comment, as in this example, we will
not repeat it in the precondition and postcondition; here this means
omitting from the precondition and postcondition that any disks on the
affected needles are in decreasing size.

• Any recursion invariant clause that’s formal (a boolean expression)
should be included in the precondition and postcondition, since there is
no other way to express it formally.

16.7 THE IMPLEMENTATION OF RECURSIVE ROUTINES

Recursive programming works well in certain problem areas, as illustrated by
the examples in this chapter. When recursion facilitates your job you shouldn’t
hesitate to use it, since in modern programming languages you can take
recursion for granted.

Since there’s usually no direct support for recursion in machine code,
compilers for high-level languages must be able to map a recursively
expressed algorithm into a non-recursive one. The applicable techniques are
obviously important for compiler writers, but even if you don’t expect to
become one it’s useful to know the basic ideas, both as a way to gain further
insight into recursion (complementing the various perspectives opened by
previous sections) and to understand the potential performance cost of using
recursive algorithms.

We’ll look at a simple recursive routine and ask ourselves how, if the
language didnot permit recursion, we would achieve its aims.

-- invariant : integer_expression
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A recursive scheme

Consider a routiner that calls itself:

What does it mean — looking at things top-down again — to execute the
recursive call?

The recursiveness of this scheme implies that neither the beginning of the
routine’s code nor its end are just what they appear to be:

• Whencode_beforeexecutes, this is not necessarily the beginning of a call
a.r (y) executed by a client: it could result from an instance ofr calling
itself recursively.

• Whencode_afterterminates, it’s not necessarily the end of ther story: it
may simply be the termination of one recursively called instance;
execution should resume for the last instance started and not terminated.

Routines and their execution instances

The key novelty in the last observation is the concept ofinstanceof a routine.
We know that classes have instances (the “objects” of object-oriented program
execution) but we haven’t yet thought of routines in a similar way.

Execution of a program is, at any point during execution, characterized by a
call chain as pictured above: the root procedurep has calledq which has
calledr… When an execution of a routine in the chain, sayr, terminates, the
suspended execution of the calling routine, hereq, resumes just after the place
where it had calledp. In the absence of recursion, any procedure has at most
one instance active at any time.

r (x: T) is
do

code_before
r (y)
code_after

end

p
A call chain,
without recursion

calls

q
calls

r
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With recursion, the call chain may include two or more instances (also called
activations) of the same routine. Underdirect recursion they will be
contiguous:

For example a callhanoi(2, s, t, o) immediately starts a callhanoi(1, s, o, t)
which starts a callhanoi(0, s, t, o); at that stage we have three instances of the
procedure in the call chain.

A similar situation arises withindirect recursion:

Preserving and restoring the context

All instances of a routine share their program code; what distinguishes them
is their executioncontext. We’ve seen that in a meaningful case of recursion
the context of every call must differ by at least one element. The context
elements characterizing a routine instance (rather than object states) are:

• The values of the actual routine arguments, if any, for the particular call.

• The values of the local variables, if any.

• The location of the call in the text of the calling routine, defining where
execution should continue once the call completes.

A data structure representing such a routine execution context is called an
activation record.

Assume for the moment a programming language that doesnot support
recursion. Since at any time during execution there’s at most one active
instance of any routine, the compiler-generated program can use a single
activation record for each routine. This is known asstatic allocation, meaning
that the memory for all activation records can be allocated once and for all at
the beginning of execution.

p
Call chain with
direct recursion

q
r

r
r

p
Call chain with
indirect recursionq

s
q

s
q

s

← R2, page 385.
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With recursion each activation of the routine needs its own context. This
leaves two possibilities for implementation:

I1 • We can resort todynamic allocation: whenever a routine instance starts,
create a fresh activation record to hold the routine’s context. Use this
activation record whenever the routine execution needs access to an
argument or local variable, and to determine where in the caller to
transfer execution on return; resuming the caller’s execution will imply
going back to its activation record.

I2 • To save space, we may note that the reason for keeping context
information in an activation record is to be able torestoreit after when an
execution resumes after a recursive call. An alternative to saving that
information is torecomputeit. This is possible when the change
performed by the recursive call isinvertible . The recursive calls in
procedurehanoi ( , …) are of the formhanoi ( , …); rather than
storing the value ofn into an activation record, creating a new one with
n –1 at the corresponding position, then restoring the value on return, we
may use a single location forn in all recursive instances, as with static
allocation: at call time, we’ll decrease the value by one; at return time,
we’ll increase the value by one.

The two techniques are not exclusive: you can save space by using usingI2 for
values whose transformation (such as replacingn by n – 1) admits an easily
implemented inverse, but keep an activation record for the rest of the context.
The decision may involve a space-time tradeoff if the reverse transformation
takes more time than then := n + 1 of our example.

Stacks

Of the two strategies for handling routine contexts let’s look first atI1, the
explicit use of activation records.

Like activation records,objectsare created dynamically, as a result of
create instructions. The program memory area devoted to to dynamically
allocated objects is known as theheap. But for activation records of routines
we don’t need to use the heap since the patterns of activation and deactivation
are simple and predictable:

• A call to a routine requires a new activation record.

• On returning from that call, we may forget this activation record (it will
never be useful again, since any new call will need its own values), and
we must restore the caller’s activation record.

n n –1
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This is a last-in, first-out pattern for which we have a ready-made data
structure: stacks. The stack of activation records will reflect the call chain,
pictured here going up:

Using a stack of activation records we can provide a non-recursive version of
a recursive routine:

• Instead of a recursive call: create a new activation record; initialize it with
the value of the call’s arguments and the position of the call; push it on
the stack; and branch back (goto) to the beginning of the routine’s code.

• Instead of a return: return only if the stack is empty (no suspended call is
pending); otherwise, restore the arguments and local variables from the
activation record at top of the stack, pop the stack, and branch to the
appropriate instruction based on the call position information found in the
activation record.

Note that both steps involvegoto instructions. That’s OK if we are talking
about the machine code to be generated by a compiler, but if it is a manual
simulation of recursion in a high-level language we havelearned to avoid the
gotoand in fact Eiffel doesn’t have such an instruction. We’ll have to usegotos
temporarily and then replace by the appropriate control structures.

Let’s see how this will work for the body ofhanoiwith its two recursive
calls. We’ll use a stack of tuples:

activations: STACK[HANOI_ACTIVATION_RECORD]

← “STACKS”,  10.9,
page 293.

Call chain and the
corresponding
stack

Top of stack

Activation record forp

Activation record (1) forq

Activation record (2) fors

Activation record (2) forq

Activation record (1) fors

p

q

q

s

s

← “The goto instruc-
tion and flowcharts”,
page 181.
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with a small auxiliary classHANOI_ACTIVATION_RECORD:

(Instead of a full-fledged class we could also just use tuples.) An instance of
the class represents the context of a call: number of disks being moved (count),
the three needles in the order used by the call, andcall telling us whether this
execution, if coming from a recursive call, came from the first or second call in

Based on the preceding discussions, we can use the stack of activation
records to provide a non-recursive version of the procedure, relying ongotos:
This is the kind of code that a compiler would generate for a recursive routine,
in the absence of any “optimization” as described next. (Since machine
language usually does not directly supportif … then … else… end
instructions, the code will represent them throughconditional branches
test … goto… asseen in an earlier chapter.) The whole code can be expressed
in Eiffel through techniques ofgoto elimination; this is the subject of
anexercise.

classHANOI_ACTIVATION_RECORDcreate
make

feature
make(c: INTEGER; n: INTEGER; s, t, o: CHARACTER) is

-- Initialize from the values given.
do

call := c; count:= n ; source:= s ; target:= t ; other:= o
end

count: INTEGER
-- Number of disks

call: INTEGER
-- Identifies a recursive call:1 for the first,2 for the second

source, target, other: CHARACTER
-- Needles

end

hanoi(n: INTEGER; source, target, other: CHARACTER) is
do

if  n > 0 then
hanoi(n–1, source, other, target)
move(source, target)
hanoi(n–1, other, target, source)

end
end

← “The goto instruc-
tion and flowcharts”,
page 181.← 7-E.5, page 196.
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hanoi_derecursified(n: INTEGER; source, target, other: CHARACTER) is

local -- We need local variables to represent the arguments
l_n: INTEGER
l_source, l_target, l_other, swap: CHARACTER
top: HANOI_ACTIVATION_RECORD
call: INTEGER

do
l_n := n; l_source:= source; l_target:= target; l_other:= other

start: if  n > 0 then
-- Translation ofhanoi(n–1, source, other, target):

after_1: move( , )

-- Translation ofhanoi(n–1, other, target, source):

end
-- Translation of routine return:

end

activations.put (create{ HANOI_ACTIVATION_RECORD} .
make(n, 1, source, other, target))

l_n := l_n – 1
swap:= l_target; l_target:= l_other; l_other:= swap
gotostart

l_source l_target

activations.put (create HANOI_ACTIVATION_RECORD} .
( make(n, 2, source, other, target))

n := n – 1
swap:= l_source; l_source:= l_other; l_other:= swap
gotostart

activations.put (create{ HANOI_ACTIVATION_RECORD} .
make(n, 2, source, other, target))

l_n := l_n – 1
swap:= l_target; l_target:= l_other; l_other:= swap
gotostart

activations.put (create HANOI_ACTIVATION_RECORD} .
( make(n, 2, source, other, target))

n := n – 1
swap:= l_source; l_source:= l_other; l_other:= swap
gotostart

after_2: if not activations.is_emptythen
top := activations.item -- Top of stack
l_n := top.count; l_source: top.source;
l_target:= top.target; l.other:= top.other
call := top.call ; activations.remove
if  call = 1 then

gotoafter_1
else

gotoafter_2
end

end
-- No else clause: the routine terminates when
-- (and only when) the stack is empty.
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The body ofhanoi_derecursifiedderives fromhanoi through systematic
application of recursion elimination techniques:
D1 •For every argument, introduce a local variable. (You’ll have noted the

naming convention of the exampleLl_sourcefor sourceand so on.)
Assign the value of the argument to the local variable on entry, then work
exclusively on the local variable. This is necessary because a routine may
not, for obvious reason, change the value of its own arguments (source:=
some_new_value is invalid.)

D2 •Give a label, herestart, to the routine’s original first instruction (past the
local variable initializations added byD1).

D3 •Give a label, hereafter_1 and after_2, to the instructions immediately
following each recursive call.

D4 •Replace each recursive call by instructions which: push on the stack an
activation record containing the values of local variables and the
identification of the call (here1 or 2); modify the local variables
representing arguments to reflect the values of the recursive call’s actual
arguments (here the recursive call replacesn by n – 1 and swaps the
values ofotherandtarget, using the local variableswapfor that purpose);
and branch to the first instruction.

D5 •Add to the end of the routine instructions which terminate the routines’
execution only if the stack is empty, and otherwise: restore the values of
all local variables from the activation record at the top of the stack; also
from that record, obtain the call identification; branch to the appropriate
post-recursive-call label among those set inD3.

Taking advantage of invertible functions

================= STOPPED HERE ===============

16.8 GENERAL TREES

16.9 BACKTRACKING ALGORITHMS AND ALPHA-BETA SEARCH

16.10 APPENDIX: AVL TREES

16.11 APPENDIX: ITERATIVE HANOI
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start: l_n := l_n – 1
swap:= l_target; l_target:= l_other; l_other:= swap
gotostart

after_1: move( , )

l_n := l_n – 1
swap:= l_target; l_target:= l_other; l_other:= swap
gotostart

after_2: if not activations.is_emptythen
top := activations.item -- Top of stack
l_n := top.count; l_source: top.source;
l_target:= top.target; l.other:= top.other
call := top.call ; activations.remove
if  call = 1 then

gotoafter_1
else

gotoafter_2
end

end

end
-- Translation of routine return:

end

l_source l_target

activations.put (create HANOI_ACTIVATION_RECORD} .
( make(n, 2, source, other, target))

n := n – 1
swap:= l_source; l_source:= l_other; l_other:= swap
gotostart

a -- Noelse clause: the routine terminates when
-- (and only when) the stack is empty.
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16.12 KEY CONCEPTS LEARNED IN THIS CHAPTER

New vocabulary

16.13 FURTHER READING

The theory ofdenotational semantics, which provides a mathematical behind
recursive functions and more generally

16-E EXERCISES

16-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

16-E.2 Too much recursion?

Is thedefinition of “recursive definition” a recursive definition?

16-E.3 Binary search trees with repetitions

For every binary search tree routines in this chapter, rewrite the declaration (if
needed) to permit multiple occurrences of a givenitem value in a tree as
discussed after the initial definition.

16-E.4 Non-recursive insertion

Write a version ofput binary search trees using a loop rather than recursion.
(Hint : you may use for inspiration the non-recursive version of the search
functionhas.)

16-E.5 Properties of a function graph

(This exercise requires a mathematical analysis, not a programming solution.)
In the successive approximationsHi of the graph of the Towers of Hanoi
function, assuming three needles‘A’ , ‘B’ , ‘C’ :

Activation Activation record Call chain
Direct recursion Indirect recursion Instance (of a routine)
Non-creative Recursion Recursive
Recursive definition

← Page359.

← Page377.

← Page380.

← “The towers, bot-
tom-up”,  page 393.
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1 • What is the number of pairs inHi?

2 • Devise a formula

16-E.6 Programming a function graph bottom-up

1 • Devise a class of which every instance represents an arguments-result pair,
of the form[(n, s, t, o], <…>], for the the Towers of Hanoi functiongraph.

2 • Based on the preceding class, devise another to represent the function
graph as a whole.

3 • From this class and the rules [1] and [2] defining the function graph in the
bottom-up interpretation of recursion, write a program that produces the
i-th approximation of the graph,Hi, for any i. The algorithm may use
loops, but it may not use recursion.

4 • Use this program to print out sequences of moves (with source‘A’ and
target‘B’ ) ’ for a few values ofi; check that the results coincide with those
of the recursive procedures.

16-E.7 Bottom-up view of binary tree algorithms

Consider a recursive algorithm for binary tree traversal; you may choose
preorder, inorder or postorder.

1 • Taking inspiration from the bottom-upanalysis of the Towers of Hanoi
solution, devise a model to interpret the traversal as a function returning
a sequence of nodes.

2 • Write a recursive “definition” of this function.

3 • Express this “definition” as a fixpoint equation on the function graph,
usingTi as the name of the graph for binary trees of heighti.

4 • Use the definition to produce (either manually or by writing a small
program)H5 for theexample binary tree, and the resulting traveral order.

16-E.8 Transitive closure

[This exercise refers to a later chapter.] Restate thedefinition of transitive
closure as a recursive definition.

16-E.9 Matrix algebra on BNF productions

(This exercise requires a basic knowledge of linear algebra.)

← “The towers, bot-
tom-up”,  page 393.

← “The towers, bot-
tom-up”,  page 393.

← From the figure on
page370.

→ Page417.
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Consider a BNF production, such as the small example used in this chapter, or
more extensive ones from earlier chapters, involving only Concatenation and
Choice productions (no Repetition, which can however be replaced by
combinations of the other two).
1 • Treating concatenation of tokens as “multiplication” and alternative

choices as “addition”, show that it’s possible to express the grammar as a
matrix equationX = A ∗ X + B, whereX is the vector of nonterminals,A
is a matrix of terminals and nonterminals, andB a vector.

2 • Discuss ways of solving this equation by following the model discussed
for fixpoint equations.
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17

An elegant algorithm family:
Topological Sort

One of the pleasures of learning computer science is to discover beautiful
algorithms. In this chapter we explore an algorithm scheme with many
complementary benefits: it is useful in many practical situations; it has a simple
mathematical basis; it is particularly elegant; and it illustrates problem-solving
techniques that you will find applicable in many other contexts.

I won’t throw a ready-made answer at you; instead we’ll develop the
solution step by step from the description of the problem, starting with a
mathematical analysis and continuing with a search for data structures
ensuring both correctness and efficiency. We will not just devise an algorithm
but strive for a complete, properlyengineeredsolution that can satisfy
practical needs. At the end of the chapter, we’ll draw the lessons of this
example for both algorithm development and general software engineering.

17.1 THE PROBLEM

Today is for culture: you want to visit the Louvre and the Orsay museum, in
any order. Before visiting either you must get a map; you must also get a metro
pass because your old one expired yesterday, but you can’t get a pass until
you’ve gone to the bank or an Automatic Teller Machine to get some money.
We may express these constraints as

where[x, y] means “xmust occur beforey”; or we may represent them graphically

[Map, Louvre], [Map, Orsay], [Pass, Louvre], [Pass, Orsay], [Money, Pass]

Money Pass

Map

Louvre

Orsay

Ordering
constraints
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A topological sortof such a set of elements governed by ordering constraints
is an enumeration of all the elements in an order that respects the constraints.
Possible topological sorts in this exampleinclude

but , Map, Louvre, Orsay, for example, would be incorrect since
it violates the constraint[Money, Pass].

A topological sort problem may have:

• Several solutions, as here.

• Exactly one solution.

• No solution, as will be the case if — and only if — the constraints include
a cycle: a set of constraints of the form[e1, e2], [e2, e3], …, [en, e1] for
somen ≥ 1. If we add[Orsay, Money] to the example, creating such a
cycle, there can’t be any solution since the constraints require both that
Money occur beforeOrsay and the reverse.

If there’s more than one solution, the problem is to produceoneof them. In
practice, there’s often a cost function associated with any solution; then the
goal will be to produce the solution with minimal cost. We will see where, in
the algorithm, we can apply this criterion to choose between alternative
solutions. Another variant of the problem would be to produceall solutions.

Examples

The topological sort problem arises whenever we want to order a number of
elements in conformance to some ordering constraints. This is a frequent
problem; here are some examples.

• In a graphical display, consider a set of rectangles that partially overlap.
Some are “on top” of others, as illustrated. You need an algorithm that
will display the rectangles in a certain order respecting these constraints,
so that in the end the figure appears as intended. This is a topological sort
problem. In the illustrated example, the constraints are[B, A] , [D, A] ,
[D, C], [B, D], [E, C]; a possible solution is the orderB D E A C.

Money, Pass, Map, Louvre, Orsay
Money, Pass, Louvre, Map, Orsay
Money, Map, Pass, Louvre, Orsay

There are two more
possibilities

Pass, Money

Rectangles with
overlap
constraintsA C

D
B

E
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• When an industrial installation such as a power plant or an airplane
undergoesmaintenance, the schedule is determined from a set of tasks to
be performed and a set of ordering constraints between them; for example
structural work on an element must come before repainting it. A topological
sort yields a schedule of tasks compatible with these constraints.

• Another application occurs inproject management, especially software
project management. If the problem domain is technical, the project
should produce and maintain aglossaryof the technical terms involved.
(Misunderstandings between application area experts and software
developers are a prime source of errors and deficiencies in software
systems.) The definition of any of these terms may involve other terms
that have their own entries. The entries might appear in alphabetical
order, as in a dictionary, but it may also be useful to have a version of the
glossary that can be read in sequence, with the definition of any term
appearing before any definition that uses the term. Producing such a list
is a topological sort problem.

• You might want to see a list of thefeatures in an Eiffel classthat shows
the features not in the order listed (grouped, by default, into feature
categories) but in one that facilitates a sequential reading by guaranteeing
that no call to a feature occurs before the feature’s declaration.

Points in a plane

Another example provides a convenient visualization of the problem.
Consider points in a plane:

1 2 3 4

1

2

0

(0, 1)

(1, 2)

(3,0)

(4,2)

a

b

c

d A finite set of
points
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We introduce a relation by stating thatp1 p2 holds for any two pointsp1
of coordinates (x1, y1) andp2 of coordinates (x2, y2) if they satisfy all of:

• x1 ≤ x2

• y1 ≤ y2

• p1 ≠ p2 (the two points are not equal).

For the four points shown on the figure, the following hold:

A topological sort for this relation is any enumeration of the points which lists
p beforeq for any two points such thatp q. For our four points there are
three such enumerations:

which we may illustrate for the preceding figure:

On the other hand, the enumerationa, d, b, c is not compatible with the order
relation  since the propertyc d requiresc to appear befored.

a b a d b d c d

a, b, c, d
a, c, b, d
c, a, b, d

<< <<

<< << << <<

<<

1 2 3 4

1

2

0

a

b

c

d
Three
topological
sorts of a set
of points

<< <<
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17.2 THE BASIS FOR TOPOLOGICAL SORT

The problem discussed in this chapter has a terse mathematical formulation:

This definition is made possible by simple mathematical notions — relations
as sets, acyclic relation, order relation (total or not), which we’ll review now.

Binary relations

An example relation over the set{1, 2, 3} is

which we may call"<" since it represents “less than” (meaning that it contains
all the pairs[x, y], with a andb both in{1, 2, 3}, such thatx is less thany).

We may use relations to describe the earlier examples:

• A relationon_topover a set of rectangles, containing all rectangle pairs
[x, y] such that the display must show points ofx rather thany in any area
where they overlap.

• A relationbefore, the set of pairs{[ Map, Louvre], [Map, Orsay], …} ; it’s
a relation over the set{ Money, Pass, Map, Louvre, Orsay} , containing all
pairs[x, y] for which we want to express thatx must happen beforey.

• A relationused_inover a set of glossary terms, containing all pairs[x, y]
such that the definition of the termy uses the termx.

• A relationcalled_byover the features of a class, containing all pairs[x, y]
such that the body of featurey contains a call to featurex.

• A relation  over points, the set of pairs{[ a, b], [a, d], [b, d], [c, d]} .

Definition: The topological sort problem

Given an acyclic relationr on a finite set, find a total order relation of which
r is a subset.

Definition: Relation

A relation over a setA (short forbinary relation) — is a set of pairs of the
form [x, y] where both elements of the pair,x andy, are members ofA.

{[1, 2], [1, 3], [2, 3]}

<<



AN ELEGANT ALGORITHM FAMILY: TOPOLOGICAL SORT §17.2414

Acyclic relations

Our examples so far are allacyclic relations, a notion defined as follows:

with:

The relationbefore as given has no cycles:

Adding the pair[Orsay, Money] would create a cycle:Money, Pass, Orsay, Money.

To succeed, topological sort requires an acyclic relation, although we’ll
look for an algorithm that can partially process constraints involving a cycle.

If the underlying set is finite, acyclic relations have an important property,
crucial to the topological sort algorithm:

Definition: Acyclic relation

A relation isacyclic if it has no cycle.

Definition: Cycle in a relation

A cyclefor a relationr over a setA is a sequencex1, … xm (m≥ 1) of elements
of Asuch that all successive pairs[xi, xi+1] for 1≤ i < mbelong tor, andxm = x1.

No-Predecessor theorem

For any acyclic relationp over a non-empty finite setA, there exists an
elementx of A with no predecessors forp.

Money

Pass

Map

Louvre

Orsay

A relation
describing
ordering
constraints

Adding this link
would create a cycle
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relying on a notion of “predecessor”:

The proof of the No-Predecessor theorem is by contradiction. Assume the
theorem doesn’t hold; then every element inA has at least one predecessor. Let
x1 be some element inA (we may indeed find such anx1 since the theorem
assumesA to be non-empty). By the hypothesisx1 has at least one predecessor;
let’s pick one and call itx2. By the same reasonx2 also has at least one
predecessor, so we may again pickx3 such that[x3, x2] is in the relation.
Continuing this way gives an infinite sequence such that[xi+1, xi] belongs to
the relation for everyi ≥ 1. BecauseA is a finite set, the sequence has to repeat
elements: more precisely the elementsx1, x2, … xn+1, wheren is the number
of elements ofA, cannot all be different. In other words there must be integers
i andj, with 1 ≤ i < j ≤ n+1, such thatxi = xj. But thenxj, xj-1, … xi is a cycle
for the relation, which is impossible.

This is aconstructiveproof, which we’ll use directly in devising the
topological sort algorithm: to produce an enumeration of the elements, the
algorithm will pick, at every iteration, an element that has no predecessor in
the remaining order relation.

The condition thatA is finite is essential to the proof. The theorem doesn’t apply
to infinite sets; for example, the relation “less than or equal” on mathematical
integers is acyclic, but every element has a predecessor.

Order relations

The idea of topological sort is to embed a given acyclic relation in atotal order
relation. To define this notion we must first consider plainorder relations.

Such an order relation is also:

Definition: Predecessor

A predecessorof an elementy for a relationr is an elementx such that the
pair [x, y] belongs tor.

Definition: Order relation (strict, possibly partial)

A relation is anorder relation if it satisfies the following properties for any
elementsx, y, z of the underlying setX:
O1 • Irreflexive : the relation has no pair of the form[x, x].
O2 •Transitive: whenever the relation contains a pair[x, y] and a pair[y, z]

(whose first element is the same as the second element of the first pair),
it also contains the pair[x, z].
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O3 •Asymmetric: whenever it contains a pair[x, y], it doesnot contain the
pair [y, x]. (Proof: if it contained both, transitivity implies that it would
also contain[x, x], violating irreflexivity.)

The full name for order relations as defined above is:strict and possibly partial
order relation. Our order relations (also the “total” ones seen next) arestrict, in the
same sense that"<" denotes “strictly less than”. It’s also possible towork with the
nonstrict versions, such as"≤", less than or equal.

The relation"<" on{ 1, 2, 3} (or any other set of integers) is an order relation.
So is the relation on points. Our other acyclic relations —beforebetween
tasks,used_inbetween dictionary entries,called_bybetween features — are
irreflexive and asymmetric, but not necessarily transitive, so they are not order
relations; we’ll see next how to obtain transitive versions.

Order relations vs acyclic relations

Order relations are closely connected with acyclic relations. In one direction
the connection is quite clear:

The proof is by contradiction. Assume a cyclex1, x2, x3, … xmwherexm is the
same asx1. By transitivity (O2) this implies that[x1, x1] is also in the relation;
that’s impossible because of irreflexivity (O1).

This proof generalizes the earlier proof that asymmetry — the impossibility of
having both pairs[x, y] and[y, x] (O3) — follows fromO1 andO2. Such a case is
indeed a cycle with just two elements. Similarly, the pair[x, x], ruled out by
irreflexivity, would be a cycle with just one element.

There’s also an interesting property the other way around: thetransitive
closureof an acyclic relation is an order relation. Informally, the transitive
closure of a relation is a version of the relation made transitive by following
the original relation’s links as many times as possible.

Theorem: Acyclic and order relations (1)

Any order relation (and more generally any subset of an order relation) is acyclic.

→ See“TERMINOL-
OGY NOTE: ORDER
RELATIONS”,  17.7,
page450.Also,do exer-
cise17-E.3,page451to
explore the relationship
between strict and non-
strict versions.

<<
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This can be illustrated on the relationbeforeexpressing ordering
constraints between tasks. The relation is irreflexive, asymmetric and acyclic;
it is not transitive since it contains the pairs[Money, Pass] and[Pass, Louvre]
but not[Money, Louvre]. We can make such a relation transitive by adding all
pairs of the form[x, z] for which the original includes both[x, y] and[y, z] for
somey, repeatedly until there are no more pairs to be added. The result of this
process is the transitive closure of the original relation. In the example it adds
just two links:

For the relationcalled_bybetween features, the transitive closure is the
relation that holds betweenx andy if y calls x directly or indirectly. For a
relationchild among persons, denoting the set of pairs[x, y] such that person
x is a child ofy, the transitive closure is the relation connecting any two
personsx andy such thaty is a descendant, direct or indirect, ofx.

The transitive closure of a relationr is written r+, so we may state that
child+ = descendant. Here is a precise definition:

Transitive closure gives us the other side of the relation between acyclic
relations and order relations:

Definition: Transitive closure of a relation
The transitive closure r+ of a relation r over a setA is the relation
containing all pairs of the form[x1, xm] for some sequence of elements
x1, … xm (m≥ 1) such that all[xi, xi+1] pairs for1 ≤ i < mbelong tor.

Theorem: Acyclic and order relations (2)

The transitive closure of any acyclic relation is an order relation.

Money

Pass

Map

Louvre

Orsay

Transitive closure
of ordering
constraints

Links added
for transitivityOriginal links

←Exercise16-E.8,
page 406requests a
recursive variant of
this definition.
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Proof: the transitive closure of any relationr is obviously transitive, so all we
have to show is that it’s irreflexive for an acyclicr. Assume it isn’t. This means
there’s an elementx such that[x, x] belongs tor+ . By the definition of
transitive closure there must be a sequence of elementsx1, … xm (m≥ 1) such
that all[xi, xi+1] pairs for1 ≤ i < mbelong tor and that bothx1 andxmarex. But
this is a cycle forr, and hence impossible from the previous theorem.

This result shows that we may view an acyclic relation as the “germ” of
an order relation. Taking its transitive closure gives us a true order relation.
This corresponds to the intuition behind relations such asbeforebetween
tasks. If the constraints specify that taskMoneymust precedePass, and also
thatPassmust precedeLouvre, we naturally understand thatx must precedez;
in other words, we instinctively take the transitive closure. But when it comes
to preparing the input data for a scheduling program, or another program that
will perform a topological sort, we’ll want to list basic constraints only, not
their full transitive closure. That’s why topological sort can use an acyclic
relation as its input. (Many presentations of topological sort start from an order
relation, but that’s more specific than required.)

Computing a transitive closure is a computationally expensive operation,
but we don’t need to perform it explicitly for topological sorting; we will just
work from the acyclic relation.

Total orders

To describe the output of topological sorting we need aspecialization of the
notion of order relations:total order relations. For a finite set we may view a
total order simply as an enumeration of the underlying set’s elements, each
appearing once, such asMoney, Pass, Map, Louvre, Orsay; but the concept is
more general:

To understand conditionO4, note that we know from asymmetry (O3) that at
most one of the first two possibilities may hold, and from irreflexivity (O1)
that the last possibility is exclusive of the other two. Soat most oneof the three
may hold. What the new condition adds is that one of the threedoes hold.

Definition: total order relation (strict)

A total order is anorder relation that additionally is:
O4 •Total: for any a and b, one of the following holds:[a, b] is in the

relation;[b, a] is in the relation;a = b.

← Briefly encountered
in the study of recur-
sion: “Binary search
trees”,  page 377.

← Meaning a relation
that’s irreflexive(O1,
page 415) and transi-
tive (O2); it’s asymmet-
ric as a result(O3).
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The relation"<" on integers is also total. But not every
order is total. Our relations on points in a plane is an
order relation, as we have seen; but it is not total since
this would mean that for any two different pointsp1 and
p2 eitherp1 p2 or p2 p1 holds. That’s not the case
for the pair[a, c] since neithera c nor c a holds.
There is another counter-example, the pair[b, c].

Many total orders exist on this set of four points; in
fact, any enumeration of them — that is to say, any
ordered list that includes each of them exactly once —
yields a total ordert, defined as follows: the pair[p, q] is
in t if and only if p appears beforeq in the enumeration. For example the
enumeration[a, b, c, d] defines the total order

Conversely, any total order on a finite set defines a single enumeration.
Such a total order is a topological sort of the

original relation — in our example, the relation — if
and only if it is compatiblewith it, meaning that
wheneverp q the elementp appears beforeq in the
total order. We have seen that three total orders satisfy
this requirement for the example: expressed as
enumerations they area, b, c, d (expressed in[1] as a set
of pairs);a, c, b, d; andc, a, b, d.

What does “compatible” precisely mean? It’s
actually very simple thanks to our definition of relations
as sets of pairs. To say that a total order such as the
enumerationa, b, c, d, is compatible with a given
(acyclic) relation is simply to say that the set of pairs of that relation is asubset
of the total order’s set of pairs: every pair in the order relation is also a pair of
the total order relation. In our example the relation  is the set of pairs

and is indeed a subset of the set of pairs [1] of the total order. The subset property
expresses that whenever the given constraints specify a certain order between
two elements, the output of the algorithm must list these elements in that order.

This yields thedefinition of “topological sort”, stating simply that we
must find a total order of which the given order relation is a subset.

{[ a, b], [a, c], [a, d], [1]
[b, c], [b, d],

[c, d]}

{[ a, b], [a, d], [b, d], [c, d]} [2]

1 2 3 4

1

2

0

(0, 1)

(1, 2)

(3,0)

(4,2)

a

b

c

d

(Figure from page411.)

<<

<< <<
<< <<

→ The proof is exercise
17-E.3, page 451.

(Figure from page412.)
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<<

← Page413.
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Acyclic relations have a topological sort

The absence of cycles is clearly a necessary condition for the existence of a
topological sort (a total order that includes the original relation). What about
the other way around: if we have an acyclic relation, can we always produce a
topological sort — a total order that includes it?

The answer is yes:

To prove this theorem we may use the observation thatr ⊆ r+, wherer+ is the
transitive closure ofr, and the previously provedproperty thatr+ is an order
relation; it suffices to extendr+ to a total order relation. But another proof is
more interesting for our purposes. It is aconstructiveproof (relying on the No
Predecessor theorem) and will allow us directly to deduce an algorithm scheme.

This proof is by induction on the number of elementsn in the setA. If n = 0,
the set is empty; the only possible relation is the empty relation (the empty set
of pairs of elements ofA), which is a total order. This proves the base step.

If you prefer, you can use as base step the casen = 1, for which A consists of a
single elementx; even thoughA is not empty then, the only acyclic relation inA is
the empty relation again, since if a relation has at least one pair that pair must be
[x, x], which would create a cycle.

For the induction step assume that the theorem holds for sets ofn elements and
consider an acyclic relation on a setA of n + 1 elements. The figure gives the
idea of the proof:

Topological Sort theorem

For any acyclic relationr over a finite setA, there exists a total order relation
t overA such thatr ⊆ t.

← “Theorem:
Acyclicandorder relat
ions (2)”,  page 417.

→ See exercise17-E.5,
page 452.

Extending an
incomplete
topological sort

Pick an element
with no predecessor

On the other elements,
we already have
a total order

Extend the total order
by adding the new element
at the start

x

A’

2

3

1
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The No Predecessortheorem tells us thatA has at least one element
without predecessors. Letx be such an element. LetA’ be the set consisting of
all elements ofA exceptx, andr’ the relation onA’ consisting of all pairs ofr
except those involvingx. Clearly, r’ is an acyclic relation overA’. By the
induction hypothesis, sinceA’ hasn elements, there exists a total ordert’ over
A’ that is compatible withr’ (that is to say,r’ ⊆ t’ ). Now consider the relation
t overA consisting of the following pairs:

• All the pairs int’ .

• All pairs of the form[x, y] wherey is an element ofA’.

If you prefer to think of a total order as an enumeration, you may just viewt as the
enumeration of the elements ofA that starts withx and continues with the
enumeration of the elements ofA’ given byt’ .

It is easy to see thatt is a total order, and thatr ⊆ t; this gives us a total order
compatible withr, and proves the theorem.

The Topological Sort theorem is the mathematical justification for the
program that we are now going to build; better yet, its proof directly suggests
the algorithm’s basic idea.

17.3 PRACTICAL CONSIDERATIONS

With the theoretical basis clear, we can start looking for a software solution.
The core is a topological sortalgorithm, but first we must examine
performance constraints and define a software engineering framework.

Performance requirements

What can we expect to achieve in time and space complexity?

The inputs to the algorithm are a set of elements and a set of constraints.
Let n be the number of elements andm the number of constraints.

The algorithm must (in the case of an acyclic relation) perform:

• At least one operation for every constraint (since ignoring any single
constraint might make any particular output order wrong).

• At least one operation for every element, if only to add it to the output.

So the best time complexity that we may hope for isO (m + n).

What’s more surprising is that the topological algorithm developed below
actually achieves this theoretical ideal, both in time and in space.

← Page414.
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Class framework

A purely algorithmic solution would use a function of the form

with appropriate input types to represent the setselementsandconstraints
(corresponding to our earlierA and r). It’s better — as the remaining
development will progressively show — to use an object-oriented approach
with a classTOPOLOGICAL_SORTER, any instance of which represents an
instance of the topological sort problem. The data structures representing the
elements and constraints will be attributes of the class, set up through
initialization procedures such asrecord_elementand record_constraint.
Instead of a functiontopologically_sorted as above we’ll have:

• A procedureprocess which performs the topological sort process.

• A querysorted, returning a list of elements, as computed byprocess.

This framework gives us more flexibility, and will accommodate many useful
additional features.

Input and output

The sets of elementsA and constraintsr might come from many different
sources. For example we might have a file listing the constraints, one per line:

topologically_sorted(elements: …; constraints: …): LIST[…] is
-- Enumeration of the members ofelements,
-- in an order compatible with theconstraints

Map Louvre
Map Orsay
Pass Louvre
Pass Orsay
Money Pass (From the figure on page409.)

Money Pass

Map

Louvre

Orsay
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It may be useful to have a separate file listing all elements, or at least elements
not involved in any constraint (we can’t guess such elements from the
constraints, but they should still be part of the output).

In another setup, the input might have been entered interactively using a
program or a Web form. In examples such as ordering rectangles on a screen,
terms in a glossary or features of a class, the format will be again different.

To preserve generality we make our basic class generic: it becomes
TOPOLOGICAL_SORTER[G], where the parameterG represents the type of
the elements. Then the result of the querysorted— denoting the topologically
sorted list of elements computed byprocess—is of typeLIST [G]; the two
initialization procedures cited have signatures

Overall form of the algorithm

Consider an acyclic relationr over a set of elementsA; since we need program
names let’s assume — without prejudging its implementation choices — that
the classTOPOLOGICAL_SORTERhas them available through queries
constraintsand elements. The general scheme for the topological sort
algorithm in procedureprocessis:

Suitably refined, this form will work if we indeed start from an acyclic relation
(or, as a special case, an order relation).

The No Predecessor and Topological Sorttheorems give the justification,
which we should express through a loop invariant and variant (did the
spectacle of an invariant-less loop make you scream? — I hope it did):

record_element(e: G)
record_constraint(e, f: G)

from … until elements.is_emptyloop
“Let x be an element without predecessors for the constraints”
“Producex as the next element ofsorted”
“Removex from the set of elements”
“Remove all pairs starting withx from the set of constraints”

end

← Pages414and.420
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Cycles in the constraints

This version of the algorithm scheme is correct in principle but not suitable for
most real-life applications of topological sorting.

The problem is the precondition that assumesr to be an acyclic relation,
that is to say, devoid of any cycles. A topological sort program gets its input in
the form individual ordering constraints, for example[Map, Louvre],
[Map, Orsay] as above. Such input may have been prepared by humans, and
we can’t be sure that it’s error-free. (In industrial plant maintenance, there may
be thousands of tasks and tens of thousands of constraints between them.)

In the glossary example, we may hope that no set of two or more terms
all reference each other in their definitions (thereby creating a cycle), but we
have no way to enforce this rule on glossary authors. The expectation is in fact
the other way around: the glossary’s author will expect a program that can be
told: “Order these entries so that definition always comes before first use —
and by the way, if you find any mutually referential entries, tell me what they
are, so that I can improve the definitions”.

processis
-- Produce insortedan enumeration of the members ofelements,
-- in an order compatible withconstraints.

require
-- “constraintsdescribes an acyclic relation on elements”

do
from

create{ …} sorted.make

until
elements.is_empty

loop -- As before, except for explicit use of the result listsorted:
“Let x be a member ofelementswithout predecessors forconstraints”
sorted.extend(x)
“Removex from elements”
“Remove fromconstraintsall pairs starting withx”

end
ensure

-- “sorted is a topological sort ofelementsaccording toconstraints”
end

invariant
-- constraints describes an acyclic relation onelements

variant
elements.count



§17.3 PRACTICAL CONSIDERATIONS 425

Similarly, the task of ordering the features of a class so that declarations
appear before calls is impossible in the case of indirect recursion (direct
recursion is fine), even though this is not an error. It may still be interesting to
apply a topological sort algorithm to the non-cyclic part of the call graph, and
report any remaining cycles.

These considerations suggest thatprocessrenounce its above contract

for a more realistic one:

This is not enough yet, since the class should be able to report to its clients that
the input contains a cycle — and what elements are involved. One way to
provide this functionality would be through a boolean-valued function

or, more informatively, a function that returns the list of elements involved in
a cycle (void if and only ifhas_cycleis false). This is conceptually sound, but
not the best approach because it’s computationally too expensive. Finding
cycles — the job of a functionhas_cycle— is essentially as hard, in time and
space complexity, as topological sort proper; but if weattemptto do a
topological sort without the precondition, we may at little extra cost find the
cycles (the elements that violate the precondition).

require
-- “constraintsdescribes an acyclic relation on elements”

ensure
-- “sorted is a topological sort ofelementsaccording toconstraints”

-- (No precondition.)
ensure

-- “sorted is a topological sort, according toconstraints, of all the
-- members ofelements not involved in a cycle”

has_cycle: BOOLEANis
-- Is the relation represented byelements andconstraints
-- not acyclic?

do … end
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The No Predecessor theorem tells us indeed how we can find cycles as a
side bonus of a topological sort process:
• As shown in the loop above, we look at each stage, as long as the set of

elements is not empty, for an element without predecessors.
• The theorem indicates that if the relation is acyclic we’ll always find such

an element.
• If we cannotfind an element that has no predecessors and the setelements

is not empty, we know — from the theorem — that the remaining
elements are all involved in at least one cycle. We can terminate the
algorithm and report that a full topological sort is impossible. This is a
graceful form of termination, since we will have topologically sorted the
elements that are not in cycles, and will be able (from the remaining
elementsandconstraints) to report to the client which elements and
constraints cause the problem.

In this scheme, used in the rest of this chapter, the topological sort routine has
no precondition and the loop invariant, instead of

gets simplified to:

with the consequences that

and

This is the basis we should retain. As a consequence, we can’t any more use
the loop exit conditionelements.is_emptyas above, since a non-empty
elements no longer guarantees that we may correctly execute the instruction

As new exit condition, we’ll simply have

whose negation — there is at least an element without predecessors —
guarantees that the loop body can find the next candidate element for output.

-- “constraintsdescribes an acyclic relation on elements”

-- constraints describes a subset of the original relation onelements

-- Any cycle inconstraints was present in the original relation

-- constraints describes an acyclic relation if the original was acyclic

“Let x be a member ofelementswithout predecessors forconstraints”

“No member ofelements is without predecessors forconstraints”
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Overall class organization

We can now define the overall form of the class that will serve as the
framework for the solution:

class
TOPOLOGICAL_SORTER[G –> HASHABLE]

feature { NONE} -- Internal data structures

… See next sections…
feature -- Initialization

record_element(a: G) is
-- Includea in the set of elements.

require
not_sorted:not done

do
… See next sections…

end

record_constraint(a, b: G) is
-- Include [a, b] in the constraints
require

not_sorted:not done
do

… See next sections…
end

feature -- Status report

done: BOOLEAN
-- Has topological sort been performed?

feature -- Element change

processis
-- Perform a topological sort over all applicable elements.
-- Results accessible throughsorted, cycle_foundandcyclists.

require
not_sorted:not done

do
… Seenext sections…

ensure
sorted: done

end

→ The routine body
appears on page430
(revised, page440).
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The feature clauses have been listed in an order facilitating sequential reading
rather than the recommended standard order, which a final version should respect.

The class is generic; the generic parameterG represents the type of elements.
At this stage of the discussion, the elements can be of an arbitrary type; the
reason for constrainingG by HASHABLEwill emerge as wedevise the proper
data structures.

The algorithm will rely on internal data structures, which we’ll devise in
the next sections; the corresponding features do not need to be available to
clients, so they will all be declared underfeature { NONE} .

Onceprocesshas done its job, it will make its results available to clients
through several related queries:

• The booleandone— false after initialization — enabling clients to find
out whether a topological sort has indeed been performed.

• The listsorted, giving an order compatible with the constraints for those
elements that don’t participate in a cycle.

feature -- Access

cycle_found: BOOLEAN
-- Did the original constraint imply a cycle?

cyclists: LIST[G]
-- Elements involved in any cycle

sorted: LIST[G]
-- List, in an order respecting the constraints, of all
-- the elements that can ordered in that way

feature -- Status setting

resetis
-- Allow further updates of the elements and constraints.
do

done:= False
cycle_found :=False; cyclists :=Void ; processed_count := 0

ensure
fresh:not done

end

invariant
elements_exist: elements/= Void
constraints_exist: constraints/= Void
cyclists_only_if_cycle: doneimplies (cycle_found= (cyclists/= Void))

end

→ “Numberingtheele-
ments”,  page 435.
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• The booleancycle_found, to indicate whether any elements were
determined to participate in one or more cycles.

• The list of all these cycle-involved elements, which we accordingly call
cyclists. The invariant clausecyclists_only_if_cycletells us that it’s
meaningful only ifcycle_found is true.

So a typical use of the class by a client wishing to perform a topological sort is:

It would be desirable for consistency to equip the queriessorted, cycle_found
andcyclists with the preconditiondone, but we omit it for the moment.

There is, however, a preconditionnot done for the initialization
proceduresrecord_elementand record_constraint, as well as for the
topological sort procedureprocesswhich has the postconditiondone. This
enforces the rule that as a client you should first set up the elements and
constraints, then callprocess. As a result, it’s an error to callprocessseveral
times in succession on the same class instance; since the constraints won’t
have changed, this would make no sense (although you may of course reuse
the query results as many times as you wish). The procedureresetis there in
case you explicitly want to add elements and constraints after a call toprocess,
in preparation for a new call toprocess.

Procedureresetsimply setsdoneto false, without clearing the previous
elements and constraints. We might add a procedureforgetthat callsresetand
clears all data structures. But it’s just as reasonable to assume that, in this case,
the client will create a new instance ofTOPOLOGICAL_SORTER.

your_structure: TOPOLOGICAL_SORTER[YOUR_ELEMENT_TYPE]
…
createyour_structure

… Calls of the formyour_structure.record_element(x) to record elements
… andyour_structure.record_constraint(x, y) to record constraints…
your_structure.process

-- The topologically sorted elements are now available,
-- in the correct order, asyour_structure.sorted.

if your_structure.cycle_foundthen
-- The elements involved in cycles are now available
-- throughyour_structure.cyclists…

end
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17.4 BASIC ALGORITHM

We can now start to provide a full implementation of the key part of the
solution, procedureprocess.

The loop

We already had a general algorithm forprocess; adapted in light of all
subsequent observations (loosening the invariant, using the featuresorted
which represents the result inTOPOLOGICAL_SORTER), it reduces to this:

All that remains — don’t rejoice too soon, major decisions still lie ahead —
is to refine the pseudocode elements into actual program text. The final part
(reporting cycles) will be a straightforward consequence of the rest; this
leaves the four highlighted operations, in fact just three since we can treat
the first two (finding out if there’s an element without predecessors, and if so
get one such element) as a single operation. They will be the focus of our
search for a good algorithm:

from
create{ …} sorted.make

until

loop

sorted.extend(x)

end

if “Any elements remain”then -- Report cycle:
cycle_found:= True
“Insert these elements intocyclist”

end

Topological sort: the basic operations

T1 • Find an element without predecessors — or report there isn’t any.
T2 • Given an elementx, remove it from the set of elements.
T3 • Given an elementx, remove from the set of constraints all that start

with it (that is to say, all pairs of the form[x, y] for somey).

← Page424.

“No element is without predecessors”

“Let x be an element without predecessors”

“Removex from the set of elements”
“Remove all constraints starting withx”
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We must find a representation for the elements and constraints that makes
these operations as efficient as possible. The data structures will go in as secret
features in thesection reserved for that purpose in the classtext.

That class sketch left two other routine bodies unfilled:add_elementand
add_constraint. We’ll need to complete them based on the data structures that
we’ll have devised.

A “natural” choice of data structures

For our first attempt at data structures it is natural to choose a representation
that directly models the problem’s input as it comes to us. (One thing you may
have already learned about programming is to become suspicious when you
hear a solution presented asnatural. What’s natural to me may not be natural
to you; and what’s natural to you and me may turn out to be silly.)

We most likely get our data as a list of elements and a list of constraints.
We can use attributes that directly reflect that structure (declared secret, as all
data structures that follow, by appearing, in theclasstext, in a section of the
the form feature { NONE} -- Internal data structures):

In our example the data structures will look like this:

assuming for convenience that we have assigned numbers to the example’s
elements, as follows:

elements: LINKED_LIST[G]
constraints: LINKED_LIST[TUPLE[G, G]]

← Thefeature
{NONE} clause on
page427.

←Page427.
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constraints
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Numbering the
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figure on page
409.)
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Performance analysis of the natural solution

Can we implement what we need — the operationsT1, T2, T3 and the
proceduresrecord_elementandrecord_constraint— with this representation,
and if so what is the time and space cost?

The twoproceduresarestraightforward.Forexamplerecord_constraint(x, y)
will just perform

adding the tuple[x, y] at the end of the list of constraints. Similarly,
record_element(x) will perform elements.extend(x).

We must make sure thatconstraintsand elementsare non-void for such
instructions; the correspondingcreate instructions may either appear in a
default_createfor the class, or be performed on demand on first need. This will
also apply to other similar data structures introduced below.

We can also use this representation to perform the other operations; let’s
examine the cost:

• To find if there’s an element without predecessors (T1), we can traverse
the list of constraintsand count predecessors, then traverse the list of
elements to find those for which the count is zero; but the first part is an
O (m) operation and the secondO (n). If we do this at every step, the total
cost isO (m ∗ n + n2).

• Removing an element (T2) can be as bad asO (n) each time (meaning
O (n2) for the whole process) with a linked list, although we could bring
it down toO (1) (O (n) total) through simple data structure adaptation.

• Removing a set of constraints (T3) can again be as bad asO (m) each
time, meaningO (m∗ n) altogether, if all we have to represent constraints
is the global listconstraints, which doesn’t enable us to find all the
constraints starting with a givenx without traversing the whole structure.

Anything that’sO (m ∗ n) or O (n2) is really bad. In particular, we may in a
practical application expect most elements to be involved in at least one
constraint — often many more in the average, e.g. ten or so in a typical
scheduling problem —, so thatm > n, implying thatO (m ∗ n) is worse than
O (n2). Anything that’s inn2, growing like the square of the number of
elements, will be out of reach for large practical applications, as the number
of elements may be quite large.

So with this first choice of data structures we do have a solution, but
performance-wise it doesn’t scale up to large practical problems.

constraints.extend([x, y])
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Duplicating the information

Fortunately we can do better than the “natural” solution. The observation is
that we don’t have to be lazy and use the data structures as they’re given to us.
The listselementsandconstraints, express the data in a form that directly
mirrors how things look to the external world, for example to the person who
inputs a set of tasks and a set of associated constraints. What’s clear and
“natural” to describe the input to the outside world is not necessarily the best
form for analgorithmthat will process the data for a specific purpose. Rather
than following the original form blindly, the algorithm may start with an
initialization phase that turns it into the format best suited to that processing.

The following data structures help make the job of topological sort —
tasksT1 to T3 — convenient and fast:

Here’s how they will initially look for our working example:

This expresses the constraints between
elements, repeated on the side figure. For
example the explanation for the entries of
index 1 and 2 is that task 1 (Map) has no
predecessor and the successors 2 and 4 (Louvre
andOrsay), and that element 2 (Louvre) has
two predecessors and no successors.

successors: ARRAY[LINKED_LIST[INTEGER]]
-- Indexed by element numbers; for each elementx, gives the list of
-- its successors: the elementsy such that there is a constraint [x, y].

predecessor_count: ARRAY[INTEGER]
-- Indexed by element numbers; for each, says how many
-- predecessors the element has.
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What ’s interest ing in th is representat ion is that the array
predecessor_countis conceptually redundant: we could always reconstruct the
information it provides by exploring the arraysuccessors, which includes all
there is to know about the constraints. But there’s nothing wrong with storing
information in two (or more) different ways if — as we’re going to see — it
brings us a significant improvement in computation time.

Suchspace-time tradeoffsare a key ingredient of good algorithm
design. Of course the tradeoff has to be acceptable. Here our goal is to have
O (m+ n) time complexity. In space complexity,successorsis O (m+ n) (one
array entry per element, one tuple and reference per constraint); adding the
O (n) arraypredecessor_countdoesn’t change the picture.

The original data structures,elementsandconstraints, already took up
O (m + n) space.

Spicing up the class invariant

It is convenient for clarity to add a query

which we can make public. It is also useful, if only for readability, to add the
following invariant clauses, the last two expressed informally:

count: INTEGER
-- Number of elements

elements.count= count
predecessor_count.count= count
successors.count= count

-- For everyi in 1..count: predecessor_count[i] is the number of
-- predecessors ofi according to the constraints.

-- For everyi in 1..count: successors[i] contains all the successors
-- of i as implied by the constraints, or is void ifi has no such successors.
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Numbering the elements

To use an array we need to associate an integer with every element. I sneakily
introduced this convention awhi le ago but now it’s not just a useful
convention; it’s required by our choice of data structures.

Does this mean that we should renounce the generic parameterG of our
classTOPOLOGICAL_SORTER[G] since all manipulations of elements will
now use their integer numbers? Absolutely not. It’s still necessary, for
expressiveness, to have a mechanism applicable to elements of any type. All
we need in practice is a hash table and an array

The integerindex_of_element[e] will be the numberx assigned to an element
e, of typeG. Thenelement_of_index[x] will be e.

Both of these usebracketnotation:index_of_element[e] is the item of keye in the
hash table, andelement_of_index[i] is the item of indexi in the array.

Subject to a proper implementation of hash tables, these structures are both
O (n) in space.

To define a hash table of elements of typeG requires thatG conform
(through inheritance) to classHASHABLE. This wastaken care of by
declaring the class asTOPOLOGICAL_SORTER[G –> HASHABLE].

TOPOLOGICAL_SORTERwill not export index_of_elementand
element_of_index, since these features are for implementation only; but we
must enable clients to find out if a certain element is part of the problem, and
hence export the following query:

index_of_element: HASH_TABLE[INTEGER, G]
-- For every element, gives its index

element_of_index: ARRAY[G]
-- For every assigned index, gives the associated element

←“A “natural” choice
of data structures”,
page 431.

←“Br acket notation
and assigner com-
mands”,  page 261.
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It’s worthwhile to make sure you understand the postcondition.

Let’s see how our new data structures help reach the goal ofO (m + n) time.
Two aspects are now involved: operationsT1 to T3, but also initializing the
data structurespredecessor_countandsuccessors. Both are equally relevant:
it wouldn’t help to haveO (m + n) for the core of the algorithm (the loop
iterating operationsT1 to T3) if the initialization took — say —O (m ∗ n).

It doesn’t seem too hard to initialize the data structures inO (m + n):
process all constraints in sequence; for every constraint[x, y], increment they
entry in the arraypredecessor_count, and inserty into the listsuccessors[x]. Both
of these operations areO (1), so applying them to all constraints isO (m + n).
We’ll need tospellout the details, but for now let’s indeed assumeO (m + n)
initialization and concentrate onT1 to T3, the core operations of the algorithm.

Basic operations

Let’s start withT3: “given an elementx, remove all constraints of the form
[x, y] for anyy”. If we know the number forx, this is straightforward:

L1 • We won’t need the list of successors ofxany more. We could make it void
throughsuccessors[x] := Void. In practice, this is not necessary, as the
algorithm will simply never visit the entryx of successorsany more. But
even if we had to perform this operation it would beO (1) — meaning
O (n) globally if we apply it to all elements. Good!

L2 • We must also update any relevant entry in the arraypredecessor_count.
The effect on this array of “removing all constraints[x, y]” for given x
means that we must decreasepredecessor_count[ y] by 1 for every
successory of x. So it suffices to traverse the listsuccessors[i] (before
you set it to void, of course, if you do want to do that), and for each
element encountered decrease the corresponding entry in
predecessor_count. This is a straightforward loop, whose code appears
below. This process will be doneat most once, in the entire processing,
for each constraint in the system. So it isO (m). Good again!

has_element(e: G): BOOLEANis
-- Is e one of the elements to be topologically sorted?

do
Result:= index_of_element.has(e)

ensure
consistent:Result= (index_of_element.has(e) and then

index_of_element[e] >= 1 and then
index_of_element[e] <= element_of_index.countand then
element_of_index[index_of_element[e]] =  e)

end

→ Exercise17-E.6,
page 452.

→ “Initializations and
their time perfor-
mance”,  page 442.

→ Innermost loop on
page440.
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T3, then, isO (m + n) at worst.
All the processing just described is there to maintain theinvariantclauses

expressing that the arraypredecessor_countand the array of listssuccessors
faithfully reflect the structure of the remaining constraint relation.

T2 is “given an elementx, remove it from the set of elements”. In fact,
with our new data structures, we don’t really need to do anything here. The
information that really matters affects theconstraintsstarting withx, and
we’ve just taken care of these. Definitely good.

There remainsT1, “ find an element without predecessors — or report
there isn’t any”. It suffices to traverse the arraypredecessor_countand look
for zero values. But this isO (n) meaning, overall,O (n2). Not good!

We are still missing one — our last — data structure.

The candidates

We won’ t avoid oneO (n) traversal of the arraypredecessor_countupon
initialization — thefrom clause of our main loop — to find out the initial
“candidates” for immediate output: elements without predecessors in the
original relation. Unlesseveryelement is involved in some cycle, a rather
inauspicious initial situation for an attempt at even partial topological sorting,
we’ll find one or morex for which predecessor_count[x] is initially 0. This
requiresO (n), as noted, but payingO (n) once is not a problem.

After that we won’t ever need to traverse the arraypredecessor_countto
look for new candidates. It suffices to notice that the operation labeledL2
above, which decrements one or more entries of the arraypredecessor_count,
is theonly one that can make an entry of the array zero if it wasn’t zero
initially. So we’ll just extend the operation so that it watches for entries that
become zero. Assuming it was written

we replace it by

-- Decrease they entry ofpredecessor_count by one:
predecessor_count[y] := predecessor_count[y] – 1

-- Decrease they entry ofpredecessor_count by one
-- and check if this makesy an element without predecessors:

predecessor_count[y] := predecessor_count[y] – 1 [3]
if predecessor_count[y] = 0 then

“Record thaty is now without predecessors”
end

← As introduced on
page434.

→ In procedure
find_initial_candidates,
page441.
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To “Record thatan elementis without predecessors” it suffices to add it to a
structurecandidateswhich will, after initialization and each iteration of the
loop, contain all elements, not yet processed, that have no predecessor. What
concrete date structure should we use forcandidates? For the topological sort
algorithm the precise choice doesn’t matter as long as the structure supports
the followingfive features:

The general name for such a structure isdispenser, by analogy with a machine
into which you may deposit elements (put) and also, by pressing a button,
getting a previously deposited element (itemandremove), assuming there is
still at least one (not is_empty):

feature -- Access

item: G
-- An element previously inserted

require
not_empty:not is_empty

feature -- Measurement

count: INTEGER
-- Number of elements

ensure
non_negative: Result>= 0

feature -- Status report

is_empty: BOOLEAN
-- Is there no element?

ensure
definition: Result= (count= 0)

feature -- Element change

put (x: G)
-- Insertx.

ensure
one_more: count= old count +1

remove: G
-- Remove the element given byitem.

require
not_empty:not is_empty

ensure
one_fewer: count= old count –1

count is there for com-
pleteness, but we won’t
actually need it.
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Unlike with an array or list, you don’t choose the element to get and remove:
the dispenser chooses for you. A stack is a dispenser, with a LIFO behavior
(you get the element most recently deposited); a queue is also a dispenser, with
a FIFO behavior (you get the oldest not yet removed element). There are many
other possible policies.

For topological sort, any dispenser will do the job. Choosing a particular
kind affects the actual order — among those compatible with the constraining
relation — in which the algorithm outputs elements. This is the key lever that
you canapply to select a specific policy, for example to ensure that the result
will optimize a certain criterion. It’s also the reason for describing topological
sorting as an algorithmfamily rather than a single algorithm.

We’ll declare the candidate dispenser as

An implementation ofSTACKor QUEUEwould also do; a “priority queue” is
a more general kind of dispenser where every element may be given a priority,
with the rule thatitem yields (andremovetakes away) the element with the
highest priority.STACKandQUEUEare the special cases of priorities set as
an increasing and decreasing function of the order of insertions. A general
PRIORITY_QUEUEallows you, by playing with the priorities, to set the
selection policy that you wish.

candidates: PRIORITY_QUEUE[INTEGER]
-- Elements without predecessors, ready to be released

-- Additional clause for the invariant:
-- For every itemx of candidates, predecessor_count[x] = 0

A dispenser

(Insert picture of piggybank)

→ As explored in exer-
cise“Parameterizing
topological sort”,
17-E.9, page 452
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The loop, final form

We may now write themainloop of the topological sort algorithm — the body
of the procedureprocess— with all its details. The pseudocode instructions of
the previous version have been left as comments (inred) for comparison. The
routine must declare local variablesx and y of type INTEGERand
x_successorsof type LIST [ INTEGER] , recording the successors of a
particular element. We also add an integer variableprocessed_count— used
next — to keep track of how many elements we have processed.

from
createsorted.make

-- See next
invariant

-- “The data structures represent a subset of the original elements,
-- and the corresponding subset of the original relation”

until

loop
-- “Let x be a member ofelementswith no
-- predecessor forconstraints”

x :=  ;

sorted.extend(element_of_index [x])

-- “Removex from elements and
-- all pairs starting withx from constraints”

x_successors:= successors[x] -- A list
from  x_successors.start until  x_successors.after loop

y := x_successors.item

-- Next few lines are from[3], page437:
predecessor_count[y] := predecessor_count[y] – 1
if predecessor_count[y] = 0 then

-- “Record thaty is now without predecessors”

end

x_successors.forth
end
processed_count:= processed_count + 1

variant
count – processed_count

end
report_cycles -- See next
done :=True

← The basic form
appeared on page430.
For the context, includ-
ing procedureprocess,
see page427.

find_initial_candidates

candidates.is_empty

candidates.item candidates.remove

candidates.put (y)
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This algorithm assumes that the arrayspredecessor_countandsuccessors

have been properly set up, as must be the case before any call toprocess.The

details of the initializations are comingnext.

Operations oncandidatesare highlighted to emphasize how critical this

structure has now become to the algorithm.

The procedurefind_initial_candidatesmust set up thecandidates

dispenser with the elements initially without predecessors. It’s straightforward:

This is theO (n) traversal that withoutcandidateswewouldhavehad to perform

at each step of the loop; now we just do it once at the beginning. It’s not an error

for the procedure to findnoelements satisfyingpredecessor_count[x] = 0, but

will simply result in an emptycandidatesstructure, causing the loop to terminate

immediately, as every element is involved in a cycle.

Procedureprocessmust do one more thing after the loop: set up the

information enabling a client to find out about any cycles in the input. This is

the task of procedurereport_cycles. To implement it, we note that the loop

terminates when there are no more elements incandidates; if the original

relation was acyclic we will have processed all elements, so we use

processed_count to find out whether there’s any left:

find_initial_candidatesis
-- Insert intocandidates any elements without predecessors.

local
x: INTEGER

do
if  candidates= Void then create candidatesend
from  x := 1 until  x > countloop

if  predecessor_count[x] = 0 then
candidates.put (x)

end
x := x + 1

end
end

→ “Initializations and
theirtimeperformance”,
page 442 below.

←Asnotedat theendof
“ Basic operations”,
page437.



AN ELEGANT ALGORITHM FAMILY: TOPOLOGICAL SORT §17.4442

Initializations and their time performance

We now have an efficient —O (m + n) — implementation of the core of the
topological sort loop, thanks to three data structures chosen directly to fit its
needs: the arrayspredecessor_countand successors, and the dispenser
candidates. To complete the job we must spell out their initialization, making
sure we don’t exceed the performance constraints.

The initialization will have to perform:

• record_element(e) for every element:n times altogether.

• record_constraint(e, f) for every constraint:m times altogether.

The job ofrecord_element(e) is to assign a number
to e, so that the rest of the processing can deal with
integers, rather than actual elements ofG. This is
done by fi l l ing in twin entries in the array
e lement_o f_ index and the hash tab le
index_of_element:

report_cyclesis
-- Make information about cycles available to clients.

do
if processed_count< countthen

-- There was a cycle in the original relation!
cycle_found:= True
create{ LINKED_LIST[G]}  cyclists.make
from x := 1 until x > countloop

if predecessor_count[x] /= 0 then
-- x was involved in a cycle

cyclists.extend(element_of_index [x])
x := x + 1

end
end

end

(From the figure on page435.)
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The initial test ensures that the procedure ignores a second attempt to insert a given
element. This policy allowsrecord_constraint(e, f) to start by calling
record_elementon bothe and f just to make sure the elements are properly
inserted. Anexercise asks you for a way to to avoid the duplication of work
betweenhas_element andextend.

With appropriate implementations ofextendand force, the code of
record_elementis O (1); executed for all elements, it will contributeO (n) to
the algorithm. This is in line with our requirements.

The remaining initialization mechanism is the procedure for entering
constraints. A call torecord_constraint(e, f) must increase by 1 the number of
predecessors off in the arraypredecessor_count, and addf to the list of
successors ofe. That list is one of the entries of the arraysuccessors:

record_element(e: G) is
-- Add e to the set of elements, unless already present.

require
not_sorted:not done

do
if not has_element(e) then

count:= count + 1

index_of_element.extend(count, e)
element_of_index.force (e, count)

-- extend andforceexpand the structures if necessary; this means
--we don’t need to know the number of elements in advance.
end

ensure
inserted:has_element (e)
one_more:not (old has_element(e)) implies (count =old count+ 1)

end

→ Exercise17-E.7,
page 452.

Adding a
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The routine will read:

with an auxiliary procedure (which doesn’t need to be exported):

record_constraint(e, f : G) is
-- Add the constraint [e, f ].

require
not_sorted:not done
exist: e /= Voidand f /= Void

local
x, y: INTEGER

do
-- Ensuree and fare inserted (no effect if they already were):

record_element(e); record_element(f)

x := index_of_element[e]
y := index_of_element[f ]
predecessor_count[y] := predecessor_count[y] + 1
add_successor(x, y)

ensure
both_there:has_element(e) and has_element(f)

end

add_successor(x, y: INTEGER) is
-- Recordy as successor ofx.

require
1 <=x ; x <= count
1 <=y ; y <= count

local
x_successors: LINKED_LIST[INTEGER]

do
x _successors:= successors[x]

-- The successor list forx may not have been created yet:
if  x_successors= Void then

create x_successors.make
successors[x] := x_successors

end

x_successors.extend(y)
end
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As suggested earlier,record_constraintsstarts by callingrecord_elementon
the constraint’s two elements; because of the way we’ve designed
record_element, this has no effect if they were already there. This policy
makes it possible for a client application to start from just a list of constraints,
never having to callrecord_elements explicitly.

We cannot, however, assume this will always be the case and remove
record_elementfrom the public interface of the class. An instance of the problem
may, as noted, include elements that are not involved in any constraint but should
still be listed as part of the output. In such a setup, the input must include, separate
from the list of constraints, a list of elements.

On the subject of duplication, the procedurerecord_constraintdoes not
attempt to determine if a constraint has already been entered. Indeed, as you
are invited to check, our topological sort algorithm will work as expected if a
constraint appears twice. This may well happen with manually entered data
and the algorithm doesn’t consider it an error. (There’s nothing contradictory
in saying twice “e must come beforef ”.) To apply a different policy is the
responsibility of the client application, as part of input validation.

Now what about efficiency? The code for each of the two auxiliary
procedures isO (1): one array access plus, in the second case, insertion at the
end of a list (with a good implementation ensuring that the list cursor stays at
the end) and, once for each applicable element, an object creation. As a result
record_constraintas a whole isO (1); as it’s executed once for each constraint,
its contribution to the algorithm isO (m). We have achieved our goal of
O (m + n) time for the initialization as well as the main part of the algorithm.

Putting everything together

You have now seen all the program elements needed to implement topological
sort. A class built directly from this discussion is available in EiffelBase and
used in Traffic, but I suggest that independently of this existing
implementation you check your understanding of the concepts by writing a
class that brings them all together:

Make sure to engineer the solution properly by providing not just the
algorithm but also the initialization procedures (record_element,
record_constraint).

To test your solution, you will find at the URL for this course a file listing
a few hundred example constraints, and all its possible topological sorts.

Programming time!
Usable implementation of topological sort

Frpm the elements of this chapter, write a classTOPOLOGICAL_SORTER
providing a general, usable implementation of topological sort.

→ Exercises17-E.8,
page 452 and17-E.9,
page 452.
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17.5 LESSONS

The topological sort algorithm has important consequences to teach us for
both algorithm design and software engineering.

Interpretation vs compilation

In processing programs — written in some programming languageS — for
execution on a computer, two general styles of solution exist:

• Interpretation: write a program, called aninterpreter , that can directly
execute an arbitrarySprogram applied to an arbitrary input.

• Compilation: write a program, called acompiler, that transforms anyS
program into a program with equivalent semantics expressed in a target
languageT. If T is machine language for the desired platform, the result
can be directly executed.

The two styles are often combined in practical language implementations. In
particular the targetT of a compiler doesn’t have to be machine language,
although it should becloserto machine language thanS. ThenT programs can
be executed through direct interpretation, or through further compilation.

These concepts generalize to many application domains other than
programming language processing. To perform a certain processing on certain
input, we may use data structures that directly mirror the input; or we may
proceed in two steps:

• Compilation: transform the data into a form more suitable for the
algorithm’s needs.

• Interpretation: apply the needed operations to the resulting structure.

Interpretation
and
compilation of
programs

S program

Data

S
interpreter

(input, output)
T program

S
compiler
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This technique (which, as for language processing, may in the general case
involve several iterations of the process) is exactly what we have applied for
topological sort. Wefirst looked at an “interpretive” solution using the
seemingly natural data structures, directly deduced from the statement of the
problem; but they turned out to yield bad performance for topological sorting.
“Compiling” them into a representation directly tailored to our goals led to a
solution with excellent performance.

In such a two-step solution, the “compilation” step, which initializes the
data structures, may be as delicate to devise as the actual processing based on
its results, and it may account for as much time, sometimes more. That’s OK
as long as the overall performance meets your goals — but of course you must
not jump to conclusions about performance until you have taken into
consideration the initialization as well as the later processing.

The approach can be summed up as aheuristics— a general strategy, similar
to a “design pattern” but of a more abstract nature, that is known to help devise
good solutions in suitable cases:

Touch of Heuristics:
Compile the data first!

Good algorithms are often obtained through a two-step strategy where:
• The first step turns the input, from its given form, into an internal data

structures carefully devised to suit the algorithms’ goals.
• The second step processes the resulting form to attain these goals.

← “A “natural” choice
of data structures”,
page 431.

“Interpretation”
and “compilation”
of data

Original

Initiali-

data

zation

“Compiled”
form

Main
algorithm

(“interpreter”)
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Time-space tradeoffs

Closely tied to the “Compile the data first!” heuristics is the observation that
the ideal data structure — the one best suited to the needs of the second step
— is often not the most economical representation possible for the underlying
information. In the example,information about constraints may end up being
reflected inthreedifferent parts of the data structure: a constraint[x, y] causes
y to appear in the list ofx’s successors in the arraysuccessors; it adds one to
predecessor_count[y]; and the absence of any such constraint for a giveny
leads to insertingy into candidates. Such replication sacrifices some space to
ensure a considerable gain in execution time. Tradeoffs of this kind,
sometimes going the other way, are one the keys to efficient algorithm design.

Algorithms vs systems and components

It is possible to give a description of topological sort that ignores many of the
aspects studied in this chapter, concentrating only on the final algorithm. For
a usable solution, however, one must take into account the practical needs of
applications. The object-oriented approach plays a key role in enabling us to
meet this goal: instead of writing a “topological sort program” we have devised
a class, TOPOLOGICAL_SORTER. An instance of this class describes an
instance of the topological sort problem, equipped with not only the algorithm
(procedureprocess) but also with all the apparatus allowing clients to:

• Set up the problem instance, by recording elements and constraints in a
convenient way.

• Apply processto produce a topological sort of the applicable elements,
satisfying the constraints.

• Query the resulting state, to discover whether any cycles were found, and
if so what elements they involve.

The difference between this approach and a mere algorithm is part of the
difference betweensoftware engineeringand mere programming. In
software engineering it is not enough to devise clever algorithmic solutions
and the associated data structures; the goal is to providesolutionsthat can be
integrated into successful systems.

The really desirable goal is to make these solutionsreusable, so that they
are not just “design patterns”, which programmers can integrate into their
systems by buying and reading books (especially excellent books such as the
present one), butcomponentsthat can be made available, once and for all, for
reuse directly off the shelf.

You will also have noted how, in this process, thecontracts enable us at
each step to know exactly what we are doing — what we expect, what we
guarantee and what we maintain.

← For the terminology
see“Information and
data”,  page 10.
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17.6 KEY CONCEPTS LEARNED IN THIS CHAPTER

• A topological sort is an an enumeration of a set of elements compatible
with a set of ordering constraints on these elements.

• The problem has a simple mathematical description: given a (strict) order
relation, find a total order that is a subset of it.

• In practice the given relation is usually not an order relation but just
acyclic. Taking its transitive closure gives an order relation.

• A realistic, well-engineered software solution must accept possibly
erroneous input in which the relation has cycles. It should then produce a
topological sort of the acyclic part, and report remaining cycles.

• Such a solution must provide not just the topological sort algorithm but
also mechanisms to build a problem instance by entering individual
elements and constraints.

• With n elements andm constraints, it is possible to perform topological
sorting inO (m + n) time and space.

• The key to the efficiency of the algorithm is that it works from data
structures specifically adapted to the problem: two arrays giving, for each
element, the list of its successors and the number of its predecessors; and
a dispenser (stack, list or priority queue) containing the set of elements
without predecessors.

• As this example illustrates, good algorithmic solutions are often obtained
by first “compiling” the problem’s data into a specially designed data
structure, which can then be “interpreted” efficiently.

New vocabulary

Acyclic Antisymmetric Binary relation
Cycle Irreflexive Order relation
Partial order Relation Strict order
Topological sort Total order Transitive closure



AN ELEGANT ALGORITHM FAMILY: TOPOLOGICAL SORT §17.7450

17.7 TERMINOLOGY NOTE: ORDER RELATIONS

To discuss topological sort it is convenient — as this chapter has shown — to use
strict order relations, as in “strictly less than”, such as the"<“ relation on numbers.
For other problems it may be more useful to deal with the nonstrict versions, such
as"≤" on numbers. The two are closely related:x ≤ y holds if and only ifx < y or
x = y. The common convention is for “order relation” to mean the nonstrict version.
In this chapter, since we have used only strict order relations, the word “strict” has
usually been omitted, so that “order” means “strict order”.

For a strict order relation (irreflexive and transitive), some of the literature uses the
term quasi-order. Of course one may pick any name for a notion as long as one
provides a precise definition, but this one is unfortunate since there is nothing
“quasi” about such orders; if anything they are “more” ordered than nonstrict
variants — those usually called “order relations” — since they don’t hold between
an element and itself (irreflexivity). To make things worse, other authors use
“quasi-order” for relations that are transitive andreflexive(rather than irreflexive).
So it’s better to stay away from this term and instead qualify order relations as
“strict” when needed.

The next issue is whether the relation is total or not. Totality means that for any two
non-equal elementsx andy one ofx < y andy < x will hold. An order relation that
satisfies this property is atotal order. One that doesn’t satisfy the property —
meaning that there’s at least one pair of distinct elements for which neither[x, y]
nor [y, x] is in the relation — should be called apartial order. But that’s not what
“partial order” relation means in most of the literature: it means an order relation
that we don’t know to be total. In other words, it’s apossibly partialorder relation.
That’s confusing, since now a total order relation is also partial! It is better to write,
as in this chapter:

• Total order for an order relation that is known to be total.

• Partial order for an order relation that is known to be non-total.

• If we don’t know, or want to include both cases, justorder. In case of
possible ambiguity, use “possibly partial order”.

17-E EXERCISES

17-E.1 Vocabulary

Give a precise definition of each of the terms in the vocabulary list on the
preceding page.

17-E.2 Irreflexivity and asymmetric

Order relations weredefined as irreflexive and transitive, and proved
asymmetric as a consequence. Prove that it’s equivalent to define them as
asymmetric and transitive, with irreflexivity a consequence.

← Page415.
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17-E.3 Total order and enumeration

Prove that if a relationr is a total strict order on a finite set, there exists a single
enumeration of the elements such that, for any elementsx andy, x appears
beforey in the enumeration if and only if the pair[x, y] is in r.

17-E.4 Strict vs. nonstrict orders

The discussion in this chapter has relied onstrict order relations (partial or
total), such as"<" on integers, “less than”. It is also possible to usenonstrict
order relations, such as"≤", “less than or equal to”. The definition of a partial
strict order — which we’ll call"<" although it doesn’t have to be the usual
relation on numbers —was that it must be:
O1 •Irreflexive : x < x holds for nox.

O2 •Transitive: wheneverx < y andy < zhold, so doesx < z.

That the relation is also
O3 •Asymmetric: x < y andy < x may not both hold.

is a consequence of the previous two properties.
For a part ia lnonstr ic t order re lat ion" ≤ " , there are three

independent conditions:
O5 •Reflexive: x ≤ x for anyx.

O6 •Transitive: wheneverx ≤ y andy ≤ zhold, so doesx ≤ z.

O7 •Antisymmetric : wheneverx ≤ y andy ≤ x both hold, thenx = y.

For any partial strict order relation"<" there is an associated relation"≤",
defined by

Conversely, given a partial nonstrict order relation"≤", we may define an
associated relation"<" by

This exercise explores the relationship between these associated strict"<" and
nonstrict"≤" variants.
1 • Prove that if"<" is a partial strict order relation, then"≤", as defined by

[4], is a partial nonstrict order relation.

2 • Prove that if"≤" is a partial nonstrict order relation, then"<", as defined
by [5], is a partial strict order relation.

x ≤ y if and only if:x < y or x = y [4]

x < y if and only if:x ≤ y and x ≠ y [5]

← “Binary relations”,
page 413.
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3 • In the strict case, the definition imposes only two conditions: irreflexivity
and transitivity; conditionO3, asymmetry, is a consequence. In the
nonstrict case, there are three conditions. Prove that antisymmetry,O7
does not necessarily follow from the other two, reflexivity and
transitivity. (In other words, find an example that satisfiesO5 andO6 but
notO7)

4 • Prove that replacing “reflexive” by “irreflexive” in the definition of a
strict order yields the definition of a nonstrict order.

5 • Prove that replacing “irreflexive” by “reflexive” in the definition of a non
strict order yields the definition of a strict order.

17-E.5 Acyclic and total order relations

Prove the Topological Sorttheorem on the basis of thesecond theorem on
acyclic and order relations.

17-E.6 An interesting postcondition

Explain thepostcondition of the functionhas_element.

17-E.7 Optimizing hash table usage

The algorithm for procedurerecord_elementtests whether an elemente is
already present in the hash tableindex_of_element, and inserts it only if not.
This causes two search operations, one forhas(called byhas_element) and
one forextend. Examining the contract form ofHASH_TABLEto find the
appropriate features, rewrite the procedure to avoid this small inefficiency.

17-E.8 Programming topological sort

Implement the classTOPOLOGICAL_SORTERclass according to the
discussion of this chapter.

17-E.9 Parameterizing topological sort

(This exercise assumes you have done the preceding one.) Extend the
implementation of topological sort to enable clients to select a specificpolicy
for choosing between competing “candidates” ready for output.

← Page420;
page417.

← Page436.

← Page444.

← See“Pr ogramming
time! Usable imple-
mentation of topologi-
cal sort”,  page 445.

→Asdiscussed in“The
candidates”,page437.
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Operations as objects: agents and
lambda calculus

The object-oriented framework has already given us a set of powerful
mechanisms to write our programs. In this chapter we again extend our powers
of expression through mechanisms that let us abstract operations and pass
them around for later operations.

19.1 BEYOND THE DUALITY

The extension will require treatingoperationsas if they wereobjects, which
seems at first to contradict the basic duality, so far taken for granted, between
these two notions:
• Our programs manipulate objects.
• They do so by applying operations to these objects.
The textual structure of our O-O programs also relies on this distinction: we
divide programs into classes, each based on a type of objects, and each
operation is attached, in the form of a routine, to one of these classes.

The two notions seem completely distinct: what the program can do
(operations); what it can do it to (objects).

And yet it is sometimes interesting to treat an operation as an object or,
more precisely, to define objects whose sole role is to describe an operation.
We’ll call such objectsagents. This chapter studies them in detail, but it’s not
hard to get the basic idea. You can obtain a simple agent through the notation

an expression whose value is an agent representing the routiner. Because it’s
an expression you can assign it to a variable, as in

with a of the appropriate type.

agentr

a := agentr
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What can you do with an agent? Well, it is associated with a routine or
other feature, so you can use the agent to call the routine. Witha denoting an
agent after the above assignment, the call

will have the same effect as if you directly called

for any applicablex andy. The featurecall is applicable to all agents; it takes
a single tuple, here[x, y], as argument. (To understand the rest of this chapter
you’ll need to be familiar with tuples, a simple notion studiedearlier.)

Why usecall on an agent, as in[1], when you could just call the routine
directly as in[2]? Indeed if you know the routiner you need to call there is no
point in going through an agent. But now assume you gota from another
program element, for example as a routine argument. Then all you know is that
a denotes a routine (and also, as we’ll see, what kind of arguments that routine
takes); but you don’t know the routine itself — the originalr.

This is indeed what agents give us: the ability to pass around objects that
represent operations ready to be executed, with a complete separation between:

• Agentdefinition: the place in the software that defines an agent around a
routiner, throughagent r, and which of course must know aboutr.

• Agent use: any place in the software that receives an agenta and can
apply features such ascall to it, without knowing what routine it carries.

This mechanism has many different applications, of which we will now review
some of the most important:

• Iteration: providing a general mechanism that applies an arbitrary
operation to every item of a data structure.

• Numerical programming, as when computing the integral of a function
over an interval; we may represent the function as an agent.

• Equipping an interactive application with an undo-redo mechanism.

Another area where agents play an important role isevent-driven design, also
known as Publish-Subscribe, particularly useful for graphical user interfaces;
it is the subject of the next chapter.

We will compare agents with other techniques, based on previously
studied mechanisms such as dynamic binding, which would also be available
to address some of these applications; we will take a look at the mathematical
basis, the fascinating theory oflambda calculus; and we will look at
techniques available in languages other than Eiffel.

a.call ([x, y]) [1]

r (x, y) [2]

← “TUPLES”,  10.5,
page 266.
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19.2 WHY OBJECTIFY OPERATIONS?

It’s good first to understand why we need some kind of mechanism to treat
operations as objects, and what we would do if we didn’t have it. Here are
four examples.

Iteration, integration, observation, undoing

First,iteration . We have got used, in our loops, to schemes that apply a certain
operationto every element of a sequential structure such as a list. They look
like this:

In Traffic, we can apply this scheme to an instance ofROUTE, denoting an
itinerary with a number of stops. We might want to print the names of all stops
in order; to compute the total travel time (by adding the time from each stop
to the next one); to produce a list of restaurants along the route (from a list of
nearby restaurants available for each stop); and so on.

In each case the solution will look like[3]. We have a name for such
schemes: iteration, already encountered in the discussion of data structures.
You can use such an iteration scheme, for any givenaction, to produce a
routine that appliesactionto every stop along a route.

Now assume that you donot want to write a new routine each time you
need this scheme. Can we go up one notch in abstraction and simply write
something like[3] in a routine whereactionis not hardwired any more, but just
an argument? Then we could use that routine with different actions, and let it
take care of the looping.

Iteration mechanisms will indeed enable us to provide routines such as
do_all which you can call with an agent argument representing the action:

The second example is from numerical mathematics:integration. Given a
function f (x: REAL): REALdefined over an interval[a, b], algorithms exist
(we’ll see the basic one below) to compute a good approximation of the
integral off over that interval:

from  startuntil  after loop
“Apply to item” [3]
forth

end

your_route.do_all (agentaction)

← The second line is
pseudocode(see
page110.)

action
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The problem here is: can we have a general mechanism — say a feature
integral from a reusable classINTEGRATOR— that we can apply to any
existing routinef representing the mathematical function? Agents will indeed
allow us to provide such a mechanism, and call it as

(with your_integrator of typeINTEGRATOR.)

The third example is a preview of the next chapter: event-driven design.
Assume some part of the system can trigger some events and other parts need
to execute some operations whenever such an event occurs. For example the
event could be a clock tick, happening whenever a certain time has elapsed;
then a clock display module must update an image, another module needs to
update the total time count, and so on. Each such “subscriber” module needs
to register a certain action to be executed whenever such an event occurs. We’ll
see an architecture enabling subscribers to achieve this simply through

whereclock_tickrepresents the event type andsubscribeis a general-purpose
library feature.

The last example corresponds to a functionality widely needed in
interactive systems:undoing an operation. While not widely acknowledged
— I don’t know of any statues of its inventor — the humble CTRL-Z (or
equivalent) is undeniably one of the milestones in human history, recognizing
that we need to be saved from our own messing up. Even when we don’t
actually mess up, we like to try out ideas, see what happens, and back up if the
result is not to our liking.

The only really good undo-redo mechanism is one that lets you undo and
redo not just the last operation but many. I probably don’t need much
convincing when talking to you as a user of programs, but now think of how
you wouldwrite a program with built-in undo-redo to any level.

The most radical technique involves representing all undoable-redoable
actions as objects which you can put into a data structure, sayhistory, which
can be implemented as a list of agent pairs:

your_integrator.integral (agentf, a, b)

clock_tick.subscribe(agent some_routine)

∫
a

b
(x) dxf
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If these actions come from routines you never execute such a routiner directly
but always through

whereexecuteperformscall (the mechanism for calling the routine associated
with an agent, as previewed above) on its first argument, but also appends the
object pair of its two arguments into the history list. Each pair in the history
list contains two agents, one representing an action and the other — appearing
asreactionin the figure — representing the reverse action; this assumes that
for every routiner implementing a user command you also provide a routine
r_inversethat cancels the action (otherwise you couldn’t offer an undo-redo
mechanism). Then if the user requests one or more “undo”, you perform

as many times as needed (but of course not going further back than the first
item); for a “redo” request after one or more “undo”, perform

(not going further than the last item).

A world without agents

We can’t really understand agents in depth unless we ask ourselves how we
would address the above problems if we didn’t have a special mechanism.

Can we find a solution at all? Of course we can. If what you need is an
object wrapper around an action, it suffices to create that object yourself,
devising the appropriate class. That will be the hurdle: defining new classes.
Let’s see the idea at work in the previous examples.

execute(agentr, agentr_inverse)

history.item.reaction
history.back

history.forth
history.item.action

History listOldest
Most recent
command

remembered
command

UNDO
Cursor

action
reaction

REDO

Normal
execution
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Integration is typical. To define the integration functionintegral, give it
an argument of typeINTEGRATABLE_FUNCTION. That’s a deferred class
which could look like:

For each particular function to be integrated we have to write, as the figure
suggests, a little effective class such asSINE_FUNCTIONwhich simply
provides the desired implementation ofvalue:

One could make the classINTEGRATABLE_FUNCTIONmore sophisticated —
for example by introducing a querydefined(x: REAL) — but this simple version
suffices to understand the architectural issue.

Then to obtain the integral of the sine function over[a, b], you declare a
variablesine_function: SINE_FUNCTION, create the corresponding object,
and call

note
what: "Functions that can be integrated over finite intervals"

deferred class INTEGRATABLE_FUNCTION feature
value(x: REAL): REAL

-- Function’s value at positionx
deferred
end

end

value(x: REAL): REAL
-- Value of this particular function forx

do
Result := sine(x) -- Or any other desired value

end

your_integrator.integral (sine_function)

SINE_ COSINE_

Classes for
mathematical
functions

INTEGRATABLE_
FUNCTION

FUNCTION FUNCTION

*

← sine and any other
math routine must be
obtained, e.g. through
inheritance, from some
math library class.
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Internally, the functionintegral (f: INTEGRATABLE_FUNCTION) is easy to
write: whenever it needs to evaluate the value of the function at a certain point
x, it obtains it throughf.value (x). Note the role of dynamic binding: the
run-time type off, such asSINE_FUNCTION, determines whichvaluefeature
to use. To make sure that you understand this scheme and review your
understanding of fundamental O-O techniques it’s a good idea to try to write
integral yourself (don’t worry if numerical programming is not your forte, as
the exercise suggests a model for the actual algorithm):

This example is typical of how to take advantage of standard O-O techniques
that you can use if you don’t have agents. The ideas are easily transposed to
all our other examples:

• For iteration, the deferred class will beITERATABLE_ACTION; effective
descendants provide specific versions of a procedurecall describing one
execution of the iterated operation.

• For observation (event-driven programming), the deferred class is
OBSERVER; specific observer classes inherit from it and provide their
own versions of theupdateprocedure which publishers will call when
triggering an event. What this describes is the exact principle of a
well-known “design pattern”, Observer,covered in the next chapter.

• For Undo-Redo, each command of the interactive system must be
implemented by a command class providing two procedures:executeto
perform the command, andcancelto undo the effect of the lastexecute.
An instance of this class describes information resulting from one
execution of the command and necessary to undo it later should this be
requested; for example, in a text editor, an instance ofLINE_DELETION
has two fields, the text of the line being deleted and the position of that
line in the text, so that thecancelprocedure can re-insert a line deleted by
execute. All such command classes inherit from a deferred class
COMMANDwhereexecuteandcancelare deferred. The history list can
then be implemented as, for example, aLINKED_LIST[COMMAND].

Programming time!
An integration library without agents

Write a classINTEGRATIONwith a featureintegral that computes the
integral, over a finite interval, of a function passed as an argument of type
INTEGRATABLE_FUNCTION. Devising the appropriate descendants to
INTEGRATABLE_FUNCTION, apply your work to the computation of
integrals of various sample functions.
For a simple integration algorithm, you can use the model of the
agent-based version givenbelow. → “AGENTS FOR

NUMERICAL
PROGRAMMING”,
19.4, page 473.

→ “THE OBSERVER
PATTERN”,20.4,page
515.
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We may call this technique the “Many-Little-Wrappers pattern ” because it
uses dynamic binding based on writing a class, typically small, to wrap each
variant of an operation.

The pattern works, but it has the obvious disadvantage suggested by its
name: bloating the software with numerous small classes. There’s nothing
wrong in principle with small classes, but a class should embody a significant
abstraction, and having just one significant feature (such asvalue in the
integration case) makes it suspicious. This suspicion is reinforced by the
observation that in two of the examples (integration and iteration) the classes
have only one significant feature (value, call). In particular, they have no
attributes, and hence each needs only one instance (such assine_function). A
class with just one instance is known as asingleton, but here it’s not just that,
since the single object has no fields. Each of the classes is essentially there to
encapsulate a single routine. We may call themSingle-Song-Artistclasses.

Having to write many such wrappers uselessly complicates the software
— in particular its inheritance structure, as we’ll see for the Observer pattern
in the next chapter. In the end, it’s frustrating that we can’t directly use thesine
function for integration, or a routineprint_stop_namefor route traversal. Why
do we need a class? In an extreme case, the same mathematical operation
could conceivably be amenable to integrationand iterationandobservation;
we would them wrap it in three different ways!

Among our examples, the one case where the wrapping doesn’t come out
as too artificial or bothersome is undo-redo, because theCOMMAND
abstraction seems warranted: it has two equally important routines,execute
andcancel, so it’s at least a two-song artist; and descendant classes describe
meaningful objects, with many different instances (for example every
execution of aLINE_DELETIONyields a new instance) characterized by
meaningful fields (such as the specific text and position of the deleted line)

In the other cases, it seems hard to justify the Many-Little-Wrappers
technique. We do need to wrap individual routines into objects, but we don’t
want to have to do the wrapping ourselves; a language mechanism will do the
job, and that’s exactly what agents are for. Iff is a routine, you can get it
gift-wrapped for free by just writingagent f; this gives you an object that has
everything aboutf, including the ability to callf (through the procedurecall
applicable to all agents) whenever you need to, and for any applicable
arguments. In all the cases cited including undo-redo, and many others, using
agents is vastly superior to the Many-Little-Wrappers pattern. (We’ll review
some alternative techniques at theend of this chapter.) So I hope you didn’t
mind this little digression — discussing, in the chapter about agents, what to
do without agents — since it should give us a much better appreciation of
much we can benefit from a simple, built-in mechanism for dealing with
actions through objects.

→ “OTHER
LANGUAGE
CONSTRUCTS”, 19.9,
page 494.
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19.3 AGENTS FOR ITERATION

Now that we see where agents fit and why we need them, let’s go beyond the
earlier overview and see the full details. The present section completes the
iterator example; the next one deals with integration. The next chapter has a
detailed agent-based solution to the problem of event observation.

Basic iterating schemes

A simple example from Traffic illustrates the use and definition of iterators
through agents. Consider the notion ofROUTE. We can add toROUTEa
routinedo_at_every_stopthat takes an action as argument and applies it to
every stop. This will make it possible to use

This simply assumes thatprint_name, append_restaurantsand
other_operationare routines, in this case, specifically, procedures, which take
aSTOP as argument.

How will do_at_every_stopachieve this? It abstracts the standard
iteration scheme cited earlier in this chapter[3]:

To trigger the associated routine, this usescall, a procedure available on all
agents, whose effect is (as you may guess) to call the agent’s routine, with the
arguments given; more precisely, given as a singletuple, here[item]. A tuple
is a sequence of values, written in square brackets; sinceaction is intended to
represent routines such asprint_namethat take one argument, the tuple used
here,[item], has just one element.

The effect of the highlighted callaction.call ([item]) [4] is exactly the
same as that of a direct call to the corresponding routine, such as

your_route.do_at_every_stop(agentprint_name)
your_route.do_at_every_stop(agentappend_restaurants)
…
your_route.do_at_every_stop(agentother_operation)

do_at_every_stop( :…) is
-- Apply action to every stop in this route.

do
from  startuntil  after loop

[4]
forth

end
end

print_name(item) [5]

← Page459.

action → The type foraction
appears below(see
page467).

action.call ([item])

← “TUPLES”,  10.5,
page 266.



OPERATIONS AS OBJECTS: AGENTS AND LAMBDA CALCULUS §19.3466

if the argument passed todo_at_every_stop wasagent print_name, or

if the argument wasagentappend_restaurantsand so on. The difference with
[4] is that withindo_at_every_stopwe do not know what actual routineaction
represents, so we can’t use a direct call such as[5] or [6]; that’s where we need
an agent, represented here byaction.

This technique is the basic mechanism for providing iterators in the
EiffelBase library; we’ll take a lookbelow at the actual library implementation.

Iterating for predicate calculus

An interesting application of iteration is to give us a direct implementation of
the predicate calculus mechanisms: for all (∀), there exists (∃). Assume for
example that you want to state that all elements of a certain array of integers
a, of boundsa.lower anda.upper, are positive. In predicate calculus we have
learned to express this as

wherei..j denotes the interval containing all values betweeni andj inclusive.
Without agents you can useall_positive (a) if you write a function
all_positive(ia: ARRAY[INTEGER]) which determines the result through a
loop. But thanks to agents you don’t need to write such a routine; just use

which is very close to[7]. |..| is the operator alias of a functioninterval from
classINTEGER, which yields a result of typeINTEGER_INTERVAL— not a
predefined concept but a normal library class, providing functionsfor_all and
there_existswhich take as argument an agent representing the test being
“for-alled” or “there-existed” across the interval. In a short while we’ll see
similar functions available on lists and other sequential structures, which will
also be the opportunity to clarify the signatures.

[8] still requires you to write a small function to test whether an integer
is positive:is_positive(n: INTEGER): BOOLEAN. This is more reasonable
than having something likeall_positivefor every such case. At the end of this
chapter we’ll see how to get rid of evenis_positiveby writing the needed agent
“inline”, without having to introduce an explicit routine.

append_restaurants(item) [6]

∀ s: a.lower .. a.upper| a [i] > 0 [7]

(a.lower |..| a.upper).for_all (agent is_positive) [8]

Exploration time!
You may wish to take a quick look now at the functionsfor_all andthere_exists
in INTEGER_INTERVAL. Don’t get stuck with the type declarations (they are
explained next), but make sure you understand the algorithms.

→ “The anatomy of an
iterator”,  page 469.
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Agent types

In the declaration ofdo_at_every_stopwe need to fill in the type ofaction,
representing an agent. The actual declaration will be:

PROCEDUREis a generic library class describing command (procedure)
agents. It takes two generic parameters, representing type properties of the
procedurep associated with the agent:

• The first denotes the class from whichp comes, or an ancestor of that
class. SinceANYis ancestor to all classes you can usually useANY, as we
do here withdo_at_every_stop, since in an actual argumentagent p
corresponding toaction we don’t care what classp comes from.

• The second parameter is always a tuple type. The tuple component types
correspond to the types of the arguments top; here, since we expect
procedures such asprint_nameandappend_restaurantsthat take one
argument of typeG (the generic parameter ofLINEARand descendants,
also serving as the type foritemand representing the type of the items in
the data structure), we useTUPLE[G].

It is this choice of as the second parameter type forPROCEDUREthat enables
us in the body ofdo_it_all to call the associated routinep, whatever it is, with
valid arguments, through the following line from[4]:

Indeed, procedurecall is declared inPROCEDURE(check the source for
yourself in the library!) as taking an argument of typeOPEN, the second
generic parameter.

PROCEDUREcovers agents associated with commands. It is part of a
hierarchy of four classes in the Kernel Library:

do_at_every_stop(action:
… The rest as before[4] …

action.call ([item]) [9]

PROCEDURE[ANY, TUPLE [G]]

*

PROCEDURE FUNCTION

PREDICATE

Agent classes
ROUTINE
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FUNCTIONis for agents denoting queries, except for those returning a result
of type BOOLEAN, represented byPREDICATE. FUNCTIONhas a third
generic parameter, representing the type of the function’s result.ROUTINEis
a deferred class, for representing arbitrary agents.
Here are the headers of the classes involved:

The second parameter,OPEN, is constrained byTUPLE, so you can only use
a tuple type —TUPLE[G] in the above example — as actual parameter. Given
a featuref, the expressionagent f is of a type derived from one of the above,
depending on the nature off : procedure, boolean query, other query.

For an agent representing procedures with two arguments of typesTandU, use

and similarly for the other cases. For a routine with no arguments, the second
actual parameter will be justTUPLE, as inPROCEDURE [ANY, TUPLE].

ClassROUTINE declares:

allowing you to call the agent by passing an appropriate tuple as illustrated
above[9]. If there are no arguments — the actual parameter forOPENwas just
TUPLE —, you will pass tocall an empty tuple[] .

In addition,FUNCTION andPREDICATEhave the feature

and, for convenience, the functionitemcombiningcall andlast_result:

deferred class ROUTINE[BASE, OPEN–> TUPLE]

class PROCEDURE[BASE, OPEN–> TUPLE] inherit
ROUTINE[BASE, OPEN]

class FUNCTION[BASE, OPEN–> TUPLE, RES] inherit
ROUTINE[BASE, OPEN]

class PREDICATE[BASE, OPEN–> TUPLE] inherit
FUNCTION[BASE, OPEN, BOOLEAN]

PROCEDURE[C, TUPLE[T, U]] -- C is often justANY

call (v: OPEN)
-- Call feature with all its operands, usingv for the open operands.

last_result: RES
-- Function result returned by last call tocall, if any

item(v: like open_operands): RES
-- Result of calling feature with all its operands,
-- usingv for theopen operands.
-- (Will call call.)

ensure
set_by_call: Result= last_result

In the actual class texts,
the formal generic
matters have longer
namesBASE_TYPE,
OPEN_ARGS and
RESULT_TYPEtoavoid
conflicts with
programmer-chosen
class names.

→ In cases so far the
“open operands” are
the arguments. For
more, see“OPEN
OPERANDS”,  19.5,
page 475.
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The anatomy of an iterator

ClassLINEAR in EiffelBase, ancestor to all the list classes such asLIST,
LINKED_LISTand others, describes any structure that can be traversed
linearly. As such, it is the natural home for a set of iterator features:
• do_allapplies a certain action in turn to all item of the structure, like our

do_at_every_stop example.
• do_if applies it to all elements that satisfy a certain condition; there are

alsodo_while anddo_until.
• for_all tests whether a certain property (again represented by an agent)

holds of all elements of a structure, andthere_existswhich tests whether
it holds of at least one.

The arguments are:
• In the first two categories,actionrepresenting the action to be applied, of

typePROCEDURE[ANY, TUPLE [G]] .
• In the last two categories,test representing a test, of type

PREDICATE[ANY, TUPLE [G]] .
(do_if, do_whileanddo_until have both arguments.) As an example of use,
assume a certain class has an integer attributesum and the (trivial procedure

Then given a listil : LIST[INTEGER] the call

will (after sum:= 0) assign tosum the total of the values ofil ’s items.
Now for the internal picture:

The routine’s text, copy-pasted from thelibrary, appears at the top of the next
page. After this discussion you can and should understand everything about it.

Proceduredo_all takes a single argument,action, representing the agent
to be iterated. The typePROCEDURE[ANY, TUPLE [G]] indicates that the
agent’s associated routine can come from an arbitrary class (as expressed
ANY) and (as expressed byTUPLE [G]) should take one argument of typeG,
the formal generic parameter of the enclosing class.

increase_sum(n: INTEGER)
-- Add n to sum.

do sum:= sum + nensureadded: sum= old sum + nend

il.do_all (agent increase_sum)

Anatomy Lesson
As part of our regular series of examiningreal code in depth, we now take
a look at the text ofdo_all in classLINEAR[G] from EiffelBase. You are
encouraged afterwards to explore its companions such asdo_ifandfor_all.

Version 5.7.
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The header comment tells us “Semantics not guaranteed ifactionchanges the
structure”. The warning is important warning: havoc could result ifaction
changes the data structure itself, for example by deleting an element. (An
exercise asks you to try this for yourself if you have the nerve.) It’s OK for
action to change thecontentsof objects in the structure; for example you can
safely usedo_all to add one to every element of a list of integers, through

with

since this doesn’t modify the structure. If youdowant to modify the structure,
the last line ofdo_all’sheader comment indicates that it is safe to iterate on a
clone (duplicate) of the original structure; thenactioncan modify the original
without affecting the clone. For a clone of a structures, simply uses.cloned.

do_all (action: PROCEDURE[ANY, TUPLE[G]]) is
-- Apply action to every item.
-- Semantics not guaranteed ifaction changes the structure;
-- In such a case, apply iterator to clone of structure instead.

local
t: TUPLE[first: G]
cs: CURSOR_STRUCTURE[G]
c: CURSOR

do

end

do_all (agent increment)

increment do item:= item+ 1 end

Procedure
do_all in class
LINEAR

cs?=Current
if  cs/= Void then

c := cs.cursor -- Part 1
end

create t
from

start
until

after
loop -- Part 2

t.first := item
action.call (t)
forth

end
if  cs/= Void then

cs.go_to(c) -- Part 3
end

→ “An iterator that
shootsitselfin thefoot”,
19-E.5, page 500.
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The requirement stated by this header comment is legitimate: the notion of
iterating on a data structure stops making sense is the structure itself changes as
you are iterating on it. Still, as you may have reflected, it is regrettable that to
enforce it we have to resort to exhortation through a header comment, rather than
expressing it in the contract for the routine, in the form of a precondition onaction.
Contracts are currently not expressive enough to state such properties.

Let us now look at the routine body, which for convenience has been divided
into three parts. We look first at “Part 2”, the core of the algorithm. This is an
improved form of the basic iteration loop given above[4] as

Instead of a manifest tuple[item] the library version uses a local variablet
representing a tuple, creates the tuple on initialization throughcreate t, and
instead ofaction.call ([item]) performs

where t has been declared (see thelocal declarations) as a tuple with a
component labeledfirst. These instructions fill the tuplet with item, yielding
the same tuple value as in the manifest form[item], and callcall with t as
argument. The effect is the same; why the more complicated form? IT’s for
efficiency: a manifest tuple expression such as[item] represents a tuple to be
created with the components given, here just one, every time the expression is
evaluated. This operation requires allocating memory and is expensive; but we
don’t need it each time: once the tuple has been passed as argument tocall the
computation doesn’t need it any more. It will eventually be garbage-collected,
so there is no long-term effect on memory usage, but it’s still a waste of
computation time to create all these tuples for single use.

It’s like using a new paper cup each time you get yourself a coffee. If you
are a regular coffee drinker, you will find it more convenient to get yourself a
good cup once and for all. The library version does the same witht: create it
once and reuse it ever after. It’s good to be aware of this technique:

from  startuntil  after loop
action.call ([item]) [10]
forth

end

t.first := item [11]
action.call (t)

Touch of Performance:
Saving on tuple allocation

If you process a tuple in a loop or other program element executed repeatedly,
and are sure that the computation will not need its value any more after that
processing, do not use a manifest tuple but instead a tuple variable that you
reset each time. This will save the overhead of repeated allocation.
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Other “methodology” advice in this book warns you against practices that are
potentially (but demonstrably) damaging for conceptual reasons, for example
because they increase the likelihood of bugs, or make it harder to modify your
software later. This one is different, since if you violate it there’s nothing wrong in
your reasoning, just an efficiency problem. In a better world you should not have
to worry about such aspects; a compiler would let you write[4], which is simpler
and more obvious to the reader than[11], and after checking that the value of each
manifest tuple is needed only once it would optimize the generated code as if you
had written[11]. This would be better not only because it does the optimization for
you but also — and in the end more importantly — because the burden of checking
that the optimization iscorrect(that you don’t need the tuple any more) would fall
on the compiler, not on you, avoiding errors. Eiffel compilers already perform
many optimizations, some very clever, but not yet this one; so it’s something you
must still handle yourself if efficiency is a concern.

A similar issue exists with strings. A manifest string — a string given explicitly by
its characters listed in double quotes, such as"ABCDE" — denotes a new object,
allocated anew each time the string is evaluated. In a loop, this is usually not what
you want. In this case the language gives you an explicit variant that avoids repeated
evaluation; write the string asonce"ABCDE". You can also treat the string as a
declared “manifest attribute”:my_string: STRING= "ABCDE" (indeed it is generally
better methodologically to give symbolic names to constants than use them explicitly
in instructions; this facilitates change). With this approach the string is truly shared:
any change to its characters will be retained for the next use.

It remains to understand the routine fragments labeled
“Part 1” and “Part 2” above. They have a common
purpose: making sure that the iterator leaves the
structure in the state where it found it. As you know,
many of our linear structures have cursors; the iteration
in do_allmoves the cursor by usingstartandforth. But
other parts of the software may be using the list and,
after moving the cursor to some position, may expect to
find it in that same position later in the absence of an
explicit operation to move it in-betweendo_all and
other iterators must be good citizens: they can move the cursor while they
operate, but they must restore it when they are done. “Part 1” saves the original
cursor position; “Part 2” restores the cursor to the saved position.

This is only relevant for sequential structures that have a cursor, as is
indeed the case with list classes. Such classes are descendants both ofLINEAR
and of a classCURSOR_STRUCTURE. “Part 1” finds out if the current object
is an instance of that class by performing anassignmentattempt to a variable
cs of type CURSOR_STRUCTURE; if it succeeds, it records the current
position into a variablec of type CURSOR, using the featurecursor of
CURSOR_STRUCTURE. An instance ofCURSORis an abstract description
of a cursor position, independent of the representation; the class has (as you
can see by looking it up in EiffelStudio) descendants describing cursors
specific to various structures, such asLINKED_LIST_CURSOR. Then “Part 2”
br ings the cursor to i ts in i t ia l posi t ion through the procedure
go_to(c: CURSOR) of CURSOR_STRUCTURE.

item

index count1

forthstart

← From“Cur sor
movement”,  page 272.

← See“Assignment
attempt”, page455.An
exercise asks you to
replace it by the newer
language mechanism:
“Using Object Test”,
19-E.4, page 500.
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19.4 AGENTS FOR NUMERICAL PROGRAMMING

As the example of iterators shows, agents enable us to describe operations that
manipulate other operations. One area in which such needs frequently arise is
numerical programming; let’s look at a typical example, integration.

The standard numerical technique, to integrate a real functionf over a

finite interval[low, high], is to approximate the exact integral by

the sum of the areas of many small rectangles:

If all these rectangles have widthstep, the one starting at abscissax has area
step∗ f (x). The approximation of the integral over an interval is the sum of
such values for allx such thatlow ≤ x < high.

What agents give us here is the possibility of writing an integration
functionintegralnot just for a specific functionf — say the cosine function —
but for any applicable function. The implementation ofintegral can be:

integral (f : ; low, high: REAL)
-- Approximation of integral off over interval [low, high]

local
x: REAL; i: INTEGER -- Seebelow about the role ofi.

do
from  x := low until  x >= high loop

Result := Result +
i := i + 1; x := low + i ∗ step

end
end

∫low

high
f (x) dx

Integration by
finite
approximation

low high

f

x x + step

f (x)

FUNCTION[ANY, TUPLE[REAL], REAL]

→ “A numerical analy-
sis note”,  page 474.

f.item([x])
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The declaration off indicates that it must be a function that takes an argument
of typeREALand yields a result of typeREAL. To evaluate off at pointx we
just usef.item(x); as noted above,item, applicable to function agents, calls the
function throughcall and returns the result of the call.

Function integral most likely belongs in a classINTEGRATOR
describing objects in charge of performing integration operations on
mathematical functions. If that’s the design we retain, andyour_integratoris
of the corresponding type, then you will obtain the integral of a functionf over
an interval[a, b]as the value of

ClassINTEGRATORis also wherestepshould be declared as aREAL
attribute, with an associated setter procedure so that clients can control the
precision of the integration process. The class is more than a mere “wrapper”
for integral; it describes a meaningful abstraction, “integration control”.

A numerical analysis note

Unrelated to the discussion of agents but important in practice is a numerical
property of the algorithm used. The variablei is conceptually unnecessary: we
could replace the last two instructions, which advance the loop (the last line
before the two finalends), by justx := x + step. In pure mathematics this is
indeed correct, but on a computer ourREALnumbers are only approximations
of the real “reals”; as we haveseen, operations such as addition are only
approximate, and if when they are carried out repeatedly the errors may
accumulate. This would be the case with repeatedx := x + stepoperations:
successive values ofx could drift progressively from the exact mathematical
value, which islow + i ∗ stepat thei-th step. To avoid this drift, we recompute
the value ofx each time from the formula, so for each value we get at worst
the error of asingle addition and multiplication.

There’s a general principle here:

A shorter form of this advice is “study numerical analysis” — the part of
applied mathematics that deals with computing with actual numerical values
(as opposed tosymboliccomputation), taking into account the properties and
limitations of number representation and operations on actual computers.

your_integrator.integral (agentf, a, b)

Touch of Methodology:
Computing with real numbers

In software that deals with computer representations of real numbers, be
aware of the approximations involved, and devise the algorithms so that
they will avoidaccumulationof approximation errors.

← ““Real” numbers”,
page 319.
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19.5 OPEN OPERANDS

Sometimes you will need a bit more flexibility in using agents. A simple case
is a variant of the last example where you still want to compute a function’s
integral for a certain argument, but the function has extra arguments:

Variablesu andv retain constant values during the integration — only thex
axis is involved, as before — but they are still needed to evaluateg for every
value ofx. You could rely on the previous solution by obtaining the integral as

by defining an auxiliary function

assuming thatu andv are attributes. This works, but it’s tedious to write such
auxiliary functions, especially if the pattern recurs. It will be even more
unpleasant ifu andv are local variables or formal arguments.

A function such asg_extendedis just a wrapper, whose only purpose is
to freeze some of the arguments of a function, turning it into a function of the
remaining arguments only. This is needed so often that a special notation is
appropriate. You can obtain the same effect as[12], without writing a wrapper
function, through the expression

The agent expressionagent g (u, ?, v) denotes:

The one-argument function obtained from the three-argument
functiong by freezing its first and third arguments, to the valuesu
andv respectively, and retaining only as a true argument the one at
the second position, marked “?”.

your_integrator.integral (agent , a, b) [12]

g_extended(x: REAL)
-- Same asg but with first and second arguments set tou andv

do
Result:= g (u, x, v)

end

your_integrator.integral (agent g (u, , v), a, b)

∫
a

b
g ( , x, ) dxu v

g_extended

?
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More generally, in an agent expression you may use an argument list,
corresponding to the signature of the underlying function, but in this list you
may replace any of the arguments by a question mark?. These are known as
open argumentsto the agent, and the others — the ones given by normal
values, like u and v above — as closed. Then the agent denotes a function of
the open arguments only.

This means in particular that our first agent notation,agentf, is really just
an abbreviation for

with all arguments open. Of course in this case it’s just as simple to use the
shorter notation.

The notion of open argument increases the versatility of agents, saving
the need for many auxiliary routines such asg_extended. As another example,
let’s vary a bit theearlier iteration scheme involving a listil of integers,
assuming now that we have

with sumnow aREALsince that’s the type the power operator^ returns. Then,
starting withsum:= 0.0, we can assign tosumthe sum of the squares of all the
elements ofil  through

To summarize:

The “definition” of an agent is the expression that defines it, such as
agentf (a, ?). A “call” to an agent is an instruction (involving a call tocall) or
expression (involving a call toitem for a FUNCTIONagent) that calls its
associated routine at run time.

agentf

increase_sum_by_power( , n: INTEGER, )
-- Add tosumthe value ofm to the powern.

do sum:= sum + ensureadded: sum= old sum + end

il.do_all (agent increase_sum_by_power (?, 2)

Definition: open and closed operand
An operand of an agent isclosed if it is specified in the agent’sdefinition.
An operand isclosedif it will be provided only incalls to the agent. In the
agent definition, it is marked with a question mark “?”.

(?, ?, …)

← Page469.

m

m ^ n m ^ n

← Page468.



§19.5 OPEN OPERANDS 477

The last box sneakily introduced a new term,operand. So far we had been
looking at openarguments. Why another notion? It’s because sometimes what
you will want to keep open includes not only arguments but also thetarget of
a call. Consider again the earlier example involving routes and their stops:

where we can replace the specific proceduredo_at_every_stopwith merely
do_all, sinceROUTE is actually a descendant ofLINEAR [STOP]. This
assumes a procedure with the signature

so that if it appears in a classC then agent print_namehas the type
PROCEDURE[C, TUPLE [STOP]] , matching the type for the formal
argument ofdo_all. Soprint_namelooks atSTOPfrom the outside: it doesn’t
belong to this class but takes an argument of typeSTOP. This argument is the
one that remains open since, as you know,[13] is really an abbreviation of

A call to the agent, as executed bydo_all — we sawexactly where it occurs:
action.call (t), meaningaction.call ([ item]) for every item representing a
STOPin the route — has the same effect as a direct call to the associated
routine, of the form

where the highlighting emphasizes that the iterated action, corresponding to
the ? in the agent, is passed as argument. The agent-based iteration scheme
[13] is equivalent to a loop that would explicitly iterate throughyour_route,
initializing the iteration throughyour_route.start and advancing it through
your_route.forth, executing the call[15] at every step. Like any call in
object-oriented programming, this call has a target, but it’s implicit: the
current object. (We can always make it explicit by writing the call as
Current .print_name(your_route.item).)

your_route.do_all (agentprint_name) [13]

print_name(s: STOP)

your_route.do_all (agentprint_name ) [14]

print_name [15]

(?)

← “ Part2”of the textof
do_all, page470.

(your_route.item)
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Assume now, however, that we want to iterate not such an outside action
but one given by a feature of classSTOPitself. This appears quite legitimate.
For example assume classSTOPhas a featureclosethat marks the current
instance as a stop that’s not in operation. If we want to close an entire line, we
should iteratecloseover all its stops; butclosetakes no argument, since it’s
called just on its target, as in the typical call

so that the action to be iterated, replacing[15], is

In this case it’s the target, not an argument, that must be kept open in the
argument todo_all, replacingprint_name(?) in [14] (or the short form in
[13]). At first we might think of writing that argument as something like
?.closebut this wouldn’t work since it misses the type of the target; many
classes may have a feature calledclose. We must specify the target type; the
valid form for the example, illustrating the notation, is

So now you see the need for the termoperand: it covers all the values needed
to execute a call — target and arguments.

For open arguments a plain “?” will generally do, since the types follow
from the routine’s signature — for example in[13] and[14] we know that
print_nametakes one argument of typeSTOP—, but the form “{ TYPE} ?”,
listing an explicit type, is also permitted.

All combinations of open and closed operands are permitted (assumingf
with arguments andg without arguments in a classC):

• Everything closed:agentf (a, b, c), agent g.

• Target closed, all arguments (if any) open; this is the meaning of the
abbreviated form with which we started, and which figures in most
simple uses of agents:agentf, agentg. Also agentf (?, ?, ?) (means the
same asagent f).

• Target closed, some arguments open, some closed:agentf (?, b, ?).

• Target open, some or all arguments closed:{ C} ?.agentf (?, b, ?).

• Everything open:{ C} ?.f, { C} ?.g.

It’s only thanks to these mechanisms that we can have asingle set of iterators—
do_all, do_if, for_all etc. — inLINEARand all its descendants. Otherwise we
would need a variant of each to iterate operations that work on their target, and
another to iterate operation that work on their argument.

some_stop.close

your_route.item.close

your_route.do_all (agent .close) [16]{ STOP} ?

agentg fits both of the
first two cases.
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19.6 LAMBDA CALCULUS

We have now seen the basics of agents (and quite a few details as well); I hope
you appreciate the power of expression of this mechanism and are already
thinking of all kinds of wondrous applications.

There’s actually one more level of flexibility, but before we get there I’d
like to take you through a tour of the underlying mathematical ideas. The only
way to understand what agents really are about — in particular, to get a deeper
understanding of the concepts of “open” and “closed” operands as just studied
— is to know the basics oflambda calculus.

It’s a beautiful theory, developed in the 1930s before there were any
computers; the discovery thirty years later that it provides a clear basis for
many of the concepts of programming languages led to a revival of interest,
and lambda calculus remains a fertile area of research.

What lambda calculus will give us is a theory of the notion offunction,
reduced to its essence: not any particular kind of function, such as the
functions of trigonometry or real analysis with their specific properties, but the
very idea of a function as a mechanism that takes certain arguments and yields
a result. This is themathematicalnotion of function, but since that’s the
concept behind functions and other features as we have them in programming
the theory will give us new insights directly relevant for programming: what’s
the scope of a variable, what’s the role of an argument, and how can we treat
a function as if it were an object — the very goal that this chapter pursues by
wrapping routines into agents.

Operations on functions

The basic idea is simple: a notation and transformation rules allowing us to
play with functions as we play with other mathematical objects.

Given two numbersa andb, you can write combinations likea + b or
sin (a) + cos(b); these use functions with well-defined signatures, for example

sin: REAL→ REAL -- Meaning: For any argument of typeREAL,
-- sinyields a result of typereal

"+": [REAL× REAL] → REAL
-- × is cartesian product; brackets are for grouping
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Can we do similar things with functions? Even in elementary mathematics
there indeed are operators on functions: iff and g are functions with
appropriate signatures, their composition, writteng f or sometimesf ; g (the
notation we’ll use, because it retains the order of application), is the function
h such thath (x) = g ( f (x)) for any applicable argumentx.

Lambda calculus will enable us to define many operators such as";",
whose arguments are functions.

We can continue up the ladder of abstraction. Composition,";", can itself
be viewed as a function: iff and g have — for some setsX, Y, Z —
the signatures

their compositionf ; g, calledhabove, has signatureX→ Z. Now";" as defined
above can itself be defined as a function that given any two arguments such as
f andg yields a result such ash. In other words it is a function of signature

We can go on defining functions that operate on functions that themselves
operate on functions and so on. Lambda calculus gives us a vocabulary and
rules — in other words, a theory — for dealing with such functions at an
arbitrary level.

Lambda expressions

First we need a simple notation for defining functions. We’ll assume that we
have at our disposal basic operations such as “+” on integers and reals; this is
only for the sake of examples, since lambda calculus can be defined without
reference to such existing mathematical theories. The symbol=∆ will mean “is
defined as”. To define a function “square” of signature

yielding the square of a number, we write alambda expression as follows:

The right-hand side (after the=∆ ) is the lambda expression; it denotes the
function that, for anyx of typeREAL, yieldsx ∗ x.

The symbolλ, “lambda”, is just a matter of convention but gives the whole
approach its name. To introduce the value, the lambda calculus literature generally
uses a dot., as inλ x: REAL x∗ x, but this just doesn’t work in an object-oriented
context where “.” has another role, so we’ll use a vertical bar| instead.

f : X → Y --
g: Y→ Z

";": [[X → Y] × [Y → Z]] → [X → Z] [17]

square: REAL→ REAL

square =∆ [18]λ x : REAL |  x ∗ x

.
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This is reminiscent of how we define a routine in programming:

with a more compact form in line with mathematical practice. The variable
following the λ, herex, is known as abound variable of the lambda
expression and is similar to the formal arguments of a routine.

The choice of bound variable does not affect the informal meaning of the
lambda expression. Just as we may choose the namey for the argument to the
routine [19], without affecting the routine’s meaning as long as we usey
instead ofx throughout its text,[18] denotes the same function as

This observation will formalized below through the notion ofalpha-conversion.
A lambda expression may have more than one bound variable, as long as

all its variables have different names:

What do lambda expressions buy us? At first sight,[18] states the same
property as if we had just said thatsquare is the function such that

but the difference is that[20] only talks aboutthe functionsquare, giving
properties of its values for possible arguments, whereas[18] definessquareas
a mathematical object in its own right, in the same way that we can define the
numberπ by giving itsvalue.

One of the immediate benefits is to allow clear definitions of higher-order
functions such as composition (signature given by[17]):

X, Y, Z are assumed to be known sets. Since they are arbitrary, we could introduce
a genericity mechanism for lambda expressions, as for classes, turningX, Y andZ
here into formal generic parameters. This is not necessary for this short overview
of lambda calculus.

In this example the source set in the signature,[X → Y] × [Y → Z], is a
cartesian product; correspondingly, the lambda expression has two bound
variablesf andg.

square(x: REAL): REAL [19]
-- Square ofx

do
Result := x ∗ x

end

λ : REAL | ∗

λ x, y: INTEGER |  x + y -- The addition function
λ x: NATURAL, z : REAL |  zx -- Notation when the types are different

∀ x : REAL | square(x) = x ∗ x [20]

";" =∆ λ f : X → Y, g : Y→ Z |  g ( f (x))

y y y

Either an approximate
value,of theexactvalue
as a sequence limit or
other math formula.
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You will have noted that so far every definition of a function by a lambda
expression has been preceded by a specification of the signature of the
function; in addition, every bound variable is declared with its type (as in
f : X → Y), like a formal argument in a routine. It is also possible to omit the
types entirely, with lambda expressions such asλ f, g | g ( f (x)), yielding the
variant of the approach known asuntyped lambda calculus. Here we’ll stick
to the typed form, for the same reasons we use typing in programming with
languages like Eiffel: readability, and avoiding errors.

If the signature appears just before it’s OK to omit the declarations of the
bound variables, as in

Currying

As an example of higher-order function that can be described through a
lambda expression, considercurrying.

Currying — so named in honor of the American mathematician Haskell
Curry, one of the founders of the theory known ascombinatory logicof which
lambda calculus is a part — allows us, without loss of generality, to work only
with functions of just one argument.

Touch of Methodology:
Declaring the signature

Whenever defining a function by a lambda expression, precede the
definition by a declaration of the function’s signature.

";": [[X → Y] × [Y → Z]] → [X → Z]
";" =∆ λ |  g ( f (x))

Touch of Notation:
Brackets and parentheses

In ordinary mathematical notation parentheses serve both for grouping and
for function application, as inf (a ∗ (b + c)) (innermost for grouping,
outermost for application). This would be very confusing in a discussion of
operators on functions.
In the present discussion, parentheses areonly for function application ;
grouping uses square brackets. So

[f ; g] (a ∗ [b + c])
is the application of the functionf ; g (the composition off andg) to an
argument that is the product ofa andb + c.

f, g
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When we are given a function, it often has two arguments — like “;” as just
seen, (on functions) and “+” (on reals) — or more. Consider such a function
for givenX, Y, Z:

From f we can define a functionf ’  with signature

as

What does this mean? Unlikef, function f ’ takes only one argument, of type
X; also unlikef it doesn’t directly yield a result of typeZ. Instead, for any
argumentx it yields a function — the one highlighted above, let’s call itg
—which itself takes an argumenty of typeY, then yields a result of typeZ. This
resultg (y) is f (x, y): the same as if we had directly appliedf to twoarguments.

We say thatf ’ is thecurried version off. Currying a two-argument
function means turning it into a one-argument function, related to the original
by [21]. Another way of expressing this is to say that to curry a function is to
specialize it on its first argument. This leaves a function of one argument.

So if add is the addition operation on integers (which we may write as
add =∆ λ x, y: INTEGER |  x + y), thencurry (add) is the function

so thatadd’ (1), for example, isλ y : INTEGER | 1 + x: the “increment”
function, adding one to any given integer.

The correspondence between a two-argument functionf and its curried
version (calledf ’ above) is one-to-one: informally, we don’t lose any
information by specializingf on its first argument, since the effect of the
second argument is embodied in the argument off ’ .

In fact it is interesting — and an example of the expressive power of
lambda notation — to express this correspondence betweenf andf ’ explicitly,
by introducing currying itself as a function, saycurry, defined by a lambda
expression. For givenX, Y, Z its signature is

and its value:

You should similarly define the inverse function, yieldingf from f ’ .

f : [X × Y ] → Z

f’ : X → [Y → Z]

f ’ =∆ λ x : X | [ ] [21]

add’ =∆ λ x : INTEGER | [λ y: INTEGER | x + y]

curry: [[X × Y ] → Z ] → [X → [Y → Z ]]

curry =∆ λ f : [X × Y ] → Z | [λ x : X | [λ y : Y | f (x, y)]]

λ y : Y | f (x, y)

→Exercise:“Uncurrying”,
19-E.6, page 500.
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Generalized currying

Although our basic examples all curry a two-argument function on its first
argument, it’s easy to generalize the concept: you can curry any function ofn
arguments (n ≥ 1) on any choice ofmarguments (1 ≤ m≤ n) simply by setting
values for these arguments. This yields a function of the remainingn – m
arguments, representing a specialized version of the original function, also
known as apartial evaluation. If m= n, you get a constant function.

Currying in practice

As an example of what currying represents in
practice, consider the difference between
compilationand interpretation. If we have an
interpreter for a programming language, we
may view it abstractly as a function of signature

whereProgramis the set of all correct programs
in the language,Input the set of possible inputs
andOutputthe set of possible outputs. (This is a
simplified but not incorrect view of what
programs are about.) Now acompilerproduces,
from the source program, a machine code program; because we have a
mechanism — the hardware — to execute such programs without further
effort on our part, we may consider them to be members of the set

A compiler generates such a machine code program from a source program,
so it is abstractly a function of signature

When we have two possible execution mechanisms for the same programming
language it isvery important that they implement exactly the same semantics.
(This is critical for example in EiffelStudio, where you typically go back and
forth between the fully compiled, fully optimizedfinalized form of
compilation and the fast incremental recompilation orMelting Ice, which is
mostly interpreted; certainly you want your finalized code as delivered to your
customer to produce — just faster —exactlythe same result as the Melting Ice
version.) Stating that:

interpreter: Program× Input→ Output

Machine_program=∆ Input → Output

compiler: Program→ [Input → Output]

← Figure from the
discussion of
compilation, page355.

Source
program

Target
program

Output
Compiler

Execution

Interpretation Interpreter

Compilation

Input



§19.6 LAMBDA CALCULUS 485

captures this consistency requirement concisely and elegantly.

The notion of currying is particularly relevant for an object-oriented
programmer. At the center of O-O style of programming appears a particular
style that makes every operation relative to an object, as in the standard call

(but also in an “unqualified” callf (args), which is the same operation applied
to the current object, and which you may indeed also writeCurrent.f (args)).
O-O programmer never really use the idiom “Apply this operation tothose
objects out there”, ubiquitous in other forms of programming. Instead it’s
always “Apply this operation tothisobjectx over here — oh, and by the way,
you might need a couple arguments, here’sargs for you”. In the end you can
express with one style what you would with the other, but the consequences of
the object-oriented style on the structure of programs are profound: it makes
the notion of class possible, as a form of both type and module, and opens the
way to inheritance.

In the end, it comes down to the concepts of this section. Object-oriented
programming is curried programming.

The calculus

What we have seen so far of lambda calculus is lambda expressions: a
notation, providing useful insights, but not a calculus. The calculus, relying on
that notation, provides a fascinating theory of functions and the operations on
them; the theory is of course beyond the scope of this book but it helps to be
familiar with the basic notions.

It turns out that lambda calculus can model the general notion of
computationthrough two basic operations on lambda expressions:
alpha-conversion and beta-reduction (also writtenα- andβ-).

To define these notions we need to distinguish between two kinds of
occurrence of a variable in a lambda expression: bound and free. As you
remember we say thatx, y, … are thebound variablesof a lambda expression
λ x: X, y : X,… | e. Then anoccurrenceof a variablea in such an expression
is bound if either:

• a is one of the bound variables (x, y, …).

• The occurrence is (recursively) a bound occurrence ofa in e.
This is an example ofrecursive definition as discussed in anearlier chapter.

compiler= curry (interpreter)

x. f (args)

← Chapter16.
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The notion immediately generalizes to a non-lambda expressionexp: an
occurrence is bound inexpif it is bound in one of its lambda subexpressions.
For example in[f ; g] (λ a : INTEGER| a + f (b)) the occurrence ofa is bound,
but not those off, g andb.

An occurrence that is not bound, such as those off, g andb in this
example, isfree. As another example, in

the occurrences ofxandyare bound, but the occurrence ofz is free. Informally
this means thatx andy are names local to the expression, butzmust be defined
outside of it. This is exactly what we get in programming: in

x andy are formal arguments, meaning that they are just conventional names
used to define the function, and any other names would work if they don’t
conflict with each other and with names from the enclosing class; butz must
come from the context. In practice it should be a feature (specifically a query:
attribute or function) of the class.

We say thatx “occurs bound” in an expressione if it has at least one bound
occurrence ine, and that it “occurs free” if it has at least one free occurrence.

The other basic notion issubstitution:

For example, ifexp is

ande is sin (x), thenexp[x := e] is λ z: INTEGER | + y + z ∗ .
As this example indicates, it is possible fore to contain occurrences ofx.

We only substitute free occurrences: ifexp is

λ x : INTEGER | [λ y: INTEGER | x + y + z]

f (x, y: INTEGER): INTEGERdo Result:= x + y + zend

Definition: variable substitution
Let exp be an expression,x a variable ande another expression. Then

exp[x := e]
denotes the expression obtained fromexpby replacing (substituting) every
freeoccurrence ofx by e.

λ z: INTEGER | x + y + z∗ x

λ , z: INTEGER | x + y + z∗ x

sin (x) sin (x)

x
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(the same as before except thatx is now bound), thenexp[x := e] is identical
to expsince we don’t substitute the bound occurrences ofx. But if expis

we will substitute the first (highlighted) occurrence ofx, which is free, but not
the bound variablex in the innermost lambda expression, where this would
make no sense because in that subexpressionx is just an arbitrary name;
λ z: INTEGER| z+ y, wherex doesn’t appear, denotes (informally) exactly the
same function. Alpha conversion will make this clear.

Let’s actually begin withbeta reductionbecause it is the central rule that
captures the essence of lambda notation. Beta reduction enables us to get rid
of a bound variable (and hence, if it’s the only one, of aλ) by transforming

into

if no free variable ofeoccursbound in exp. What this gives us is the notion
of applying a function to actual arguments: sinceλ x : X | expstands for the
function that yieldsexpas a function ofx, applying it toeshould stand forexp
with every free occurrence ofx replaced bye. For example, writinge→β f for
“beta-reduction transformse into f ”:

In the last example, the bound variablex is not actually used inexp; we may
view the lambda expression as representing a constant function ofx. So no
substitution occurs when we apply the expression to an arbitrary argumente;
the lambda abstraction just disappears.

λ y: INTEGER | f ( , [λ x: INTEGER| x + y])

[λ x: X | exp] (e)

exp[x := e]

[λ x: X | x + y] ( ) →β z + y

[λ x: X | x + y] ( ) →β y + y

[λ x: X | x + y] ( ) →β x + y

[λ x: X | z + y] (e) →β z + y

x

→ A slightly less
restrictive condition
will do; see the exercise
“Beta-reduction
condition”,  19-E.7,
page 500.

z

y

x
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As the second and third examples show, havingeuse variables that occur
in expdoes not prevent beta reduction as long as these occurrences are not
bound. This restriction does not rule out the third example, becauseexp is
x + y, wherex does not occur bound: it only occurs bound in the full enclosing
lambda expressionλ x : X | x + y. The restriction would only prevent
beta-reduction in an expression like

where beta-reduction would yieldλ y : Y | y + y, which incorrectly confuses
y with the bound variable — “incorrectly” in light of the informal intent of the
lambda expressions involved.

Does this mean we can never — through beta reduction — simplify
[λ x : X | exp] (e) if we are unfortunate enough that one of the free variables
of e has been chosen as bound variable for some subexpression ofexp? This
would of course be regrettable since bound variables are just arbitrary names.
If we replace[22] by

beta-reduction becomes possible, yieldingλ z: Y | y + z; but that was just a
change of bound variable, not affecting the informal understanding of the
underlying function. For this we needalpha-conversion, the rule allowing us
to make such a harmless name change, as you would do in programming when
you choose a new name for a variable or formal argument, for example to
remove a conflict with the name of an attribute of the enclosing class.

Some programming languages allow such conflicts, with the convention that the
most local name takes precedence; Eiffel prohibits them, for simplicity and
readability, and to avoid bugs; so if a conflict arises you must find a new name.

Given a variabley, alpha-conversion transforms a lambda expression

in whichy hasneither free nor bound occurrences, into

[λ x: X | [λ y: Y | x + y]] ( ) [22]

[λ x: X | [λ : Y | x + ]] ( y)

λ x: X,… | exp,

λ y: X, … | exp[x := y]

y

z z

→ Again the condition
is, for simplicity,
stronger than needed;
see the exercise
“Alpha-conversion
condition”,  19-E.8,
page 500.
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The condition ony prohibits us from replacingx by y in either of

since the resulting expressionλ y : X | y + y would, in both cases, lose the
semantics of the original expression:

• [23] represents a function of one argument, which addsy to this
argument,y being a free variable, that is to say a value contributed by the
context of the expression (for example an enclosing expression). In
contrastλ y : X | y + y is a function of one variable — locally usurping
the namey —, which simply adds this variable to itself.

• In [24] y is bound, but then alpha-conversion would merge it with the free
variablex.

The last observation indicates that the requirement ony as stated above is in fact
stronger than it needs to be: we don’t need to ban alpha-conversion ify if it has any
bound occurrences inexp, only if any of these occurrences appears in a context
wherex is also bound.

Alpha-conversion and beta-reduction provide the basis for a full-fledged
theory of computation, which describes any computation as a sequence of
such transformations of (possibly complex) lambda expressions. A key
consistency property of this theory is theChurch-Rosser Theorem, stating that
if from a given lambda expressionetwo separate sequences of transformations
yield different expressionse1ande2, then there exist two other sequences that
transforme1 ande2, respectively into some common expressionf (see the
illustration). This means that if several transformations are possible on any
particular expression, it doesn’t matter which one you choose to apply first, as
you’ll eventually get to the same “canonical” resultf.

λ x: X | x + y [23]
λ y: X | x + y [24]

→ Exercise19-E.8.

Church-Rosser
property

e

e1 e2

f

Sequences of
transformations
(α, β or a mix)
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Lambda calculus and agents

I hope that as you were reading about lambda calculus you started to make the
connection with the concepts of the preceding sections.

The routine as we knew it until the present chapter was a program
structuring construct, but couldn’t join the games of program execution, along
with references, basic objects (integers etc.) and more complex objects. To use
a favorite expression of the functional programming, routines are not
first-class citizensof program semantics. It’s like functions in mathematics if
we don’t have a framework such as lambda calculus to define functions as
values and manipulate them through expressions.

As lambda calculus turns functions into first-class citizens of the
mathematical world, so do agents set routines loose, wrapped in objects, to act
and be acted upon during execution.

Agents or not, routines are of course already a form of lambda
expression, and routine call is the equivalent of beta-reduction. But it all has
to be planned statically, with calls such asf (a, b) wheref is specified explicitly.
Object-oriented programming introduces a first element of dynamism thanks
to dynamic binding, allowingf to have several variants and the selection
between them to be performed anew for each callx. f (a, b) on the basis of the
type of the object attached tox. This dynamic element is what enables us to
solve some of the problems of this chapter through the Many-Little-Wrappers
pattern (with the limitations that we’ve seen) but the choice it offers is only
between a set of variants specified in advance. With agents, beta-reduction
becomes a completely dynamic operation:a.call ([a, b]) where — aside from
the signature — we don’t have statically to know anything about the routine
that the agenta represents.

The concepts of lambda calculus help us understand the nature of “open”
and “closed” operands. They correspond in agents to bound and free variables
in lambda expressions.
• In e=∆ λ x : INTEGER| x+ y, the bound variablex represents an argument

to be provided at the time of beta-reduction; the free variabley comes
from the environment, typically an enclosing expression (it will remain
unevaluated in a beta-reduction ofe).

• In agentf (?, y), the open argument will provided at the time of a call; the
closed argumenty is provided at the time of definition.

You may also have noted that having closed arguments in an agent is
essentially tocurry the routine on these arguments (taking currying in its
generalform applied to anym of n arguments). In the various dynamic forms
that we can produce from a routine:
• agent {C} ?.f is a dynamic version of the fullf, faithful to the signature

of the original.

← “Generalized
currying”,  page 484.
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• At the other extreme,agent f (a, b), with all operands closed, is the
completely curried version; you call it (if the value ofa is that agent) as
a.call ([]) with no arguments. This, by the way, reminds us of one of the
differences between mathematics and programming: we noted earlier that
a math function curried on all its arguments is a constant function, but
successive calls toa.call ([]) need not produce the same effect, because
even ifa hasn’t changed the surrounding objects may have.

• In-between, an agent with some operands closed and some open, as in
agenta.f (?, x, y) is similar to a function curried on the closed operands.

In one respect, agents as seen so far are less general than lambda expressions.
To useagenta.f (?, x, y) or any of the other variants we must assume there’s
a functionf to build on. It’s as if in lambda expressionsλ x, … | expwe
restrictedexpto be of the formf (args) wheref is a function and theargsmay
involve some bound variables such asx (open arguments of the agent) and
some free ones (closed arguments). We are now going to see how to remove
that restriction and allow for agents the equivalent of arbitraryexpexpressions.

19.7 INLINE AGENTS

The study of lambda calculus suggests a generalization of the basic agent
mechanism, giving us flexibility beyond what we have already gained through
the introduction of open and closed arguments.

The agents that we have used so far all proceed from an existing routine.
But sometimes you want an agent and don’t need a routine. You just want to
define some computation or property to be passed along as an agent, and it’s
unpleasant to have to add a routine to the enclosing class just for that purpose;
the routine may not be an interesting feature for the class, and will just make
it seem more complex.Inline agents will let you define an agent without
burdening the class.

The need often arises in writing contracts — all kinds: preconditions,
postconditions, class invariants. For example the invariant of a class could
specify that all the elements of a certain array of integersa are positive. We
alreadyknow how to state this thanks to the classINTEGER_INTERVALand
the operator function|..| which, for any two integersa andb, enables us to
express the intervala |..| b. We saw how to state the needed condition,
equivalent to∀ s: a.lower .. a.upper| a [i] > 0:

(a.lower |..| a.upper).for_all (agent is_positive) [25]

← “Iter ating for
predicate calculus”,
page 466.

←Same as[8], page
466.
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This requires writing a little function for the occasion:

That’s a bit of a nuisance. Not so much the writing of the code: if you’re
worried about saving keystrokes you could get rid of the header comment and
the postcondition, but you should not as this is not the problem (any useful
algorithm, however local its use, should be properly designed and
documented). The real issue arises if you only needis_positivefor expressing
the above property[25], for example as a clause in a class invariant. You are
then encumbering the class with a feature that doesn’t really belong to the
corresponding data abstraction. This is particularly unpleasant if you have
many such properties, as will be the case if you try to write precise and
extensive contracts. True, you need not export these features, but they become
part of the class anyway. It would be better to express the relevant properties
or computations just at the place they are needed, with no visibility outside of
that context.

Inline agents fit right here. An inline agent, as the name suggests, is a
routine-like declaration yielding an agent — nothing else, no routine of the class
— and declared where the agent is needed. The syntax is straightforward as
illustrated by the rewriting of the last example; we merge[26] into[25], yielding

Starting with the second line it’s the same as the earlier declaration; the only
difference is that there is no routine name (is_positive) any more. That’s
indeed what characterizes an inline agent: it is ananonymous routine.

is_positive(n: INTEGER): BOOLEAN [26]
-- Is n greater than zero?

do
Result := (n > 0)

ensure
definition:Result = (n > 0)

end

(a.lower |..| a.upper).for_all
( [27]

-- Is n greater than zero?
do

Result := (n > 0)
ensure

definition:Result = (n > 0)
end)

agent(n: INTEGER): BOOLEAN
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As illustrated, the syntax of an inline indeed that of a routine declaration,
with the routine name replaced by the keywordagent. You can have use all the
components that would be applicable to a routine, such as pre- and
postconditions, or alocal clause to give the agents its own local variables.
Their names must be different from those of features of the class and local
variables of the enclosing routines; this is different from the convention for
lambda expressions (where inner bindings simply take precedence over outer
ones), but is meant to avoid any confusion; as noted, names are not a scarce
resource — or, put differently, you should take care of your own
alpha-conversions.

Even though there can be no name conflicts with local variables of the enclosing
routines, you maynot use them directly in the agent. In the rare case you need
them, you will have to pass them as arguments to the agent.

Illustrated above for predicates, the inline agent mechanism is useful for
procedures and functions of any signature.

This mechanism completes our panoply of agent mechanisms, providing
a major boost to the expressiveness of our object-oriented programs. In the
next chapter we’ll see a major application of this mechanism, addressing in an
elegant way the “observation” problem sketched earlier.

19.8 A PROBLEM WITH AGENT TYPES

Before closing off on the agent mechanism it is useful to mention a limitation
of the mechanism. You are unlikely to encounter the problem except if you
start doing strange things with agents, but it exists and — in this book’s spirit
of rational analysis and open discussion — it’s proper to mention it.

The problem involves type properties of tuples and agents. The generalrule
is thatTUPLE [T, U, V] (for example) conforms toTUPLE[T, U], TUPLE[T]
and plainTUPLE. It follows from the definition ofTUPLE[T, U, V] as denoting
sequences of threeor moreelements of which the first three are of the given
types. It’s in particular thanks to this rule that we can have a suitable generic
parameter signature forROUTINEand its descendants:ROUTINE[BASE,
OPEN–>TUPLE]. Since any tuple type conforms toTUPLE, we can freely use
PROCEDURE[ANY, TUPLE] but alsoPROCEDURE[ANY, TUPLE [T]] ,
PROCEDURE[ANY, TUPLE[T, U]]  and so on.

But now consider a routine expecting an agent of such a type

We think ofa, as described earlier, as representing a procedure, from any class,
expecting an integer argument. But in fact its type describes procedures of one
or more arguments, the first being an integer. So it is in fact valid to write

r (a: PROCEDURE[ANY, ]) do … end

← “TUPLES”,  10.5,
page 266.

TUPLE[INTEGER]
[INTEGER]
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using as actual argument fora a procedure withtwo arguments. Nowr will
most likely need to calla:

for some integer valuen. But that’s onlyone integer value; to execute the
procedure — specifically, to printi + j — r needs another one, corresponding
to j. The run-time result is undefined; the program might crash, or (generally
worse) use an arbitrary value.

There is a simple way to avoid this:ROUTINEand its descendants
provide a query

which enables you, prior to callingcall, to find out if an argument tuple is
appropriate for the given arguments. Use it if you have a doubt. But it’s not a
really satisfactory long-term solution, first because it’s tedious to prefix every
call such a check, but more importantly because run time is too late for such a
check: a mismatch should be detected at compile time. This is a language
problem to which several solutions have been proposed. One will undoubtedly
be available in the near future, but in the meantime just make sure, when
assigning or passing an agent expression, that the number of arguments
matches the signature exactly.

19.9 OTHER LANGUAGE CONSTRUCTS

At the beginning of this chapter wesaw that a number of situations call for the
possibility of passing around data — objects, in an O-O framework — that
wrap computations. The agent mechanism addresses that need effectively.

Not all programming languages, however, have such a construct. In fact,
of languages commonly used in industry, only Eiffel, Smalltalk and C# have
something like it (with significant differences in the details). So it’s interesting
to review briefly what solutions are available depending on the kind of
languages you may have to use.

There are basically four approaches:
• A mechanism supporting lambda expressions, such as agents.
• Routines as arguments to other routines.
• Function pointers.
• In object-oriented programming, the Many-Little-Wrappers pattern.

r (agent(i : INTEGERdo print (i ) end)

a.call ([n])

valid_arguments (args: OPEN)

, j + j

← “WHY OBJECTIFY
OPERATIONS?”,
19.2, page 459.
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Agent-like mechanisms

Agents as we have studied them in this chapter is a form of the first approach.
C# offersdelegates, which pursue the same aim. They are more complicated
to use than agents since you must declare a specific type for each delegate. At
the price of that complication, you will get the same effect.

Smalltalk has a notion ofblock, a segment of code that can be passed
around as an object. Again, you get the same effect. Note that Smalltalk is an
untyped language, meaning that there is no way to check at compile time that
blocks will be used with the proper arguments; a mismatch will result in a
run-time error.

Functional languagestypically support the ability to treat functions
(their routines) as data. This was already the case with the original Lisp, where
an expression of the form

definesf as a function of two arguments. Then you can usef as argument to
another function, for example in

wherecurry itself can be defined in Lisp. The language was indeed defined
explicitly on the basis of (untyped) lambda calculus, so it is not surprising that
much of what we have seen in this chapter can be done fairly naturally, with
the qualifications that:

• Lisp is not object-oriented, so there is no notion of class, inheritance etc.
in the basic language, although O-O versions of Lisp do exist.

• Lisp was originally untyped, so you will not get the benefits of static type
checking, although here too the situation depends on which variant you
use, as some of them are statically typed.

Functional languages, whether or not following lambda calculus as closely as
Lisp does, generally provide similar capabilities. So for this entire class of
languages you can use many of the techniques you have learned in this chapter.

The termclosure is often used to denote expressions representing
routines which can be passed around as data even though they may need to
access global variables.

(defun f (x y) (“expression involvingx andy”)

(curry f)

Lisp syntax.

Lisp syntax.
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Routines as arguments

A number of programming languages allow you to pass a routine as argument
to another routine, with a syntax such as

and some appropriate notation to call such a routine argument, heref, from
within the routine. You can then pass as actual argument a routine with a
matching signature, as inintegral ( , 0, 1).

This solution has the following limitations as compared to agents or
closures:

• “Routine” is a special argument type which doesn’t generally fit well in
the type system of the language.

• Typically, information about a routine is not a normal value (like an agent
or a closure) and hence cannot for example be assigned to a variable (for
which, because of the previous point, it would be hard to declare a type);
it can only be used as argument to a routine.

• Because there is no proper type system, it is generally not possible or at
least not simple to move up in abstraction and define functions such as
composition or currying.

• All you can do on a routine argument is to call it. In contrast, agents are
full-fledged objects whose features provide information on the
encapsulated routine.

• Difficult issues arise when routines access global variables; they affect
the compiler writer but also, to some extent, the programmer.

• The approach doesn’t fit too well with an object-oriented scheme, since
it uses data other than objects.

The approach, however, fills many of the basic needs and has been used
successfully in non-O-O languages, going as far back as Fortran and
continuing with Pascal and several of its successors.

Function pointers

Computers, as youknow, use memory to store not only the objects but the
programs. At run time, a particular routine resides at a particular address, and
it’s possible to transfer execution to the code at that address. If there’s a way
for the program to denote that address, and a mechanism to say “execute
routine at addressa, then return and continue”, you can treat routine addresses
as data through which to call the corresponding routines.

integral ( ; a, b: REAL): REAL Not theexactsyntaxofa
specific language.

f: function (x: REAL): REAL

sine

←“Thestored-program
computer”,  page 12.
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At the machine level this technique is what makes all the others possible:

• When you use a routine as argument to another routine, what the compiler
will actually pass is the routine’s address.

• An agent object will internally contain — although not in a field that your
program can directly access — is the address of the associated routine.

• Dynamic binding, necessary for the Many-Little-Wrappers pattern,
assumes the run-time ability to access a routine known through its
address, stored in some data structure associated with an object type.

All these techniques, however, hide the physical routine address under one or
more layers of abstraction, enabling programmers to think in high-level terms:
routines, agents, objects.

C and C++ let you pass the name of a function (the only kind of routine,
procedures being treated as functions with a “void” result type) as actual
argument, or assign it to a variable. Then ifx is the corresponding formal
argument or variable, you can call the original function through

When declaring a formal argument representing a function you can specify the
full signature, known as aprototype, so that an actual argument that doesn’t
match the signature will be rejected at compile time. This technique then
becomes the same as the previous one (“routines as arguments”). Providing
the signature is, however, not compulsory; you can get away without it at the
price of a possible compile-time “warning” — a message that signals a
possible problem but doesn’t prevent compilation. With this option, which
assimilates the function name to the corresponding machine-level address,
you gain the same flexibility as if you were programming in assembly
language but lose the benefits of type checking.

Many-Little-Wrappers and nested classes

If a programming language does not support any of the preceding techniques
but is object-oriented — with classes, inheritance, polymorphism and dynamic
binding — you can use the Many-Little-Wrappers pattern studied at the
beginning of this chapter.

(*f) (args)
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The main disadvantage is the need to write many little classes, often with
just one routine. Java, which has no agent-like mechanism and no way to pass
routines as argument, mitigates this problem in part by allowing the
programmer to declare a class as local to another class; this is known as a
nested class. You can then use that class, as if it were a feature of the enclosing
class, to describe objects that will only need to be created by features of the
latter. This avoids polluting the global name space of the program (that is to
say, the set of class names directly available to other software components);
but the basic problems remain the same.

19.10 FURTHER READING

[This will include a good reference on lambda calculus accessible to novices.]

19.11 KEY CONCEPTS LEARNED IN THIS CHAPTER

• A number of applications benefit from a mechanism for packaging a
routine into an object and storing it away for later call. The corresponding
language construct may be called “agent”; other common names include
“delegate” (in the C# language) and “closure”.

• An agent wrapping a routine can be treated as any other objects, for
example assigned to variables and passed around the program structure
through feature calls. It can be called at any time through a feature
applicable to all agents; this triggers a call of the associated routine, but
the context of the agent’s call need not know, and usually does not know,
what that routine is.

• Agents can have any number of “open operands”, corresponding to the
bound variables of a lambda expression. Open operands may include
some or all of the arguments, as well as the target. Closed arguments (the
non-open ones) are specified in the agent’s definition; open arguments
must be provided, in the form of a tuple, for each call to the agent.

• Agents can be defined on the basis of an existing routine; it suffices to
specify the values of closed operands if any. To avoid defining a new
routine when none is available, it is also possible to declare an agent
“inline” by writing the instructions directly in the agent’s definition.

• In a programming language not supporting agents or a similar
mechanism, passing functions around as data requires the use of many
wrapper classes, or routines as arguments, or routine addresses. These
solutions are less convenient and, in the last case, less type-safe.

• The theory of lambda calculus provides a mathematical framework for
understanding agent.
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• A lambda expression includesbound variablesand a defining expression
(itself possibly a lambda expression), which may involve the bound
variables as well as other variables said to occurfree. It represents a
function; applying the function to arguments yields the defining
expression after substitution of each argument for the corresponding
bound variable. This process is known asbeta reduction.

• The bound variables of a lambda expression are arbitrary names. They
can be changed throughout the expression (including in its defining
expression) as long as this doesn’t create any conflicts, in particular with
free variables. This process is known asalpha conversion.

• Tocurrya function ofnarguments is to specialize it onmof its arguments
(1 ≤ m< n), leaving a function ofn – m arguments.

New vocabulary

19-E EXERCISES

19-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

19-E.2 An integration class without agents

See thecorresponding “Programming Time!”.

19-E.3 Iterator objects

Devise an iterating mechanism that doesn’t use agents but relies on a
LINEAR_ITERATORclass describing objects able to iterate a specific
operation on a linear structure such as a list.

Agent Alpha-conversion Beta-reduction
Church-Rosser property Closed operand Closure
First-class citizen Inline agent Lambda calculus
Lambda expression Many-Little-Wrappers pattern
Nested class One-Song-Artist class Open operand
Operand Partial evaluation Prototype (C, C++)
Substitution (of a variable in an expression)

← Page463.
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19-E.4 Using Object Test

Rewrite the libraryproceduredo_all to use Object Test rather than assignment
attempt. (This does not affect “Part 2” of the body.)

19-E.5 An iterator that shoots itself in the foot

(This is a masochistic type of programming exercise, asking you to violate a
methodology prescription just to contemplate what mess will result.) Working
with a descendant ofLINEARsuch asLINKED_LIST, use the procedure
do_allwith an agent argument representing a routine that — disregarding the
explicit prescription indo_all’s header comment — changes the structure, in
such a way thatdo_all crashes execution or produces an otherwise
inconsistent result. With the help of the debugger if needed, analyze the exact
circumstances leading to this failure.

19-E.6 Uncurrying

It was noted that currying is a one-to-one function. Write the signature and
definition of the functionyrruc that, given a one-argument functionf ’ whose
result is a one-argument function, yields the associated two-argument function
f such thatf’ = curry (f).

19-E.7 Beta-reduction condition

Show that the condition for beta reduction of[λ x : X | exp] (e), “no free
variable ofe occurs bound inexp”, is stronger than actually needed for the
reduction to preserve the informal semantics of function application, and
devise a less restrictive but still correct condition.

19-E.8 Alpha-conversion condition

Show that the condition for alpha-conversion ofe =∆ λ x : X | exp into
λ y : X | exp[x := y], “y occurs neither free nor bound ine”, is stronger than
actually needed for the reduction to preserve the informal semantics of change
of variable, and devise a less restrictive but still correct condition.

← Page470.
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20

Event-driven design

Who’s in charge?

In the style of programming that we have used so far, the program defines
the order of operations. It follows its own scenario, defined by control structures:
sequence, conditional, loop. The external world has its say, of course, through
user interaction, database access and other input, affecting the conditions that
control loops and conditionals. But it’s the program that decides when to test.

In this chapter we explore another kind of control structure where the
program no longer specifies the sequencing of operations directly. Instead, it
is organized as a set ofservicesready to be triggered in response toevents,
such as might result from a user clicking a button, a sensor detecting a
temperature change, a message arriving on a communication port. At any time,
the next event determines which service gets solicited. Once that service has
carried out its function, the program gets back to waiting for events.

Such anevent-driven scheme requires proper initialization: before the
real action begins, there must be a setup step to associate services with events.

This architectural style — in the end another control structure to be added
to our previouslist — is also known aspublish-subscribe, a metaphor
emphasizing the complementary role of various elements of the software:

• Some elements of the software, thepublishers, trigger events.

• Some elements, thesubscribers, register their interest in certain types of
events, indicating what services they want to solicit in response.

These roles are not exclusive, as some subscribers may trigger events of their
own. Note that “event” is asoftwareconcept: even when events originate
outside the software — mouse click, sensor measurement, message arrival —
they must be translated into software events for processing; and the software
may trigger its own events, unrelated to any external impulse.

Event-driven programming is applicable to many different areas of
programming. It has been particularly successful for Graphical User Interfaces
(GUI), which we’ll use as our primary example.

← Chapter7, Control
structures.
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20.1 EVENT-DRIVEN GUI PROGRAMMING

Good old input

Beforewe had GUIs, programs would take their input from
some sequential medium. For example a program would read
a sequence of lines, processing each of them along the way:

whereread_line, having preconditionnot exhausted, reads the next line of
input and leaves it inlast_line, andexhausteddoesn’t refer to the feelings of
the programmer but simply states that there is no more line to be consumed.

With such a schemethe program is in control: it decides when it needs
some input. The rest of the world — here a file, or a user typing in lines at a
terminal — then has to provide that input.

Modern interfaces

Welcome to the modern world. If you write a program with a GUI, you let
users choose, at each step, what they want to do, from many possibilities —
including some having nothing to do with your program, since a user may
choose another window, for example to answer an email.

Consider the screen on the adjacent page, from Traffic. The interface that
we show to our user includes a text field and a button. There might be many
more such “controls” (the Windows term for graphical elements, called
“widgets” in the Unix world). We expect that the user will perform some input
action, and we want to process it appropriately in our program. The action
might be typing characters into the text field at the top, clicking the button, or
any other, such as menu selection.

But which of these will happen first? Indeed, will any happen at all?

We don’t know.

from
read_line
count:= 0

until
exhausted

loop
count:= count+ 1

-- Store last_line at positioncount in Result:
Result.put (last_line, count)
read_line

end
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Of course we could use a bigif … then … elseif… end, or more conveniently
a multi-branch listing all possibilities:

but this suffers from all the problems we have seen with multiple-choice
algorithm structures (as part of the justification for dynamic binding): it’s big
and complex, and highly sensitive to any change in the setup. We want a
simpler and more stable architecture, which we won’t have to update each time
there is a new control.

Event-driven design addresses such a situation through a completely
different scheme, as suggested above.

We may think of the publish-subscribe scheme as one of those quantum
physics experiments (see the figure on the next page) that hurl various particles
at some screen with a little hole, to find out what might show up on the other side.

inspect
user_action

when “Click on the Time button”then
“Display the time”

when “Input in the Time field”then
“Update the time”

when … Many other branches…
end

A program
GUI

(Screenshot to
be added.)
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This scheme works for many different application areas; GUI programming is
just an example. You can find many others, in fields such as:

• Communication and networking, where a node on a network may be
broadcasting messages that any other node may pick up.

• Process control. This term covers software systems associated with
industrial processes, for example in factories. Such a system might have
sensors monitoring temperature, pressure, humidity; any new recording,
or just those exceeding some preset values, may trigger an event which
some elements of the software are prepared to handle.

20.2 TERMINOLOGY

In describing event-driven programming it is important to define the concepts
carefully, distinguishing in particular — as in other areas of programming —
between types and instances.

Events, their types and their arguments

Definition: Event
An event is a signal emitted by a software element during execution.

EVENTS

ROUTINE

ROUTINE

ROUTINE

PUBLISHERS SUBSCRIBERS Triggeringand
handling
events

triggerevents handle events
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This simple definition indicates that for our purposes (as already noted) an
event is asoftwareoccurrence. For phenomena triggered outside of the
software, such as a mouse click, we will use the termexternal event.

The distinction is important: a software system, say an application built
on Traffic, does not directly react to external events. When a user clicks a
mouse button, this gets processed by operating-system-level software,
enabling a GUI library (such as EiffelVision) to detect the external event and
trigger a software event, which other parts of the system may then handle.

This case, in which a software event is triggered as a consequence of anexternal
event, is common but not the only one; in an event-driven architecture parts of the
system may decide to trigger their own software-only events.

We already know the name for producers of events:

To “trigger” an event is to emit the corresponding signal. This is also called
“ raising” the event or, naturally,publishing it.

What characterizes an event is not just that it was triggered but that it is
of a certain kind, orevent type. For example all left-button mouse clicks are of
the same event kind, but a left-button click is of a different type than a
key-press (keyboard input) event. This will turn out to be the principal notion:

The notion ofsignature was defined for routines: the signature of a procedure
is a list of types, specifying that every call to the routine must provide a list of
arguments of the corresponding types. (For a function, the signature also
includes a result type.)

The reason event types have signatures is that events may have
arguments. Other than its type, the primary property of an event is that it
occurs: on 3 August 1492, Christopher Columbus set sail; five minutes ago, I
clicked the left button of my mouse. But to process the event we may need
some supplementary information: where did Columbus take off? What were
the coordinates of my mouse cursor? Such information will appear in the
event’s arguments, called that way by analogy to the information passed,
through arguments, to a routine execution:

Definition: Publisher
A publisher is a software element that may trigger events.

Event types, signature
Any event belongs to a singleevent type, characterized by asignature.

Event arguments
Every event includes a list of values, of types matching the signature, called
thearguments of the event.

← “ANATOMY OF A
ROUTINE
DECLARATION”,
page 201.
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For example:
• It is not enough to know that a left-click has occurred: the software

(specifically, thesubscribersas defined next) will usually need the
coordinates of the point where the click occurred. Consequently, the
event type’s signature is[INTEGER, INTEGER] (screen coordinates are
generally measured as pixel distances from the origin), and any particular
left click will carry a pair of integers[z, y]. It is also possible to have a
single “mouse click” event with a third component to the signature
indicating the button that was clicked. (This is the convention of the
EiffelVision library, where such events have additional arguments
representing such properties as the pressure applied, useful for joysticks
and advanced pointing devices.)

• Although we might have an event type for each key that can be pressed
on the keyboard, it’s more attractive to have a single “key press” event
and pass the code of the key as an argument.

• A “temperature change” event may include the old and new values.
Whenever a publisher triggers an event, it must provide a value for each
argument: mouse coordinates, key code, temperatures.

Some events, such as a timeout, don’t need to carry any information. They
have an empty argument list; corresponding event types have an empty signature.

The notions of signature and argument make event types comparable to
routines: like a proceduref (a: TYPE1; b: TYPE2), an event type is
characterized by a name and by a list of types. As a routine gets called, so does
an event type get triggered.

The term “type” might suggest a different analogy, where event types correspond
to the types of object-oriented programming (classes, possibly with generic
parameters), and events to theirinstances(objects). But comparing event types to
routinesis more appropriate; then aneventof a certain type corresponds to one
specificexecution of a routine.

In our model, then, an event is not an object — and an event type is not a class.
Instead thegeneral notioncovering all possible event types is a class, called
EVENT_TYPEbelow; andone particular event type, for example “left-button
mouse click” (the idea of left clicks, not one particular click that happened last
Monday in my office when I got fed up with the spam and clicked “OK” for
“Delete all messages?”) is an object. As always when you are hesitating about
whether — or, as in this case, at what level — to introduce a class, the criterion
is “is this a meaningful data abstraction, with a set of well-understood
operations applicable to all instances?”. Here:
• If we decided to build a class to represent a particular event type, say left

click, its instances would be events of that type; but they have no useful
features. True, each event has its own data (the arguments), but other than
accessing such data there’s no meaningful operation on an event. Its
single property is that it occurred.



§20.2 TERMINOLOGY 507

• In contrast, if we treat an event type as an object, the associated features
are obvious and useful: trigger a particular event of this type now, with
given values for the arguments; subscribe a given subscriber to this event
type; unsubscribe a subscriber; find out how many events of this type
have been triggered so far; find out what its subscribers are; and so on.
This is the kind of rich feature set that characterizes a legitimateclass.
Not treating each event as an object is also good for performance, since it is
common for execution to trigger many events; each move of the mouse cursor is
an event, even if it is part of a broad sweep of the cursor across the screen, so we
should avoid creating all the corresponding objects — even though this does not
get us out of the wood since theargumentsof each event must still be recorded,
each represented by a tuple. A good GUI library will remove the performance
overhead by recognizing a sequence of contiguous moves in close succession and
allocating just one tuple instead of dozens or hundreds.

Events of a given event type will be of interest to certain parts of the software:

A subscriber registers for an event type, not a particular event. Although
registration (and deregistration) may occur at any time, it is common to have
an initialization phase that puts the basic subscriptions in place.

The same software element may, as noted, act as both a publisher and a
subscriber; in particular it is a common scheme for a subscriber to react to an
event by triggering another event.

Registering, for a subscriber, means specifying a certainaction for
execution in response to any event of the specified type. There must be a way
for the action to obtain the values of the event’s arguments. The obvious way
to achieve such registration is to specify aprocedure, whose signature
matches the event type’s signature.

We also have terms describing how a subscriber reacts to an event:

We now have the full picture of how an event-driven design works:
1 • Some elements,publishers, make known to the rest of the system what

event types they may trigger.
2 • Some elements,subscribers, are interested inhandling specific event

types. Theyregisterthe corresponding actions.
3 • At any time, a publisher cantrigger an event. This will cause execution

of actions registered by subscribers for the event’s type.

Definitions: Subscriber, Register, Subscribe
A subscriber is a software element thatregisters (or “subscribes”) to be
notified of events of a certain event type, so that it can execute specified
actions in response.

Definitions: Handle, catch
When a subscriber gets notified of an event to whose type it has subscribed,
it handles (or “catches”) the event by executing the registered action.

←ClassEVENT_TYPE
in the final design:
“USING AGENTS:
THE EVENT
LIBRARY”,  20.5, page
523.
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In the GUI example:
1 • A publisher is some element of the software that tracks input devices such

as the mouse and the keyboard, and triggers events under specified
circumstances, for example mouse click or key press. You usually don’t
have to write such software yourself; rather, you rely on aGUI library
— such as EiffelVision for Eiffel, Swing for Java and Windows Forms for
Microsoft’s .NET — that takes care of triggering the right events.

2 • A subscriber is any element that needs to handle such GUI events; they
register the routines they want to execute in response For example we
may register, for occurrences of the mouse click event type on the Time
button, a routine that displays the time.

3 • If, during execution, a user clicks the Time button, this will cause
execution of the routine — or routines — registered for this kind of event.

An important property of this scheme, illustrated by the separation between
the two sides in our earlierfigure, is that subscribers and publishers should not
have to know about each other.

Keeping the distinction clear
We have made a careful distinction between events and event types. You might
think it obvious, but in fact — this is a warning, to help you understand the
literature if you start using various event-driven programming mechanisms —
many descriptions confuse the two; this can make simple things sound tricky.

Below is an excerpt from the presentation of event handling in .NET, a
virtual-machine-based framework developed by Microsoft, whose concepts
are also reflected in the C# and Visual Basic .NET languages. The excerpt
comes from introductory paragraphs in the onlinedocumentation.

Events Overview
Events have the following properties:
1 • The publisher determines when an is raised; the subscribers

determine what action is taken in response to the .

2 • An can have multiple subscribers. A subscriber can handle
multiple  from multiple publishers.

3 •  that have no subscribers are never called.
4 • are commonly used to signal user actions such as button clicks

or menu selections in graphical user interfaces.
5 • When an has multiple subscribers, theeventhandlers are invoked

synchronously when an is raised. To invoke
asynchronously, see [another section].

6 •  can be used to synchronize threads.

7 • In the .NET Framework class library, are based on the
EventHandler delegate and theEventArgs base class.

← “Triggering and
handling events”,
page 504.

Frommsdn2.microsoft.
com/en-us/library/awbf
tdfh.aspx, as of August
2006. Numbers, italics
and colors added.
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http://msdn2.microsoft.com/en-us/library/awbftdfh.aspx
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I have highlighted in those occurrences of “event” where the authors
really mean event, and in those for which they mean event type (a term
that does occur in the .NET documentation, but rarely). Where the word is in
italics, it covers both. All this is my interpretation, but I think that on the basis
of the previous discussions you will agree. In particular:
• It is not possible (points1, 5) to subscribe to an event; for one thing, the

event does not exist until it has been raised, and when it has been raised
that’s too late! (Nice idea, though: wouldn’t you like to subscribe
retroactively to the event “X’s shares rose by at least 20% today” for
every company X listed on the NYSE?) A subscriber may subscribe to an
eventtype— that is to say, declare its intention of being notified of any
event of that type raised during execution.

• Point7 talks about properties ofclassesdescribing eventtypes, as indeed
in .NET every event type must be declared as a class. Such a class must
inherit from the “delegate” classEventHandler(.NET delegate classes
provide a complicated kind of agent mechanism) and use another class
EventArgs describing the notion of event arguments.

• Point3 sounds mysterious until you realize that it means: “If anevent type
has no subscriber, triggering aneventof that type at run time has no effect.”
So all this clause describes is a performance optimization: by detecting that
an event type has no subscriber, the .NET event mechanism can remove the
overhead of raising the corresponding events, which in .NET implies
creating an object for each. (The mystery is compounded by the use of
“call” for what the rest of the .NET documentation calls “raising” an event.)
“Eventhandler” (5) may mean either the subscriber registered to handle a given event
type, or the subscriber that at run time handles a particularevent of that type.

The possibility of confusion is particularly vivid in two places:
• “A subscriber can handle multiple events from multiple publishers”

(point 2): this might seem to suggest some concurrent computation
scheme whereby a subscriber catches events from various places at once.
In fact the observation is simply that you can register for several event
types, and of course various publishers may trigger events of those types.

• Point 5 states that when “an event” has multiple subscribers, each will
handle it synchronously (meaning right away, blocking further
processing) when “an event” is raised. Read literally, this would suggest
that two “events” are involved! That’s not the idea: the sentence is simply
trying to say that when multiple subscribers have registered for a certain
eventtype, they handle the correspondingeventssynchronously. In the
same breath it uses a single word with two different meanings.

So when you read about event-driven schemes please make sure to ask
yourself whether people are talking about events or event types (and, since this
is the time for exhortations of good conduct, make sure that your own
technical documentation uses precise terminology, and defines it clearly).

green
yellow
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Contexts

A subscriber that registers says: “for events ofthis type, executethat action”.
In practice it may be useful, especially for GUI applications, to provide one
more piece of information: “for events of this type occurringin this context,
execute that action”. For example:

• “If the user clicks the left buttonon the EXIT icon, terminate execution”.

• “If the mouse entersthis window, change the border color to red ”.

• “If this sensor reports a temperatureabove 25o C, ring the alarm”.

In the first case the “context” is an icon and the event type is “mouse click”; in
the second, they are a window and “mouse enter”; in the third, a temperature
sensor and a measurement report.

For GUI programming, a context is usually just a user interface element.
As the last example indicates, the notion is more general; a context can in fact
any boolean-valued condition. This covers the GUI example as a special case,
taking as boolean condition a property such as “the cursor is on this icon” or
“the cursor has entered that window”.

We can use a general definition:

Even though that wasn’t event-driven programming, we had ataste of the
notion of context when encountering iterators such asdo_ifwhich performs an
action on all the items of a structure that satisfy a certain condition; this is
similar to how a context enables a subscriber to state that it is interested in
events of a certain type but only if a certain condition holds at triggering time.

We could do without the notion of context by including the associated
condition in the registered action itself, which we could write, for example

but it is more convenient to separate the condition by specifying it, along with
the event type and the action, at the time of registration.

Definition: Context
In event-driven design, acontext is a boolean expression specified by a
subscriber atregistration time, but evaluated attriggering time, such that
the registered action will only be executed if it the value isTrue.

if “The cursor is on the Exit icon”then
“Normal code for the action”

end
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20.3 PUBLISH-SUBSCRIBE REQUIREMENTS

With the concepts in place, we will now look for a general solution to the
problem of devising an event-driven architecture. We start with the constraints
that any good solution must satisfy.

Publishers and subscribers

In devising a software architecture supporting the publish-subscribe paradigm
we should consider the following requirements:
• Publishers must not need to know who the subscribers are: they trigger

events, but do not know who is going to process those events. This is
typically the case if the publisher is a GUI library: the routines of the
library know how to detect a user event such as a mouse click, but they
should not have to know about any particular application that reacts to
these events, or how it reacts. To an application, a button click may signal
a request to start a compilation, run the payroll, shut down the factory or
launch the rocket. To the GUI library, a click is just a click.

• Any event triggered by one publisher may be consumed by several
subscribers. An event such as the change of a temperature in a factory
control system may have to be reflected in many different places that
“observe” it, for example an alphanumeric temperature display, a
graphical display, a database that records all value changes, and a security
system that triggers certain actions if the value is beyond preset bounds.

• The subscribers should not need to know about the publishers. This is a
more advanced requirement, but often desirable too: subscribers know
about events to which they subscribe, but do not have to know where
these events come from. Remember that one of the fundamental aims of
an event-driven architecture is to provide a flexible architecture where we
can plug in various publishers and various subscribers, possibly written
by different people at different times, without any dependency.

• You may wish to let subscribers register and deregister while the
application is running. The usual scheme is that registration occurs
during initialization, to set things up before “real” execution starts; but
this is not an obligation, and the extra flexibility may be useful.

• It should be possible to connect publishers and subscribers at minimal
work. The actions to be subscribed often come from an existing
application, to which you want to add a GUI or other interface. To
connect the two sides you’ll have to add some program text, often called
“glue code”; the less of it the better.

• It should be possible to make events dependent or not on a context. We
have seen the usefulness of binding events to contexts, but the solution
should also provide the ability — without having to define an artificial
context — just to subscribe to an event regardless of where it happens.
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The model and the view

In the particular case of GUI programming we don’t just need to separate
subscribers from publishers but also to keep themodelseparate from theview.
These are two complementary aspects of an application:

“Application domain” as used in this definition is also a common phrase,
denoting the technical area in which or for which the software operates. For a
payroll processing program the application domain is human resources of
companies; for a system that handles bank accounts it’s finance; for a text
preparation program like Microsoft Word or StarOffice it is text processing;
for flight control software the application domain is air traffic control.

While the application domain need not have anything to do with software,
the “model” is a part of the software: the part that deals with that application
domain. For the payroll processing program it’s the part of the software that
processes information on employee salaries, hours worked and deductions,
computes salaries, updates the database. For the flight control system it’s the
part that determines airplane itineraries, takeoff times, authorizations and so
on. One could say that the model is the part of the software that does the “real
job” at hand, independently of other aspects such as interaction with users of
the software.

“Business model” is more precise but we usually just say “model” because the
word “business” might be misinterpreted as restricting us to business-oriented
application domains (company management, finance etc.) at the expense of
engineering domains such as text processing and flight control.

A “ view” is a presentation of the information, typically for input or output. A
GUI is a view: for example the flight control system has a user interface
allowing controllers to follow plane trajectories and enter their own
information and commands.

Usually a program covers just one — possibly broad — application
domain, but it may have more than one view, hence “the model” and “a view”
in the above definition. It is then usually desirable to assign the two aspects to
two different parts of a system’s architecture. In a naïve design for a small
program you might not pay much attention to this issue. But in a significant
system you should, if only because it is important to plan forseveral views.
Typically you might need some or possibly all of:

Definitions: model, view of a software system
Themodel(also calledbusiness model) is the part of a software system that
handlesdata representing information from the application domain.
A view is a presentation of part of that information, in the system’s
interaction with the outside: human users, material devices, other software.

← “Definitions: Data,
information”, page10.
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• A GUI view.
• A Web view, allowing use of the program through a Web browser.
• A purely textual (non-graphical) interface, for situations in which

graphics support is not available.
• A “ batch” interface where the system takes its input from a prepared

scenario and produces its output globally. This notion of scenario is
particularly useful for testing interactive systems: it is very difficult to test
them interactively, as this would require people spending endless sessions
with the system to try many different combinations. Instead you may
prepare a large collection of scenarios (which may include some
automatically recorded from previous sessions with human users) and
run them without human interaction.

• An API, permitting interaction with other programs running locally.
• A Web serviceview, similar to an API but intended for programs

accessing the facilities with HTTP (the Web protocol) across the Internet.
Often one view is enough at the beginning; that’s why it is a common design
mistake to make the model and the view intricately connected. Then when you
need to introduce other views you may be forced to perform extensive
redesign. To avoid this you should practice model-view separation as a general
principle, right from the start of a design:

If we use an event-driven model this rule goes well with a clear separation of
publishers and subscribers. Both the subscribers and the publishers will
interact with the view, but in a decoupled way:
• Publishers trigger events which may immediately update the

view, typically in minor ways; for example the cursor may
change shape when it enters a certain window, and a button
usually changes its aspect when it has been pressed (like the
Class button on the right).

• Subscribers catch events (of event types to which they are subscribed),
and process them. This processing may update the view.

Note that the publisher-subscriber and model-view divisions are orthogonal:
both publishers and subscribers may need to interact with the model as well as
with the view, as we can see in the example of a text processing system:

Touch of Methodology:
Model-View Separation Principle

In designing the architecture of a software system, keep the coupling
between model elements and view elements to a minimum.

Not pressed Pressed
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• The reason for a publisher to trigger an event may come from the view —
a user moves the mouse or clicks a button — or from the model, as when
the spell checker detects a misspelled word and highlights it visually.

• The processing of an event by a subscriber will often cause
modifications both to the model and to the view. For example
if the user has selected a certain text and then presses the
Delete key, the effect must be both to remove the selected part
from the representation of the text kept internally by the
system (model) and to update the display so that it no longer shows that part (view).

Model-View-Controller

A scheme often recommended for GUI design is “Model-View-Controller” or
MVC. The third element, Controller, directs the execution of an interactive
session. Each of the three parts communicates with the other two:

The role of the controller is to provide further separation between the model
and the views. (Remember that there may be more than one view, hence
“VIEW i” in the figure.) The controller handles user actions, which may lead
to updates of the view, the model, or both.

As before, a view provides a visual representation of the model or part of it.
Users are assumed to understand the model: using a text processing

system, I should know about fonts, sections and paragraphs; playing a video
game, I should have a feel for rockets and spaceships. A good system enables
its users tothink in terms of the model: even though what I see on the screen
is no more than a few pixels making up some circular shape, I think of it as a
flying vessel. The controller enables me to act on these views, for example by
rolling my mouse wheel to make the vessel fly faster; it will then update both

Selecting text for deletion

(Illustration to be added)

MVC structure

MODEL VIEW i

…
(Other
views)

CONTROLLER
updates

GUI tools

User

sees
interactsthinks in

terms of with

represents

updates
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the model, by calling features of the corresponding objects to change their
attributes (speed, position), and the view, by reflecting the effect of these
changes in the visual representation.

MVC provides a useful paradigm and has had considerable influence on
the spread of graphical interactive application over the past decades. We will
see at the end of this chapter that by taking the notion of event-driven design
to its full consequences we can get the benefits of MVC but with a simpler
architecture, bypassing some of the relations that populate the last figure.

A side comment on this figure, serving as general advice. Far too often in
presentations of software concepts — and elsewhere too, but it’s particularly bad
in information technology — you will find impressive-looking diagrams with lots
of boxes connected by lots of arrows, but little reassurance of what they mean. It
is easy to draw arrows, but better to state what they stand for (their “semantics”);
this is the role of the arrow labels on the last figure, such as “represents”, “ updates”
etc. (Even the unlabeled arrows in the “model” part on the left reflect our standard
conventions, suggesting client and inheritance relations between classes of the
model.) Please remember this when you propose figures, or see other people’s
figures: a picture willnot be worth any number of words if it’s just splashes of
fancy-looking color. Don’t succumb to the lure of senseless graphics; assign
precise semantics to each graphical symbol you use, and document it.

20.4 THE OBSERVER PATTERN

Before we review what will be the definitive scheme for event-driven design
(at least for the kind of examples discussed in this chapter), let’s explore a
well-knowndesign pattern, “Observer”, which also addresses the problem.

About patterns

A design pattern is a standardized architecture addressing a certain class of
problems. Such an architecture is defined by typical classes that must be part
of the solution, their role, their relations — how they inherit from and are
clients of each other —, and instructions for customizing them as the problem
varies. Design patterns emerged in the mid-nineties as a way to record and
catalog design solutions that good programmers had devised over the years,
often reinventing them independently: “best practices”, as they are sometimes
known. A couple dozen of these patterns, Observer among them, are widely
documented and taught; hundreds more have been described or proposed.

Observer basics

As a general solution for event-driven design, Observer is actually not very
good; we’ll analyze its limitations. But you should know about it anyway for
several reasons: it’s a kind of classic; it elegantly takes advantage of O-O
techniques such as polymorphism and dynamic binding; it may be your best
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bet if you are using a language that doesn’t support such notions as agents,
genericity and tuples; and it provides a good basis for moving on to the more
satisfactory solution studied next.

The following figure illustrates the typical organization of an Observer
architecture.PUBLISHERand SUBSCRIBERare two general-purpose
classes, not specifically dependent on your application;PUBi and SUBj stand
for typical publisher and subscriber classes in your application.

To discuss publish-subscribe schemes we may say that the subscribers “observe”
the publishers, remaining on the alert for any messages from them, and that the
publishers are the “subjects” of this observation. This explains why some of the
literature usesobserverandsubjectinstead of “subscriber” and “publisher”. Either
terminology is fine; the underlying ideas are the same. You will similarly
encounter, in the patterns literature, other names for the key features: “attach” for
subscribe, “detach” forunsubscribe, “notify” for publish, “update” forhandle.

Although bothPUBLISHERand SUBSCRIBERare intended to serve as
ancestors to classes doing the actual job of publishing and handling events,
only SUBSCRIBERmust be deferred; its procedurehandlewill define, as
effected in each concrete subscriber classSUBj, how the given kind of
subscriber handles events.PUBLISHERdoes not have such a deferred feature,
although we could still make it deferred too to preclude direct instantiation.

The publisher side

ClassPUBLISHERdescribes the properties of a typical publisher in charge of
an event type — that is to say, of triggering events of that type, through
procedurepublish. The principal data structure is a list ofsubscribersto that
event type:

Observer
Pattern
architecturesubscribe

Deferred (abstract) class

Effective (concrete) class
Inherits
from

*

PUBLISHER

PUBi

unsubscribe

Client of

f + Effectivefeature

f * Deferred feature

SUBSCRIBER

SUBj

handle*

handle+

*

……
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The implementation is somewhat primitive since it doesn’t prohibit calling
attachtwice for thesame subscriber; then (seepublishbelow) such a subscriber
would execute the subscribed action twice when the event is published — most
likely not the desired effect. To avoid this we could enclose the implementation
of attach in if not subscribed(s) then … end, but then the linked list is no

note
what: ["Objects that can publish events, all of the same type,

monitored by subscribers"]
class

PUBLISHER
feature { SUBSCRIBER} -- Status report

subscribed(s: SUBSCRIBER): BOOLEAN
-- Is ssubscribed to this publisher?

do
Result:= subscribers.has(s)

ensure
present:has(s)

end

feature { SUBSCRIBER} -- Element change
subscribe(s: SUBSCRIBER)

-- Makesa subscriber of this publisher.
do

subscribers.extend(s)
ensure

present:subscribed(s)
end

unsubscribe(s: SUBSCRIBER)
-- Makesa subscriber or this publisher.

do
subscribers.remove_all_occurrences(s)

ensure
absent:not subscribed(s)

end
publish(args: LIST[ANY]) -- Argument Scheme 1

-- Publish event to subscribers.
do

… See below…
end

feature { NONE}  -- Implementation

-- Subscribers subscribed to this publisher’s event.
end

See below about
publish, the type of its
argument, and its
“Argument Scheme”.

subscribers: LINKED_LIST[SUBSCRIBER]
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longer an efficient implementation sincehasrequires a traversal. While not
critical to the present discussion, this matter must be addressed properly for
any actual use of the pattern; it’s the subject of anexercise.

Apart from subscribers, meant for internal purposes only and hence
secret (exported toNONE), the features are relevant subscriber objects but not
to any others; they are hence exported toSUBSCRIBER, which means, as you
will remember, that they are also exported to the descendants of this class,
which will indeed need tosubscribeandunsubscribethe corresponding
objects. As a general rule, it is a good idea to export features selectively when
they are only intended for specific classes and their descendants. Better err on
the side of restrictiveness here to avoid mistakes caused by classes calling
features that are none of their business; it’s easy later on to ease the restrictions
if you find some new classes need the feature.

Procedurepublishwill notify all subscribers that an event (of the event
type for which the publisher is responsible) has occurred. It will be easier to
write it after devising the class representing a typical subscriber.

The subscriber side

note
what: "Object that can register to handle events of a given type"

class
SUBSCRIBER

feature -- Element change
subscribe( p: PUBLISHER)

-- Subscribe top.
do

p.subscribe(Current )
ensure

present:p.subscribed(Current )
end

unsubscribe( p: PUBLISHER)
-- Ensure that this subscriber is not subscribed top.

do
p.unsubscribe(Current )

ensure
absent:not p.subscribed(Current )

end
feature { NONE}  -- Basic operations

end

→ “Ef ficient
Observer”,  20-E.2,
page 532.

deferred

See below about the
“Argument Scheme”
and the type ofargs.

handle(args: LIST[ANY]) -- Argument Scheme 1
-- React to publication of one event of subscribed type

deferred
end
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This class is deferred: any class of an application can, if its instances may need
to act as subscribers, inherit fromSUBSCRIBER. We’ll call such descendants
“subscriber classes” and their instances “subscribers”.

To subscribe to a given event type, through the corresponding publisher
p, a subscriber simply executessubscribe(p). Note how this procedure (and,
similarly, unsubscribe) uses the corresponding mechanism inPUBLISHERto
subscribe the current object. That was one of the reasons for exporting the
PUBLISHERfeatures selectively: it would make no sense for potential
subscribers to usesubscribefrom PUBLISHERdirectly, since this is only
useful if you also provide the correspondinghandlemechanism; the feature of
general interest is the one fromSUBSCRIBER. (This also justifies using the
same names for the features in the two classes, which keeps the terminology
simple and causes no confusion since only theSUBSCRIBERfeatures need be
widely known.)

Each observer class will provide its own version ofhandle, describing
how it handles an event. The not so pleasant part is accessing arguments if any;
that’s because we tried to makePUBLISHERandSUBSCRIBERgeneral, and
so had to declareargs, representing the event arguments in bothpublishand
handlein these respective classes, a completely general type,LIST[ANY]; but
thenhandlehas to force the right type and number of arguments if it can. For
example, to process a mouse click event with the[x, y] coordinates as
argument — by calling someoperationwhich takes these values as its own
routine arguments — we may use

handle(args: LIST[ANY])
-- React to publication of mouse click event by performing
-- operation on the cursor coordinates.

do
if  args.count>= 2 and then

({ x: REAL} ( args.item(1)) and { y: REAL} ( args.item(2)))
then

operation(x, y)
else

-- Do nothing, or report error
end

end

-- Argument Scheme 1
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The Object Tests make sure that the first and second argument areREALs, and
binds them tox andy within the then clause. The only way to avoid this
awkward run-time testing of argument types would be to specialize
PUBLISHERandSUBSCRIBERby declaring the exact arguments topublish
andsubscribe, for example

and similarly forhandlein SUBSCRIBER. This loses the generality of the
scheme since you can’t use the samePUBLISHERandSUBSCRIBERfor
event types of different signatures. Although it’s partly a matter of taste, I
would actually recommend this “Argument Scheme 2” if you need to use the
Observer pattern, because it will detect type errors — a publisher passing the
wrong types of arguments to an event — at compile time, where they belong.
With handleas written above you’ll only find them at run time, through the
tests on the length and element types orargs; that’s too late to do anything
serious about the issue, as reflected by the rather lame “Do nothing, or report
error”: doing nothing means ignoring an event (is that what we want, even if
the event is somehow deficient since it doesn’t provide the right arguments?);
and if we report an error, report it to whom? The message should be for the
developers — you! — but it’s the poor end user who will get it.

It was noted in the discussion of object test that this mechanism should
generally be reserved for objects coming from the outside, not those under the
program’s direct control, for which the designer is in charge of guaranteeing
the right types statically. Here the publishing and handling of arguments belong
to the same program; using object test just doesn’t sound right.

It is actually possible to obtain a type-safe solution by making classes
PUBLISHERandSUBSCRIBERgeneric; the generic parameter is a tuple type
representing the signature of the event type (that is to say, the sequence of
argument types). That solution will appear in the final publish-subscribe
architecture below (“Event Library”). We won’t develop it further for the Observer
pattern because it relies on mechanisms — tuple types, constrained genericity —
that are not all available in other languages: if you are programming in Eiffel,
which has them, you should use that final architecture (relying on agents), which
is much better than an Observer pattern anyway and is available through a prebuilt
library. It is a goodexercise, however, to see how to improve Observer through
these ideas; try it now on the basis of the hints just given, or wait until you have
seen the solution below.

publish(x, y: REAL) -- Argument Scheme 2

→ “Type-safe
Observer”,  20-E.3,
page 533.
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Publishing an event

The only missing part of the Observer pattern’s implementation is the body of
the publishprocedure inPUBLISHER, although I hope you have already
composed it in your mind. It’s where the pattern gets really elegant:

(With “Argument Scheme 2” the arguments passed tohandlewill be more
specific, for examplex andy for a mouse click.) The highlighted instruction
takes advantage of polymorphism and dynamic binding:subscribersis a
polymorphic list; each item in the list may be of a differentSUBSCRIBER
type, characterized by a specific version ofhandle; dynamic binding ensures
that the right version is called in each case.

Assessing the Observer pattern

The Observer pattern is widely used and known, and is an interesting
application of object-oriented techniques. As a general solution to the
publish-subscribe problem it suffers from a number of limitations:

• The business of arguments, as discussed, is unpleasant, causing a
dilemma between two equally unattractive schemes: awkward, type
unsafe run-time testing of arguments, and specific, quasi-identical
PUBLISHER andSUBSCRIBER classes for each event type signature.

• Subscribers directly subscribe to publishers. This causes undesirable
coupling between the two sides. Subscribers shouldn’t need to know
which part of an application or library triggers certain events. What we
are really missing here is an intermediary — a broker, if you like —
between the two sides. The more fundamental reason is that the design
has missed an important abstraction: the notion of event type, merged
here with the notion of publisher.

publish(args: … Argument Scheme 1 or 2, see above discussion…)
-- Publish event to subscribers.

do
-- Ask every subscriber in turn to handle the message:
from  subscribers.start until  subscribers.after loop

subscribers.forth
end

end

← To be inserted in
classPUBLISHER,
page517.

subscribers.item.handle(args)
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• A subscriber may register with only one publisher; with that publisher, it
can register only one action, as represented byhandle. As a result, it may
subscribe to only one type of event. This is severely restrictive. An
application component should be able to register various operations with
various publishers. It is possible to address this problem by adding to
publish and handlean argument representing the publisher, letting
subscribers discriminate between publishers; but this solution is
detrimental to modular design since the handling procedures will now
need to know about all events of interest.

• Because publisher and subscriber classes must inherit fromPUBLISHER
andSUBSCRIBER, it is not easy to connect an existing model (in the
sense defined above) to a new view, for example a GUI, without adding
significant glue code. In particular, you can’t directly reuse an existing
procedure from the model as the action to be registered by a subscriber:
you have to fill in the implementation ofhandleso that it will call that
procedure, with the arguments passed by the publisher.
The above classes already contains a number of improvements over the
implementations of the Observer pattern which you’ll find it in much of the
literature and which actually cause further problems. For example the standard
presentation binds a subscriber to a publisher atcreationtime, using the publisher
as an element to the observer’s creation procedure. The above implementation
provides instead asubscribeprocedure inOBSERVER, to bind the observer to a
specific publisher when desired; so at least you can later unsubscribe, and
re-subscribe to a different publisher.

It’s also worth pointing out thatPUBLISHERandSUBSCRIBERS, intended to be
inherited by publisher and subscriber classes, both need effective features, such as
publishwith its fundamental algorithm andsubscribe. This property causes a
serious problem in languages such as Java and C# which do not support multiple
inheritance, since it prevents publisher and subscriber classes from having other
parents as may be required by their role in the application. The only solution is to
write special classes and make them clients the “real” publishers and subscribers
— more glue code.

All these problems have not prevented designers from using Observer
successfully, but they have two serious consequences. First, the resulting
solutions lack flexibility; they may cause unnecessary work, for example
writing of glue code, and unnecessary coupling between elements of the
software, which is always bad for the long-term evolution of the system.
Second, they are notreusable: each programmer must rebuild the pattern for
every system that needs it, adapting it to the system’s particular needs.

The preceding assessment of “Observer” is an example of how one may
analyze a proposedsoftware architecture. Use it as aguide when presented
with possible design alternatives. The criteria are always the same: reliability
(decreasing the likelihood of bugs), reusability (minimizing the amount of
work to integrate the solution into a new program), extendibility (minimizing
adaptation effort when the problem varies), and simplicity.

→ See“Touch of Meth-
odology: Assessing
software architec-
tures”,  page 530.
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20.5 USING AGENTS: THE EVENT LIBRARY

We are now going to see how, by giving the notion of event type its full role,
we can obtain a solution that removes all these limitations. It is not only more
flexible than what we have seen so far, and fully reusable (through a library
class that you can use on the sole basis of its API); it’s also much simpler. The
key boost comes from the agent mechanism.

We focus on the essential data abstraction resulting from the discussion
at the beginning of this chapter: event type. We won’t havePUBLISHERor
SUBSCRIBERclasses any more, but just one class — yes, a single class solves
the entire problem — calledEVENT_TYPE.

Fundamentally, two features characterize an event type:

• Subscribing: a subscriber object can register its interest in the event type
by subscribing a specified action, to be represented by an agent.

• Publishing: triggering an event.

We can benefit from language mechanisms to take care of the most delicate
problems identified above:

• Each event type has its own signature. We can define the signature as a
tuple type, and use it as generic parameter toEVENT_TYPE.

• Each subscription should subscribe a specific action. We simply pass this
action as an agent. This means in particular that we’ll be able to reuse an
existing feature from the business model.

These observations are enough to give us the interface of the class:

note
what: "Event types, allowing publishing and subscribing"

class EVENT_TYPE[ARGUMENTS –> TUPLE] feature
publish(args: ARGUMENTS)

-- Trigger an event of this type.

subscribe(action: PROCEDURE[ANY, ARGUMENTS)
-- Registeraction to be executed for events of this type.

unsubscribe(action: PROCEDURE[ANY, ARGUMENTS)
-- De-registeraction for events of this type.

end

Class interface only.
The implementations of
publish andsubscribe
appear below.
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If you are an application developer who needs to integrate a publish-subscribe
scheme in a system, the above interface — for the class as available in the
Event Library — is all you need to know. Of course we’ll look at the internals
too, as I am sure you’ll want to see them. (It will actually be more fun if you
try to devise them yourself first.) But for the moment let’s look at how a typical
client programmer, knowing only the above, will achieve publish-subscribe.

The first step is to define an event type. This simply means providing an
instance of the above library class, with the appropriate actual generic
parameters. For example, you can define

This defines an object that represents the event type. Remember, we don’t need
an object per event (as was the case for example in the .NET scheme); that
would be a waste of space; we only need an object per eventtype, such as
left-click here. Because this object will be shared by several parts of the
software — publishers and subscribers for the event type — we create just one
object, by using aoncefunction. One of the advantages is that you don’t need
to worry about when to create the object; it will be created on first use.

We’ll see in just a moment where the declaration of the event type, here
left_click, should be; until then let’s assume that subscriber and publisher
classes both have access to it.

To trigger an event, a publisher — for example a GUI library element that
detects a mouse click — simply callspublishon this event type object, with
the appropriate argument tuple; in our example:

On the subscriber side things are equally simple; to subscribe an action
represented by a procedurep (x, y: REAL), it suffices to use

This scheme has considerable flexibility, achieved in part through the answer
to the pending question of where to declare the event type. If you want to have
a single event type published to all potential subscribers, just make it available
to both publisher and subscriber classes by putting its declaration[1] in a class

left_click: EVENT_TYPE[ ] [1]
-- Event type representing left-button click events

once
create Result

end

left_click.publish([your_x, your_y])

left_click.subscribe( ) [2]

TUPLE[x: REAL; y: REAL]
REAL]

agent p



§20.5 USING AGENTS: THE EVENT LIBRARY 525

to which they all have access, for example by inheriting from it (a “facilities
class”). On the other hand, since the event type is just an ordinary object, and
the corresponding features such asleft_clickordinary features that may belong
to any class, you can declareleft_click as a feature of one of the classes
representing graphical widgets, such asBUTTON. Then a typical subscription
call becomes

if, as is usually the case, a subscriber only wants to monitor — “observe”, in
Observer pattern terminology — mouse events from one particular button of
the GUI. This directly implements the notion ofcontext introduced earlier;
here the context is simply the button.

More generally, if the context is relevant — that is to say, subscribers
don’t just subscribe to an event type as in[2], but to events occurring in a
context, as in[3] — then the appropriate architectural decision for event types
is to declare them as feature of the appropriate context classes. For example
the declaration ofleft_click[1] becomes part of a classBUTTON. It remains a
oncefunction, since the event type is common to all buttons of that kind; the
event type object will be created on the firstsubscribeor publish call
(whichever comes first). Note that if left-click is relevant for several kinds of
widget — buttons, windows, menu entries… — then each of the
corresponding classes will have an attribute such asleft_click, of the same
type. This is the technique used by the EiffelVision library.

So we get the appropriate flexibility, and can tick off the last item on our
list of requirements for a publish-subscribe architecture:

• For events that are relevant independently of any context information,
declare the event type in a generally accessible class. (In that case the
particular generic derivation ofEVENT_TYPEdescribing the event type
will have at most one run-time instance, shared by all that need it.)

• If a context is needed, declare the event type as a feature of a class
representing contexts; it will be accessible at run time as a property of a
specific context object. (In that case there can be as many instances of the
EVENT_TYPE type as there are context types for which it is relevant.)

Now for the internal picture. It remains to see the implementation of
EVENT_TYPE. It is similar to the above implementation of aPUBLISHER. A
secret featuresubscribers keeps the list of subscribers. Its signature is now

left_click.subscribe(agent p) [3]

subscribers: LINKED_LIST[PROCEDURE[ANY, ARGUMENTS]]

your_button.

←“PUBLISH-SUB-
SCRIBE REQUIRE-
MENTS”,  20.3, page
511.
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(where, as before,LINKED_LISTis a naïve structure but sufficient for this
discussion; for a better one look up the actual class text ofEVENT_TYPEin
the Event Library, or do theexercise). The items we store in the list are no
longer “subscribers”, a notion that doesn’t play a particular role any more, but
simply agents, with a precise types: they must represent procedures that take
arguments of the tuple typeARGUMENTS, as defined for the class. This
considerably improves the type safety of the solution over what we saw
previously: mismatches will be caught at compile time as bad arguments
to subscribe.

Forsubscribe it suffices (in the “naïve” implementation) to perform

The use ofARGUMENTSas the second generic parameter for the
PROCEDUREtype of action ensures compile-time rejection of procedures
that do not take arguments of a matching type.

To publish an event we traverse the list and call the corresponding agents.
The code is in fact the same as before, althoughargs is now of a more
appropriate type,ARGUMENTS:

Any argument to the agent featurecall must be a tuple; this is indeed the case
sinceARGUMENTS is constrained to be a tuple type.

The solution just describes is at the heart of the “Event Library”, and also
of the EiffelVision GUI library; it is widely used for graphical applications,
some small and some very complex.

subscribe(action: PROCEDURE[ANY, ARGUMENTS])
-- Registeraction to be executed for events of this type.

do
subscribers.extend(action)

ensure
present:subscribers.has(action)

end

publish(args: ARGUMENTS)
-- Publish event to subscribers.

do
-- Trigger an event of this type.
from  subscribers.start until  subscribers.after loop

subscribers.forth
end

end

→ “Ef ficient
Observer”,  20-E.2,
page 532.

← To be inserted in
classPUBLISHER,
page517.

subscribers.item.call (args)
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20.6 SOFTWARE ARCHITECTURE LESSONS

The designs reviewed in this chapter yield a few general observations about
software architecture.

Choosing the right abstractions

The most important issue in software design, at least with an object-oriented
approach, is to identify the right classes — data abstractions. (The second
most important issue is to identify the relations between these classes.)

In the Observer pattern, the key abstractions are “Publisher” and
“Subscriber”. Both are useful concepts, but they turn out to yield an imperfect
architecture; the basic reason is that these are not good enough abstractions for
the publish-subscribe paradigm. At first sight they would appear to be
appropriate, if only because they faithfully reflect the two words defining that
paradigm; but what characterizes a good data abstraction is a set of consistent
features. The only significant feature of a publisher is that it publishes events
from a given event type, and the only significant feature of a subscriber is that
it can subscribe to events from a given event type. That’s a bit light.

The more significant data abstraction, not recognized on its own right by
the Observer design, is the notion of event type. It meets the criteria as it is a
well-defined notion with a clear identity, and characteristic features:
commands to publish and subscribe events, and the notion of argument (which
could be given more weight through a setter command and a query).

TreatingEVENT_TYPEas the key abstraction, yielding the basic class,
enables us to avoid forcing publisher and subscriber classes to inherit from
specific parents. A publisher is simply a software element that usespublishon
a certain event type, and a subscriber a software element that usessubscribe
for a certain event type.

MVC revisited

One of the consequences of the last design is to simplify the overall
architecture suggested by the Model-View-Controller paradigm. The
Controller part is “glue code” and it’s good to keep it to the strict minimum.

EVENT_TYPEprovides the heart of the controller architecture. In a
simple scheme it can actually be sufficient, if we let elements of the model
subscribe directly to events:
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(The double arrows represent, as usual, the client relation, used here to
implement the more abstract relations of the general MVC picture.) In this
scheme there is no explicit controller component.

While the model does not directly know about the view (if it does not use
contexts), it does connect to specific event types. This setup has both
limitations and advantages:
• On the negative side, it can make it harder to change views: while we are

not limited to a single view, any new view should trigger the same events.
This assumes that the various views are not entirely dissimilar, for
example a GUI and a Web interface.

• It has, on the other hand, the merit of great simplicity. Model elements
can directly specify which actions to execute for specific events coming
from the interface. There is essentially no glue code.

This scheme is good for relatively simple programs where the interface, or at
least the interface style, is known and stable. For more sophisticated cases, we
may reintroduce an explicit controller, taking the task of event type
subscription away from the model:

Direct
subscription

MODEL VIEW i

subscribe

EVENT
TYPES

publish

Subscription
through a
controller

MODEL VIEW i

EVENT
TYPES

publish

(Action) (Context)
(Event type)

Optional
client link

subscribe

CONTROLLER
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The controller is now a separate part of the software. Its job is to subscribe
elements of the model to event types; it will have connections to both:
• The model since the arguments tosubscribeare actions to be subscribed,

and these must be agents built from the mechanisms of the model.
• The view, if contexts are used. The figure shows this as an optional

client link.
This solution achieves complete uncoupling between model and view; in a
typical application the controller will still be still a small component,
achieving the goal of using as little glue code as possible.

Invest and profit

Common to the two architectures we have seen, Observer and Event Library,
is the need to subscribe to event types prior to processing them.

It is possible for subscribers to subscribe and unsubscribe at any time; in
fact, with the Event Library solution, the program can create new event types
at any stage of the computation. While this flexibility can be useful, the more
typical usage scenario clearly divides execution into two steps:
• During initialization, subscribers register their actions, typically coming

from the model.
• Then starts execution proper. At that stage the control structure becomes

event-driven: execution proceeds as publishers trigger events, which
(possibly depending on the contexts) cause execution of the subscribed
model actions.

(So from the order of events it’s really the “Subscribe-Publish” paradigm.)
Think of the life story of a successful investor: set up everything, then sit

back and prosper from the proceeds.
You may remember another application of the same general approach, the

“compilation” strategy that worked so well for topological sort: first translate
the data into an appropriate form, then exploit it.

Assessing software architectures

The key to the quality of a software system is in its architecture, which covers
such aspects as:
• The choice of classes, based on appropriate data abstractions.
• Deciding which classes will be related, with the overall goal of

minimizing the number of such links, to preserve the ability to modify
and reuse various parts of the software independently) but also choosing
between client and inheritance.

• For each link, deciding between client and inheritance.
• Attaching features to the appropriate classes.

← As per style[3],
page525.

← “Interpretation vs
compilation”, page446.
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• Equipping classes and features with the proper contracts.
• For preconditions, deciding between a “demanding” style (strong

preconditions, making the client responsible for providing appropriate
values), a “tolerant” style (the reverse), or an intermediate solution.

• Removing unneeded elements.
• Avoiding code duplication and removing it if already present; techniques

involve genericity, inheritance (making two or more classes inherit from
a common ancestor that captures the common elements).

• Taking advantage of known design patterns.
• Devising good APIs: simple, easy to learn and remember, equipped with

the proper contracts.
• Ensuring consistency: throughout the system, similar goals should be

ensured by similar means. This governs all the aspects listed so far; for
example, if you use inheritance for a certain class relationship, you
shouldn’t use client elsewhere if the conditions are the same; consistency
is also particularly important for an API, to ensure that once programmers
have learned to use a certain group of classes they can expect to find
similar conventions in others.

Such tasks can be carried out to improve existing designs, an activity known
as refactoring. It’s indeed a good idea always to look at existing software
critically, but prevention beats cure. The best time to do design is the first time.

Whether it’s done as initial design or as refactoring, work on software
architecture is challenging and rewarding; the discussion in this chapter — and
a few others in this book, such as the development of topological sort — give
an idea of what it involves. The criteria for success are always the same:

20.7 FURTHER READING

Bertrand Meyer:The Power of Abstraction, Reuse and Simplicity: An
Objec t -Or ien ted L ib ra ry fo r Even t -Dr i ven Des ign, i n From
Object-Orientation to Formal Methods: Essays in Memory of Ole-Johan Dahl,
eds. Olaf Owe, Stein Krogdahl, Tom Lyche, Lecture Notes in Computer
Science 2635, Springer-Verlag, 2004, pages 236-271. Available online at
se.ethz.ch/~meyer/publications/lncs/events.pdf.

Touch of Methodology:
Assessing software architectures

When examining possible design solutions for a given problem, discuss
alternatives critically. The key criteria, are: reliability, extendibility,
reusability, and simplicity.

http://se.ethz.ch/~meyer/publications/lncs/events.pdf
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A significant part of the present chapter’s material derives from this
article, which analyzes the publish-subscribe pattern in depth, discussing
three solutions: Observer pattern, .NET delegate mechanism, and the
event library as presented above.

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides:Design
Patterns, Addison-Wesley, 1994.

A widely used reference on design patterns. Contains the standard
description of Observer, along with many others, all expressed in C++.

Trygve Reenskaug, MVC papers atheim.ifi.uio.no/~trygver/themes/mvc/mvc
-index.html.

Trygve Reenskaug, a Norwegian computer scientist, introduced the
Model-View-Controller pattern while working at Xerox PARC (the
famed Palo Alto Research Center) in 1979. The page listed contains a
collection of his papers on the topic. I find his original 1979 MVC memo
(barely more than a page) still one of the best presentations of MVC.

20.8 KEY CONCEPTS LEARNED IN THIS CHAPTER

• Event-driven design, also called “publish-subscribe” leads to systems
whose execution is driven by responses to events rather than by
traditional control structures. The events are triggered by the software,
often in reaction to external events. GUI programming is one of the
important areas of application.

• The key abstraction in event-driven design is the notion of event type.
• Publishersare software elements that may trigger events of a certain

event type.Subscribersare elements that request to be notified of events
of a certain type byregistering actions to be executed in response.

• In a system with one or more interfaces or “views”, an important design
guideline is to keep the views separate from the core or the application,
known as the “model”.

• The Model-View-Controller architecture interposes a “controller”
between the model and the view to handle interactions with users.

• The Observer pattern addresses event-driven design by providing
high-level classesPUBLISHERand SUBSCRIBER, from which
publisher and subscriber classes must respectively inherit. Every
subscriber class provides anupdateprocedure to describe the action to be
executed in response to event. Internally, each publisher object keeps a
list of its subscribers. To trigger an event, it callsupdateon its
subscribers; thanks to dynamic binding, each calls the proper version.

• Agents, constrained genericity and tuples allows a general solution to
event-driven design through a single reusable class based on the
problem’s central abstraction:EVENT_TYPE.

Reenskaug

http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
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• Software architecture is the key to software quality. Devising effective
architectures, and improving existing ones (refactoring) should be a
constant effort, focused on simplicity and striving at reliability,
extendibility and reusability.

New vocabulary

20-E EXERCISES

20-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

20-E.2 Efficient Observer

Choosing the appropriate representation of the subscribers list, adapt the
implementation of the Observer pattern so that the following operations are all
O (1): add a subscriber (doing nothing if it was already subscribed); remove a
subscriber (doing nothing if it was not subscribed); find out if a potential
subscriber is subscribed. Thepublishprocedure, ignoring the time taken by
subscribers’ actual handling of the event, should beO (count) wherecountis
the number of subscribers actually subscribed to the publisher. Overall space
requirement for thesubscribersdata structure should be reasonable, e.g.
O (count). (Hint: look at the various data structures of chapter10 and at the
corresponding classes in EiffelBase.) Note that this optimization also applies
to the Event Library implementation.

Application domain Argument (of an event) Business model
Catching (an event) Context (of an event) Control (Windows)
Controller Event Event-driven
Event type External event Glue code
Handling (an event) Model MVC
Publish (an event) Publish-Subscribe Register
Refactoring Signature (of event type) Subscribe
Trigger (an event) View Widget

← “THE OBSERVER
PATTERN”,  20.4,
page 515..
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20-E.3 Type-safe Observer
Show that in implementing the Observer pattern a type scheme is possible that
removes the drawbacks of both “Argument Scheme 1” and “Argument Scheme
2” by taking advantage, as in the last design of this chapter (Event Library), of
tuple types and constrained genericity. Your solution should describe how the
PUBLISHERand SUBSCRIBERclasses will change, and also present a
typical publisher and subscriber classes inheriting from these.

← “The subscriber
side”,  page 518..
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Overview of software engineering

There is more to software development than programming. This statement is
not a paradox, but a recognition of all the factors that affect the success of a
software project, and all the resulting tasks that we must accordingly worry
about, in addition to writing the program. To take just a few examples:

• A program with a brilliant design may end up a failure if its user interface
displeases the target audience.

• The best program is useless if it doesn’t solve the right problem. Hence
the need for arequirementstask to capture user needs and decide on the
system’s precise functionality.

• Aside from technical aspects, projects must tacklemanagementissues:
setting and enforcing deadlines, organizing meetings and other
communication between project members, defining the budget and
controlling expenses.

These activities and many others discussed in this chapter do not involve
programming techniques, but if not taken care of properly they can destroy a
project regardless of its technical qualities.

This is typical of what defines moving beyondprogrammingto software
engineering. In the previous chapters we have almost exclusively been
concerned with programming, but the picture would be incomplete without a
foray into the non-programming aspects of software engineering.

This is a wide-ranging and well-developed discipline. To cover it
extensively would mean another textbook, such as those cited in the “Further
reading”section. The present chapter has more limited goals: to present a
general survey, enough I hope to awaken your interest and make you want to
learn further from the rest of the literature.

→ Page556.
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22.1 BASIC DEFINITIONS

The following broad-ranging definition will serve us well:

Two important properties of software engineering captured by this definition
are the restriction to production software, and the focus on quality.

Production software is operational software, intended to function in real
environments to solve real problems. Software developed purely as an
experiment, or “throw-away” programs used once and not further maintained,
generally do not qualify, except if it they are a means towards some broader
goal which belongs to software engineering proper. For example, an
experiment to evaluate various possible algorithms may not qualify by itself,
but this changes if it is performed as part of the development of a production
system. Similarly, textbook examples are usually not software engineering —
except if they are designed specifically to illustrate techniques applicable to
production systems, or are extracted from such a system.

What characterizes production software is the combination of constraints
that it must satisfy. They may include:

• Quality constraints as discussed next; for example the guarantee that the
system will not crash, will deliver correct results, will perform fast.

• Size constraints: production systems may consist of thousands or tens of
classes and other modules, and hundreds of thousands or millions of lines
of code.

• Duration constraints: systems used in industry must often be maintained
(that is to say, kept operational, and regularly updated) over many years
or even decades.

• Team constraints: such systems may involve large teams of developers,
and large numbers of users; this raises specific management and
communication problems.

• Impact constraints: these systems affect physical and human processes;
in particular, if they do not function well, people may be affected — by a
train not arriving in time, a phone not working, a salary not paid, an order
not delivered, or worse. This reinforces the emphasis on quality.

Definition: Software engineering
Software engineering is the set of techniques — including theories,
methods, processes, tools and languages — for developing and operating
production software meeting defined standards of quality.
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Quality is indeed at the center of software engineering concerns. The
definition mentions “defined standards”: quality is not just something that
someone claims exists, or doesn’t, in a software process or product; it should
be evaluated as objectively as possible.

The definition also talks of “developing andoperating” software.
Software construction cannot be hit-and-run: along with development you
have to set up the actual operation. Even the development part should not be
understood as only the initial production of a releasable system: what comes
afterwards is just as important. We have already encountered the technical
term for this activity:

The term “maintenance” comes from other parts of engineering: think of
maintenance for a car, a coffee machine, a house. It is often pointed out that
the analogy is misleading, since a program doesn’t deteriorate from repeated
use; run your program ten, a thousand or a million times, and unlike a car
whose tires will inexorably wear out it’s exactly the same program as the first
time. As a software term, however, “maintenance” is here to stay and there’s
no problem in using it as long as it’s based on a precise definition as above.

A jargon term will be useful for the discussion:

This encompasses many people: developers, but also testers and other quality
assurance personnel, project managers, future users of the system (or others
on whom it may have an effect, including — the less pleasant part but
definitely a possibility — those who willnot be users because the system
makes their current jobs obsolete), marketing and sales people who will have
to find customers in the case of a product to be released to the world, trainers
(who will educate users), corporate legal departments. It is an important task
of project management to identify all the stakeholders early and to give due
consideration to the needs and constraints of each.

Definition: Software maintenance
Maintenanceof software systems covers all further development activities
occurring after the first release of an operational version, such as:
adaptation to new platforms and environments; correction of reported
deficiencies; extensions (addition of new functionality); removal of
unneeded functionality; quality improvement.

Stakeholder
A stakeholder of a software project is any person who can affect or be
affected by the project and the quality of the resulting software.
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22.2 COMPONENTS OF QUALITY

Quality, the central pursuit of software engineering, is a notion with many
different components, often calledfactorsof software quality. Let’s take a look
at some of the most important ones.

Process and product

Issues of software engineering involve two complementary aspects:
• Products: outcomes of the development. The most obvious product is the

source code, but significant software projects adds many others such as
requirements and design documents, test data, project plans,
documentation, installation procedures.

• Process: mechanisms used to obtain these products.
The number and severity of errors in a delivered program is an example of a
product issue. Whether the program is delivered on schedule is an example of
a process issue.

In each case the other aspect plays a role too: the process determines in part the
introduction and removal of errors; and treating timely delivery as the principal
goal may affect the product, for example through dropped functionality.

It is convenient to discuss the factors of software quality under three rubrics
based on this distinction:
• Process quality, characterizing the effectiveness of the software

development process.
• Immediate product quality, characterizing the adequacy of the product as

delivered in a particular version.
• Long-term product quality, characterizing the future prospects of the

software. In the world of software engineering, where projects may have
a long life, this is just as important as the immediate picture.

We will now take a look at the major goals in each area, starting with the most
visible property of a software project — immediate product quality. The
discussion also includes some comments about why some other factors are
less relevant. Two general notes about this review:
• No explicit definitions are given for self-explanatory quality factors

(“ease of use”, “ease of learning”). The corresponding terms will not
appear in the “New vocabulary”list of this chapter.

• You will notice a certain relativism in the definitions: adequacy is
satisfaction ofdefinedneeds, efficiency isadequateuse of resources. This
is not vagueness but in fact the reverse: definitions of software quality
goals are only useful inasmuch as they allow the product or process to be
assessedagainst these goals. The definitions consequently assume that
such goals have been clearly defined. This issue is not just academic:

→ Page558.
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imagine you are heading a software development project and that you
track the number of remaining deficiencies (“bugs”). Should you OK the
release when the number reaches 1000, 500, 200, 0? (In a realistic setup
you would have to distinguish between categories of bugs: critical
show-stopping problems, minor issues such as user interface
imperfections, “nice to have” missing functionalities that could be
deferred to the next release and so on.) This question is essentially
impossible to answer unless precise criteria have been stated in advance.
We are back to the originaldefinition of software engineering and its
insistence on “meetingdefined standards of quality”.

The following figure shows the overall classification for the quality factors to
be reviewed now.

← Page540.
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Immediate product quality

Product quality involves the following factors.

• Adequacy: satisfaction of defined user needs. In other words: does the
software serve the right purposes for its user community? Other factors
commonly cited in this area arecompletenessandusefulness, but both are
less precise and are subsumed by “adequacy”: no system ever has
“complete” functionality, since someone will always think of another
facility that would be nice to have; and “usefulness” is a subjective
criterion unless you state preciselyto whomand for what needsthe
system is, or not, useful enough.

• Correctness: to what extent the software functions as prescribed by the
specification, in cases covered by the specification. This is clearly a
fundamental requirement. It is just as clearly hard to achieve, not only
because writing programs that meet a specification is hard, but also
because writing the specification itself is tough too — you must think of
all cases and end up with a document that is precise yet readable.

• Robustness: how well the system reacts to erroneous cases of use,
outside of the specification. That a user pressed the wrong button, a
sensor malfunctions or another program sent bad input is not a good
excuse for the system to crash or produce wild results. Robustness
assesses error handling and recovery mechanisms.

• Security: how well the system protects itself, its data, its users and any
affected devices or people against hostile attempts at misuse.
Unfortunately it’s not just errors we need to worry about, as addressed by
robustness; computer systems offer ready targets for people with all kinds
of nasty intent, and you cannot write software, especially if it will be
available over a network, without thinking of potential attacks.

• Efficiency (often calledperformance): adequate use of time, memory
space and other resources such as bandwidth if the system engages in
network communication. “Adequate”, not optimal: if your compiled
program takes up one megabyte of memory, reducing this to 0.6 MB may
be possible, but is not necessarily useful. If you expect your users to have
plenty of memory, it is probably more productive to spend your time on
other quality factors; but if you are running in a tightly constrained
environment, for example with software for small-memory handheld
devices, such space optimization can become critical. What matters once
again is to define objectives.
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• Ease of use. The really difficult challenge here is to make the system easy
to use forvarious categoriesof users. Much of the effort in “usability”,
as this is also called, goes into facilitating the task of complete novices.
But it’s just as important to help the experts — who, for example, don’t
want to go through the same repetitive sequences of clicking “OK” on
various informational windows over and again, when they know exactly
what to do — and to support the process of progressing from novice to
expert. Each of us is a novice for some tools and an expert in others; and
each of us, for each of the system in which we are an expert, was a novice
once. Ease of use is also about defining that path and helping anyone who
wants to travel it.

• Ease of learning, closely connected to the previous factor.

Long-term product quality

Some product qualities are of no immediate value to users of a system, but of
much interest to those who commission or purchase it. If I am driving, I don’t
care that the software controlling brakes or the air bag is easy to modify; I care
that it works (an “immediate” factor). But if I am an executive in charge of
managing software development or acquisition at Nissan or BMW I have to
keep in mind the long-term picture: will the software be easy to upgrade if an
improvement is requested? Can the version developed for sedans be
transposed at reasonable cost to convertibles?

Descriptions of software products and software issues often talk about
“the user”; the term that has acquired almost mythical connotations. It’s good
to think of users, but stakeholders in user organizations also include others
with a long-term perspective. The more general term “customer” is
appropriate (whether or not the product is commercial) to cover both people
using the products now and those interested in its past and future.

Long-term qualities, in the approximate order of when concerns will
arise, include:

• Corrigibility : how easy it is to update the software to repair deficiencies
(of correctness, robustness, security, ease of use…). One of the recipes
for achieving corrigibility isstructure: devising a modular architecture
that is easy to understand and reflects the structure of the problem and
its solution.

• Extendibility : how easy it is to add functionality. Here too, structure is
key; the object-oriented techniques we have learned — data abstraction,
information hiding, classes, genericity, contracts, inheritance, dynamic
binding, agents and so on — facilitate extension. Extendibility is a
principal requirement of practical software development, as almost every
system undergoes changes of its expected functionality. The reason for

Also “correctibility”.

Also “extensibility”.
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change may be that the initial requirements definition missed some
functions; sometimes it is simply the consequence of initial success, as a
useful system suggests ideas of what more it could do. A good software
process must enforce a discipline on such changes, by defining strict
procedures for examining new requests once initial requirements have
been approved; but it cannot pretend that the need will not arise.

• Portability : how easy it is to transfer the software to other platforms. A
“platform” here is a combination of computer architecture and operating
systems, plus other resources that the system may need, such as a
database management system. The IT industry has experienced
considerable standardization in recent decades, making the construction
of portable software more realistic than when dozens of incompatible
computer brands populated the market. For general-purpose computing,
the hardware scene is down to a few architectures (Pentium and
compatible, Sparc), and the operating system world to Windows and to
Unix variants such as Linux, Solaris and MacOS. As to programming
language, C, Java and Eiffel are available on numerous platforms.

• Reusability: how much of the product can be applied to future
developments. Many applications need some of the same functionality,
either of a general nature (data structures and fundamental algorithms,
GUI mechanisms) or targeted to a particular application domain.
Reusable softwareis software that is sufficiently independent from the
specifics of a particular project to be of use for subsequent ones. Helped
by object technology, reusability in software has made great strides,
leading tosoftware componentsthat serve the needs of many different
developments. (Think of the Traffic library and all the libraries on which
it itself relies.) Even if you are not producing software components you
can strive to make your software reusable to facilitate future projects.

In the literature you will see references to a quality factor called
maintainability , having to do with the ease of continuing to work on a system
after its initial release. This important concern is not an independent factor but
a combination of the long-term product factors just reviewed, as maintenance
may involve fixing errors, adding functionality and adapting to new platforms.

← “Definition: Soft-
ware maintenance”,
page 541
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Other factors that do not figure in the above list are what we may call
internal product quality factors. You informally know many of them because
they correspond to the programming advice given throughout this book,
telling you to ensure your software is well-structured and readable, applies
information hiding, uses contracts and so on. Another example of internal
factors is the list of properties definedbelow for good requirements
documents, some of which also apply to programs. Internal qualities are
fundamental attributes of a software system; so fundamental indeed that only
through them can external factors be achieved. Correctness and corrigibility,
for example, both come down to matters of systematic programming, good
structure and having the right contracts.

From the global perspective of software engineering, the relevant product
factors are theexternal ones just discussed as they are relevant to customers.
Internal factors belong to the technology of programming.

Process quality

Process factors address the quality of the mechanisms used to produce the
software. They include the following:

• Production speed: the ability to deliver a product in a short time. Every
project has to worry about this; customers are waiting, competitors
progressing, shareholders wondering.

• Cost effectiveness. This is also a concern for almost all projects. In
software (unlike some other fields of engineering) the production cost is
usually negligible.Development costdominates everything else (except
sometimes the cost of marketing, which can be significant especially for
mass-market products); within it,personnel costsdominate other aspects
such as equipment and office space. For that reason the standard measure
of cost is theperson-month: the average cost of employing one person —
employee, contractor — for one month, all-inclusive.

• Collaboration effectiveness: the effectiveness of procedures for
combining the contributions of all project members and allowing them to
communicate. Significant software projects may involve large numbers
of people, requiring special attention to coordination mechanisms.
Communication in particular is a delicate issue, which beyond a certain
team size can overshadow all other aspects of the development. An
extreme form of this phenomenon is known as “Brooks’s Law” (from the
name of the designer of the IBM OS-360 operating system), which states
that adding people to a late project delays it further. This is only true of
badly managed projects but highlights the need to devote proper attention
to communication issues.

Often also
“man-month”.

→ See book citation in
“FURTHER READ-
ING”,  22.8, page 556.
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• Stakeholder involvement: the degree to which the project takes into
acount all relevant needs and viewpoints.

• Built-in assessment: the inclusion in the process of mechanisms and
procedures to evaluate product and process quality factors at well-defined
steps. Quality is not just decreed and attempted, it must be checked and
enforced. A good process integrates this task as one of its components.

• Predictability : the inclusion in the process of reliable methods to
estimate other quality factors — in particular production speed and cost
— ahead of time,. Predictability is one of the most important
characteristics of a good process; sometimes a guaranteed date is just as
important as an early date. The software industry has not had a good
record in this area, as many projects are late and over budget; the situation
is improving, thanks to better application of software engineering
principles and techniques.

• Measurability : the availability of sound quantitative criteria to
determine achievement of other quality factors, both process and product;
for example, techniques for measuring error rates. Effective management
needs precise measures of progress. This criterion is closely related to the
preceding two, since the ability to predict and to assess whether the
prediction was met requires the ability to measure.

• Reproducibility : the independence of development, management and
prediction techniques from unessential attributes of individual projects.
In most industrial contexts a software development doesn’t happen in
isolation but as one in a succession of projects. It is important to carry
over information and experience from one project to others, so that a
success in one particular project (reproducibility offailures is not
attractive) can be replicated on future ones. This means in particular
being able to abstract process and product attributes from the
circumstantial properties of particular projects, such as the personalities
of the developers and the specifics of the customer. Such reproducibility
is one of the characteristics of an industrial production process. Because
software is an intellectual activity, not assembly-line production, no one
will ever achieve total reproducibility, nor would it necessarily be
desirable; but a good software process reduces unnecessary sources of
non-reproducibility — bad surprises.

• Self-improvement: the inclusion in the process specification of
mechanisms to qualify and improve the process itself. Organizations, like
people, can learn from experience. The self-improvement criterion
assesses to what extent the process, as defined by the organization,
encourages this phenomenon by including built-in evaluation
mechanisms, which can be fed back into the process itself for adapting it
a result of the lessons learned.
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Process models such as CMMI studied next take these issues to heart, in
particular the last five, to foster a software culture in which built-in
assessment, predictabi l i ty, measurabi l i ty, reproducib i l i ty and
self-improvement are built in as core practices.

Tradeoffs

While any software development should strive for the highest quality in all
respects, the preceding review shows that tradeoffs are inevitable:
• Tradeoffs between process and product factors: a quest for perfection in

the product might take too long to achieve, affecting “production speed”.
• Tradeoffs between product factors: ease of use doesn’t always agree with

security, since you will only want to make the product easy forlegitimate
users. Passwords are bad for ease of use but good for security; optimizing
for efficiency can conflict with corrigibility (as it may lead to contorted
code), and with factors such as extendibility, portability and reusability,
all of which call for general solutions rather than techniques narrowly
targeted to a particular platform and context.

One of the characteristics of a well-managed project is that it examines these
tradeoffs explicitly, and resolves them on the basis of rational analysis.
Otherwise they end up being resolved anyway, but not necessarily in the most
desirable way; a common example is a misplaced concern for efficiency —
extensive optimization where it’s not essential— obtained at the expense of
other quality factors.

22.3 MAJOR SOFTWARE DEVELOPMENT ACTIVITIES

Software engineering involves a number of tasks. You have learned much
about one of them, implementation, and gained a good first idea of others such
as design, documentation, specification. Let’s go through the list of major
tasks; the order is, roughly, from tasks closest to customers’ concerns to those
dealing with technical software needs.

Feasability analysisis the task of studying a customer-related problem
and deciding if it’s possible and desirable to build a software system, or a
system involving software, to address it. The second aspect, although not
immediately suggested by the name, is just as important as the first; not every
system that can be built should.

Requirements analysisdefines the functionality of the system. The
elements making up a requirements document are of two kinds:
• Functionalrequirements, describing the results or actions of the system:

“If the phone user leaves a coverage area to enter another, the connection
shall switch automatically to an access point in the new area”.
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• Non-functional requirements, specifying constraints on the system’s
operation. They includeperformancerequirements such as timing (“For
an access point less than two kilometers away, switchover shall take no
more than one second”), memory and bandwidth usage, security (“all
communication with the access point shall be encrypted”); they also cover
impact on the system’s environment and consequences for stakeholders
such as employees (effect on work practices, training requirements).

Specificationis the precise description of individual elements of the system.
Requirements are customer-oriented; specification translates requirements
into a form that is directly usable for the development of the software. The main
difference is rigor and precision: the specification must give an unambiguous
answer to every relevant question about the operation of the system.

Requirements and specification are sometimes treated as a single activity;
the worldanalysisis then used to cover them both. In the lifecycle models that
follow we will treat them as separate. Regardless of the exact division, the
activities seen so far only address theproblemto be solved; with the next tasks
we enter the world of softwaresolutions.

Design, also calledarchitecture, builds the overall structure of a
software system. It is responsible in particular for defining the principal units,
or modules, of that system, and the relations between those units.

Implementation is the task of actually developing the program text to
produce a usable system. This is also known ascoding, with just a hint of a
derogatory tone — as if writing the program were a menial chore to be
performed once the great thinkers have done the analysis and design. (In this
bookprogrammingis used in the broad sense of program construction: not just
implementation but also design and analysis.)

Documentationis the task of describing various aspects of the system to
help its users and other stakeholders, in particular developers. Aside from
documents for users it may include project plans (for managers) and
documents desecribing the results of some of the other tasks: requirements
documents, specifications, design plans. The word “document” encompasses
more than traditional reports designed for paper; today’s documentation takes
many other formats such as Web pages, online help files, or explanations
included in program texts and processed by specialized tools (such as the
header comments in Eiffel classes, or, in Java programs, special comments
marked as “Javadoc”).

Validation and Verification , or “V&V”, is the task of assessing whether
the system is satisfactory. The two aspects are complementary:
• Verification is internal assessment of the consistency of the product,

considered just by itself. A typical example, at the level of
implementation, is type checking, preventing you for example from
declaring a variable asREAL and using it as if it were anINTEGER.
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• Validation is therelative assessment of a product vis-à-vis another that
defines some of the properties that it should satisfy: code against design,
design against specification, specification against requirements,
documentation against standards, observed practices against company
rules, delivery dates against project milestones, observed defect rates
against defined goals, test suites against coverage metrics.

A popular version of this distinction is that verification is about ascertaining
that the product is “doing things right” and validation that it is “doing the right
thing”. It only applies to code, however, since a specification, a project plan or
a test plan do not “do” anything.

“Maintenance”, as already noted, is not a separate activity but a combination of
some of the tasks listed above.

22.4 LIFECYCLE MODELS

22.5 VERIFICATION AND VALIDATION

22.6 CAPABILITY MATURITY MODELS

Assume you are in an organization that needs to contract out some
development to a software company. There’s no product yet to judge, so all
you can evaluate is the process. The company tells you they have everything
under control, but how do you know?

In the early nineties this need for objective assessment of companies’
software processes led the US Department of Defense (DOD), the world’s largest
consumer of software services, to ask the Software Engineering Institute, a
DOD-funded center at Carnegie-Mellon University in Pittsburgh, to develop a
model for the level of industrial “maturity” of software organizations. The
resulting “Capability Maturity Model”, further developed into a more
comprehensive set of models known as CMMI (“I” for “Integration”), has exerted
a profound influence on several segments of the software industry, in particular:

• US defense contractors, its initial target.

• Indian software companies, probably not part of the initial plan; India’s
nascent outsourcing industry saw in the CMM, as it was then called, a
critical tool for obtaining outside certification that would reassure the
Western customers they were trying to attract. Soon after the model was
released, Indian companies started to account for a significant share of
CMM certifications.
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CMMI is also used outside of these communities. As a sign that it has
extended its reach beyond its initial target group, the proportion of defense
contractors and military organizations performing CMMI assessment went
down to 40% in 2004 and continues to decrease.

Some companies interested in process improvement and qualification prefer other
models, in particular the 9000 series of standards from the International Standards
Organization (ISO), the software-oriented branch of a set of international
standards for industrial quality in general, and SPICE (Software Process
Improvement and Quality dEtermination) which combines some elements of the
other two. In this overview we’ll just look at CMMI.

CMMI scope

CMMI and consorts examine only the process. They are technology-neutral,
language-neutral, tool-neutral. All they assess is whether the organization has
a set of clear procedures in place, applies them, controls that it applies them,
measures their effect, and strives to improve them. In terms of the preceding
discussion of software quality, the emphasis is on theprocessfactors,
especially the last five on our list. Think of the pilot and copilot going through
their check-list prior to a flight: what matters is that they consider every single
item on the list, tick it off if it’s OK, and follow the predetermined action (such
as calling aircraft maintenance) if not. Because of this emphasis on formal
procedures at the expense of technology, some people dismiss process models
as merely a way for managers to “cover their bottoms”, in case the project
doesn’t fare well, by showing that they did everything by the book. Indeed
there have been cases of major project failures in organizations with high
CMMI or ISO qualifications. But such dismissal is a classical case of
confusing necessary with sufficient: software projects, especially large ones,
need both high process quality and high product quality. You can still mess up
with a perfect process, but process qualification is one among a set of tools
available to companies to help themnot mess up.

Key to CMMI is the notion of assessment. Organizations wishing to
establish their “maturity level” as discussed next may get themselves
evaluated — in the military’s passionate acronym culture this yields an
example of nesting, SCAMPI for “Standard CMMI Appraisal Method for
Process Improvement” — by assessors officially accredited by the Software
Engineering Institute: 179 “SEI partners”, organizations rather than
individuals, as of 2005. Assessed organizations may publish the results of the
assessment — typically, to boost their attractiveness if they are software
companies — or keep them for themselves. Between April 2002 and
September 2004, the SEI was notified of 424 appraisals affecting 206
companies, half of them outside the US.
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CMMI disciplines

As the I in the acronym attests (“Integration”), CMMI outgrew the original
CMM to cover a range of models that extend beyond software; the four
“disciplines” covered include software engineering but also:

• “Systems engineering”. This concept covers non-software aspects of a
system; indeed, software is often part of a bigger system — think of the
software on your cell phone — which has its own process, involving
hardware, software and other aspects.

• “Integrated product and process development”.

• “ Supplier sourcing”: selecting, controlling and coordinating all the
suppliers that contribute to a project. Large projects often involve the
participation of many suppliers; in some cases, for example a government
customer with no software development department of its own, a project
is entirely outsourced. Supplier sourcing covers oversight of the
outsourced work.

An organization interested in implementing CMMI and getting assessed may
select from these disciplines, depending on its activity and needs.

Goals, practices and process areas

The essence of CMMI is to definegoals and recommendpractices:
• A goal is a desirable property of a process. For example, every project

should have good requirements, describing user needs; this observation
yields goals such as “Develop customer requirements” and “Analyze and
validate requirements” (that is to say, it’s not enough just to produce
requirements for a project, but one should also have formal procedures to
check that they are feasible and satisfy the stakeholders).

• A practice is a technique that has been shown to help achieve a goal.
Examples are “Establish a definition of required functionality” and
“Analyze requirements to establish balance between stakeholder needs
and[project] constraints”.

As the examples indicate, every practice must be related to a certain goal;
using software terminology, the goal is a specification, the practice an
implementation (carried out by humans) of that specification.

Such goals and the corresponding practices are grouped into collections
calledprocess areas. The preceding examples are part of the process area
“Requirements development”.

The term “area” is not intuitive, so to understand the rest of the discussion you
must remember that a “process area” is exactly what this definition says: a
collection of goals and of practices supporting those goals.
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Two models

CMMI exists in two variants:stagedandcontinuous. The difference is scope:

• The staged variant addresses the maturity level of an organization as a
whole. This has the merit of yielding a single, global figure (“Our
division just achieved CMMI qualification at level 4!”) but ignores the
differences between various activities and specialties; for example an
organization might be very good at software construction but not have
mastered requirements yet. Staged description is in the tradition of the
original CMM, and is still the dominant practice.

• Continuous description allows assessment of individual process areas
and hence provides more flexibility.

Common to both variants is the notion of assessment level. CMMI enables you
to qualify your organization — all of it if staged, some of its process areas if
continuous — at one offive levels, labeled 1 to 5 in order of increasing
closeness to the Nirvãna of total control. (The continous representation adds a
level 0, “incomplete”, for process areas not applied.)

In the staged variant, each level is characterized by a set of process areas:
you reach that level if you apply the corresponding practices and satisfy the
corresponding goals. For example, reaching level 2 assumes that you satisfy
Requirements managementand other process areas listed below. In addition,
each level has onegeneric goaland a corresponding set ofgeneric practices
not belonging to any process area; for example level 2 has the generic goal
“ Institutionalize a managed process”, meaning a company-wide definition
and enforcement of a development process, and associated generic practices
such as “Plan the process” and “Provide resources”.

As a consequence of this concept the goals and practices are divided into
two categories:

• Generic: characterizing a CMMI level, but not belonging to a particular
process area.

• Those belonging to a process area, calledspecific.

Assessment levels

Here is the general characterization of the levels, in the staged variant. The
more precise definition comes from the table below, which identifies the
generic and specific goals of each. There are, as noted, five levels:
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1 • Initial : this characterizes an organization with little process definition or
enforcement. Some projects succeed, others not, but no one quite knows
the reason. It’s like going for mushrooms in the woods on a rainy day in
October: this oak has lots, that one has none, but why? To me they look
just the same. In software development this is sometimes known as the
“heroic” stage: success depends too much on the people involved and on
the poorly controlled circumstances of each project.

2 • Managed: at this level there is a real process; the organization has
defined policies which include a description of the process and plans for
carrying it out; it has allocated resources and defined responsibilities to
meet these plans; application of the process is monitored, reviewed, and
reported to higher management; stakeholders are defined and involved;
there’s a mechanism for configuration management (a topic discussed
below). In other words, the process has been defined and is carefully
carried out.

3 • Defined: this is a managed process (from now on each level assumes the
preceding ones) with more systematic procedures. The main difference
with the previous level is the mix ofgeneralityandtailorisation: there is
a global but customizable process model for the organization as a whole,
and the process for any project is customized from it.

4 • Quantitavely managed: in addition to the previous requirements, the
process makes extensive use not only of quantitative data (such as
measures of costs, development times, reliability, service quality
indicators) but of statistical quality control techniques to analyze the data
in depth and use the results as part of the process.

5 • Optimized: adds a feedback loop that uses data collected about the
projects to question the process and improve it continually, both
incrementally and through more innovative changes.

The following table describes, more precisely, what must be achieved at each
level (starting at 2 since by definition there’s nothing at level 1).

Level Name Generic practices Process areas

2 Managed Requirements management
Project planning
Project monitoring & control
Supplier agreement management
Measurement & analysis
Process & product quality assurance
Configuration management

Not to be confused with
Taylorisation (which is
how critics would char-
acterize the whole
thing).



OVERVIEW OF SOFTWARE ENGINEERING §22.7556

Goals and practices for each level

22.7 FURTHER READING

Software Engineering Institute: Capability Maturity Model Integration
(CMMI) Overview , online document atwww.sei.cmu.edu/cmmi/adoption/
pdf/cmmi-overview05.pdf.

A short overview of CMMI, in the form of presentation slides.

Software Engineering Institute:Capability Maturity Model® Integration
(CMMISM), Version 1.1, CMMISM for Systems Engineering, Software
Engineering, Integrated Product and Process Development, and Supplier
Sourcing (CMMI-SE/SW/IPPD/SS, V1.1) Staged Representation
CMU/SEI-2002-TR-012 ESC-TR-2002-012(sorry, I don’t make those titles).
Available online attinyurl.com/kf9uy (shorthand forwww.sei.cmu.edu/pub/
documents/02.reports/pdf/02tr012.pdf#search=%22cmmi%20staged%20repr
esentation%22).

3 Defined Requirements development
Technical solution
Product integration
Verification
Validation
Organizational process focus
Organizational process definition
Organizational training
Integrated project management for IPPD
Risk management
Integrated teaming
Integrated supplier management
Decision analysis & resolution
Organizational environment for
integration

4 Quantitatively
managed

Organizational process performance
Quantitative project management

5 Optimized Organizational innovation & deployment
Causal analysis and resolution

http://www.sei.cmu.edu/cmmi/adoption/pdf/cmmi-overview05.pdf
http://www.sei.cmu.edu/cmmi/adoption/pdf/cmmi-overview05.pdf
http://tinyurl.com/kf9uy
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr012.pdf#search=%22cmmi%20staged%20representation%22
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr012.pdf#search=%22cmmi%20staged%20representation%22
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr012.pdf#search=%22cmmi%20staged%20representation%22
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This is the official, detailed description of CMMI, staged representation.
(Continuous variant attinyurl.com/gjla9; the two documents share a
large amount of material.) You will need to gear yourself up for the
discreet charm of Government-Committee English, probably not quite
what your creative writing instructor has in mind when when she
advocates conciseness, concreteness and clarity. A sample: “The plan for
performing the organizational process focus process, which is often
called ‘the process-improvement plan,’ differs from the process action
plans described in specific practices in this process area. The plan called
for in this generic practice addresses the comprehensive planning for all
of the specific practices in this process area, from the establishment of
organizational process needs all the way through to the incorporation of
process-related experiences into the organizational process assets” —
Wow!. Once you’ve learned to ignore the bureaucratese you will in fact
find, like little gems in the rubble, a concentrate of some of the best
project organization practices having emerged from four decades of
software project management experience.

Carlo Ghezzi, Mehdi Jazayeri and Dino Mandrioli:Fundamentals of Software
Engineering, 2nd Edition, Prentice-Hall, 2002.

A good software engineering textbook, providing broad coverage of the
field. Other useful textbooks are by: S.L. Pfleeger and J. Atlee (3rd
edition, Prentice Hall, 2005); and Roger Pressman (6th edition, McGraw
Hill, 2005).

Frederick P. Brooks:The Mythical Man-Month: Essays on Software
Engineering, 20th Anniversary Edition, Addison-Wesley, 1995 (the original
edition is from 1975, same publisher).

At IBM Fred Brooks directed the development of OS-360, one of the first
example of a complex operating system available across a whole line of
computers. This book, where he summarized his experience through
short individual essays, has to be mentioned here since it is widely
considered a classic in software engineering, although it’s more for its
folksy advice than for any deep contribution.

22.8 KEY CONCEPTS LEARNED IN THIS CHAPTER

• Software engineering encompasses programming but also all the other
activities, technical or not, involved in producing quality software
systems. It focuses on industrial software production with defined
standards of quality.

http://tinyurl.com/gjla9
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• Issues of software engineering affect both the developmentprocessand
the resultingproducts.

New vocabulary

The names of some of thequality factors (ease of use, production speed…) retain
their meanings from non-technical usage and do not figure in this list.

Acronym collection

22-E EXERCISES

22-E.1 Vocabulary

Give a precise definition of each of the entries in the above vocabulary and
acronym list.

22-E.2 Stakeholders

Are competitorsstakeholders in a software project? Discuss what part they, or
concerns about them, may play in building the software and managing the
project.

Adequacy Built-in assessment Correctness
Correctibility Cost control Efficiency
Extendibility Factor (of software quality) Goal (CMMI)
Lifecycle Maintenance Measurability
Portability Practice (CMMI) Predictability
Process (vs product) Process area (CMMI) Product (vs process)
Production software Reproducibility Reusability
Robustness Security Self-improvement
Software engineering Stakeholder

CMM CMMI DOD
ISO SCAMPI SEI
SPICE

← “COMPONENTS
OF QUALITY”,  22.2,
page 542
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Wrong or late?

The overview of CMMI listed under “Further reading” attributes this comment
to an unnamed senior manager: “I’d rather have it wrong than have it late. We
can always fix it later”. Discuss this statement from a software engineering
perspective.
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The software process
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Writing requirements and
documentation
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Designing Graphical User Interfaces
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Testing and debugging
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Towards software reuse
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A

Using the EiffelStudio
environment

Throughout this book you have been invited to write examples and run them
using the EiffelStudio environment. In the present Appendix you will find all
the practical details needed to prepare the examples and set up the execution.

The various sections refer to the successive examples. Be sure to read the
first, “EiffelStudio Basics”, before turning to the specifics of any particular
example.

A.1  EIFFELSTUDIO BASICS

A.2  EXAMPLE AND EXERCISE SETUP

With EiffelStudio you buildsystems. A system is a collection of classes,
grouped for convenience intoclusters, with one of the classes serving asroot,
that is to say, the place where execution starts.

This book contains a number of examples, to which the instructors (if you
are taking a course based on TRAFFIC) may have added their own exercises.
Rather than setting up each example and exercise as a separate project, we’ve
made things more convenient for you by organizing everything into asingle
systemcalledTraffic. You will always start that same project, then use one of
the buttons on the right — as shown on the following figure — to select an
example or exercise. This means that you may:
• Work on different exercises during a single session, without restarting

EiffelStudio or opening a new “project” from EiffelStudio.
• Retain the solutions you have written for earlier exercises, and revisit

them later on.
• If you develop interesting classes for an exercise,reusethem easily for

another exercise: they’re all part of the same system and hence
automatically available for new developments.

← “SYSTEM EXECU-
TION”,  6.8, page 128.
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If every exercise had its own system, each of these systems would have its own root
class and root creation procedure. With a single system, the creation procedure
simply calls a different command — corresponding to what would have been an
individual creation procedure — depending on the Exercise button clicked.

Touch of Methodology:
Back up you work!

It’s easy to make a mistake. Whenever your software reaches a stage where
it includes new elements that you would hate losing, preserve the results by
making abackup. A backup is simply a copy of important files. A good
backup must:

• Containeverything you want to preserve.
• Be storedseparatelyfrom the original data it’s intended to preserve, to

minimize the likelihood of losing both at the same time.
• Reallycontain what it’s supposed to contain; check this periodically,

to avoid believing that you have a backup and then — when you need
it — realize it’s empty or incomplete.

The example
row

Example and exercise buttons
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A.3  SETTING UP THE PROJECT

In the very first example you have to start EiffelStudio on the pre-existing
Traffic system. The procedure is the following:

•

•

•

A.4  BRINGING UP A CONTRACT VIEW

In thestudyof interfaces you are asked to bring up the contract view of a class,
SIMPLE_LINE. Bring up the system as described in the previous section.
Then click the Exercise button that reads ““ and proceed as follows:

27.1 SHOWING A CLASS AND ITS QUERIES

Also as part of thestudy of interfaces, you have to start the exercise called
Metro by clicking the corresponding button. You must then locate its class
QUERIES as follows.

•

•

A.5  RUNNING QUERIES ON A SYSTEM

To explore results of queries on the Metro linejust built, you may

Don’t smile at the elementary nature of this advice; many supposedly smart
people have beenveryupset at losing important data for failing to observe
one of these common-sense rules. It’s no fun to program for a week and
have to redo everything. On the good side, it takes less time the second time
around. Beyond 2, I don’t know of any conclusive studies plotting against
n the time to redo something you have already donen –1 times.)

Performing repeated backups of an entire software project soon becomes
cumbersome. The professional’s solution is to use aconfiguration
managementsystemthat partly automates backups, stores a description of
differences between successive versions rather than the full versions, and
thanks to this information enables you, if you want to step back, to
reconstruct any earlier version of the system.

←“CONFIGURATION
MANAGEMENT”,
15.5, page 356.

← “A CLASSTEXT”,
2.1, page 17.

←“Whatcharacterizes
a metro line”, page57.

← “Experimenting
withqueries”, page59.

← End of the section
“Building aline”, page63.
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A.6 SPECIFYING A ROOT CLASS AND CREATION PROCEDURE

For thediscussion of creation procedures, you need to specify the root class
and root creation procedure of a system. The system already exists and is
calledTraffic; you can see its root class by

A.7  CONTROLLING EXECUTION AND INSPECTING OBJECTS

A.8

A.9

A.10  RECOVERING FROM “FUBAR”

(Fubar is a computer-folklore acronym whose polite expansion is “Fouled Up
Beyond All Repair”.) If you start following the instructions of this chapter, make
a mistake, and get to a point where nothing seems to work any more, you may wish
to restart from scratch, with the files as they were the first time around.

This is also useful if you are reusing a computer on which someone else
has already performed the exercises, using his own solutions.

Here’s how to proceed:

[TO BE COMPLETED.]

Warning : if you follow this procedure, everything you have changed or
added to to the original program texts will be lost!

← “SYSTEM EXECU-
TION”,  page 128.
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Eiffel syntax specification

For reference, the following sections list:
• The keywords of Eiffel.
• All the syntax productions appearing in the text, each with the page of

first definition.
The lists do not take into account a few constructs of the language not used in
this book. For the complete specification of Eiffel see the official language
description: Bertrand Meyer,Eiffel: The Language, Prentice Hall.

B.1  KEYWORDS

[To be completed.]

B.2  SYNTAX PRODUCTIONS

A =∆ Def1 | Def2 336

A =∆ B | C [D] { E ";" …}* 336

A =∆ B | Concat336

Another_argument=∆ "," Identifier 347

Argument_list =∆ "(" Identifier Another_argument*  " )" 347

Compound =∆ { Instruction ";" …}* 333

Concat =∆ C [D] Repet336

Conditional =∆ if Then_part_list [Else_part] end 334

Else_part =∆ elseCompound 334

Feature_call=∆  Identifier"." Identifier[Argument_list] 347

Repet =∆ { E ";" …}* 336

Then_part =∆ Boolean_expressionthen Compound 334

Then_part_list=∆ { Then_partelseif…} + 334
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C

The C# language

C.1

C.2  KEY CONCEPTS LEARNED IN THIS APPENDIX

•

New vocabulary

C-E EXERCISES

C-E.1

‘’’’

A
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D

The Java language

D.1

D.2  KEY CONCEPTS LEARNED IN THIS APPENDIX

•

New vocabulary

D-E EXERCISES

D-E.1

A
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E

The C language

E.1

E.2  KEY CONCEPTS LEARNED IN THIS APPENDIX

•

New vocabulary

E-E EXERCISES

E-E.1

A
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F

The C++ language

F.1

F.2  KEY CONCEPTS LEARNED IN THIS APPENDIX

•

New vocabulary

F-E EXERCISES

F-E.1

A
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Index
Page numbers inboldface indicate a page where the concept is defined.

In the electronic version of this index, clicking on a page number will
transport you to the corresponding occurrence.

A
abstract complexity 255
abstract syntax tree46
activation record 296, 398
activations 398
address 317
algorithm 141
allocation

dynamic 399
static 398

antecedent 86
API 53
argument 35
associative 85
attached 112

B
backup 574
Backus, John 327
Big-O notation 255
bit 314
Black 314
BNF 327
BNF-E 329
Böhm, Corrado 184
Boolean 66
break 49
Brown, Jerry 245
byte 316

C
C# 508
call chain 295

Chomsky, Noam 349
class 54

generic 245
type 247

client 51
client programmer 65
closed hashing286
code 43
coder 43
collision (in hashing) 285
Columbus, Christopher 505
command 33
comment 19

header comment58
communication device9
commutative 77
compiler 13, 94
complexity, abstract255
Compound 333
compound instruction147
compound, see compound instruction
computer 5, 8
concatenation 332
concurrent 144
Conditional 334
conditional 144
conjunction 78
Conjunction Principle 78
consequent 86
construct 44, 47

lexical 343
container 241
Contract 71
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contradiction 81
control (Windows) 502
core memory 322
correct 13
correctness 246
CPU (Central Processing Unit)9

D
data 10

used in the singular 10
data abstraction 545
declaration 19, 199, 602
defining production 336
delimiter 48
design 54
Dijkstra, Edsger W. 16, 185
disjunction 77
Disjunction Principle 77
Divide and conquer 198
Divide and rule 198
duality 78
dynamic allocation 399
dynamic property 13

E
EBNF (extended BNF) 329
Else_part 334
embedded 11
Enigma 163
entity 112, 232

variable 220
Entscheidungsproblem 163, 209
event

publishing (same as triggering) 505
raising (same as triggering) 505
triggering 505

exception 93, 115
Excluded Middle Principle 76, 80
existential quantifier 98
expression 40
extendibility 130
extendible 13
Extreme Cases Principle 258

F
failure 115
Fairy

Tooth 256
feature 33
feature call 26
field 112
FIFO (first-In First-Out) 292
flowchart 183
forest 46
function

hash 284
Fundamental Data Structure Library Principle 283

G
generating class54
generic

class 245
derivation 245

genericity 245
glue code 511, 522
Gödel, Kurt 163
grammar 44, 328

lexical 343
GUI 52

H
hardware 5
Hash function 284

perfect 285
hashing

closed 286
open 285

header
comment 58
of a list 278

heap 296
Heisenberg, Werner 163
Hertz 319
heuristics 340
Hilbert, David 163

I
I/O (abbreviation for "input and output)"9
Identifier

precise form 48
identifier 47
implementation 54, 199
implication 86
Implication Principle 86
indentation 21
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information 10
information hiding 204
input 9
instance 54

of a routine 397
Instruction 333
instruction 40

compound 147
interface 51
internal node 46
International Standards Organization (ISO) 329
Invariant Principle 71
invariant, see class invariant, loop invariant
Isis 314
item 241
iterator 274

J
Jacopini, Giuseppe 184
Jerry 314

K
keyword 19
Knuth, Donald E. 328

L
language

natural 41
programming, see programming language

leaf 46
Leibniz, Gottfried Wilhelm von 163
lexical 48
lexical construct 343
lexical grammar 343
library 129
LIFO (Last-In First-Out) 292
list

header 278
loop 144

invariant 153
variant 160

Loop Postcondition Principle 189

M
magic 19
manifest string 233
memory 8, 12

core 322
primary 321
secondary 322

message URL http
//archive.eiffel.com/products/parse.html 342

metalanguage329
methodology advice

don’t box in your users 252
standard feature names 253

Model-View Separation Principle 513

N
natural language41
Naur, Peter 328
negation 76
nested 44
nesting 176
nesting (of routines) 296
Non-Contradiction Principle 76, 80
non-strict 94
nonterminal 47, 330
NYSE (New York Stock Exchange) 509

O
object 33
object-oriented 28
octet 316
O-O, see object-oriented
open hashing 285
operator 47
opposite 76
optimization 94
optional construct (in a Concatenation production)332
Osiris 314
output 9

P
parallel 144
parser 337
partial evaluation 484
perfect hash 285
persistence 9
persistent 320
phrase 328
Polish notation 294
Postcondition Principle 70
precondition 65
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Precondition Principle 67
preserve 157
primary memory 321
Principle

Conjunction 78
Disjunction 77
Excluded Middle 76, 80
Extreme Cases 258
Fundamental Data Structure Library 283
Implication 86
Invariant 71
Loop Postcondition 189
Model-View Separation 513
Non-Contradiction 76, 80
Postcondition 70
Precondition 67
Reference Programming 282
Symbolic Constant 233
Uniform Access 230

processor 9
production 330

defining 336
programmer 6
programming language 13,41
prototype (C, C++) 497
pseudocode110, 601
publishing an event (same as triggering) 505

Q
quantifier 98
query 33

R
raising

an event (same as triggering) 505
RAM (Random Access Memory, synonym for main

memory) 321
read 315
recursion 359
recursive 338, 359
recursive definition 359
Reference Programming Principle 282
reflexive 82
reusability 130
reusable 13, 129
robust 13
root class 128
root creation procedure128
root object 602

root procedure 128
routine 145

nesting 296
Russell, Bertrand 163

S
satisfiable 81
satisfies 79
Schützenberger, Marcel-Paul (1920-1996) 349
secondary memory322
semantics 40

used as singular 40
semistrict 94
sequence 144
signature

function 206
software 5
source 13
special symbol 48
specimen 44, 330
static allocation 398
static property 13
storage 322
strict 94
string

manifest
233

stronger 87
subject (observer pattern), see publisher
subprogram 198
subroutine 198
supplier 51
Swing 508
Symbolic Constant Principle 233
syntax 40

T
target 13
tautology 80
temporary variable 220
terminal 47, 330
Then_part 334
Then_part_list 334
TLA 53
token 47
Tom 314
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Tooth Fairy 256

top construct 331

transient 320

tree 45

triggering an event 505

truth assignment79

truth table 76

Turing Award 163

Turing machine 163, 184, 349

Turing, Alan 163, 349

type

class 247

U

Uniform Access Principle 230

universal quantifier 98

user 6

V

validity 246

variable 220

temporary 220
variable entity 220

variable, use "entity" instead112

variant, see under loop

Visual Basic .NET 508

vocabulary 328

void reference 113, 602

W

water, how to boil 137

weaker 87

White 314

widget 502

Windows Forms 508

Wirth, Niklaus 185, 328

word 316

write 315
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Change log
(Will not appear in final version)

16.06, 3 December 06: More on soft-
ware engineering.

16.05, 3 December 06: Working on the
software engineering chapter.

3 December 06: Version 16.04.00 Re-
vised instructor’s preface.

31 August 06: Version 19.08 Continu-
ing on CMMI

30 August 06: Version 19.07 CMMI
27 August 06: Version 19.06 Advanc-

ing the software engineering chapter.
25 August 06: Version 19.05.01 Format

change (reduced printing scale to
0.758 to achieve the equivalent of
11pt for basic text and widen the
margins).

24 August 06: Version 19.05 Advanc-
ing the software engineering chapter.

23 August 06: Version 19.04 Advanc-
ing software engineering.

21 August 06: Version 19.03 A little
more on software engineering.

20 August 06: Version 19.02 Started
software engineering chapter.

18 August 06: Version 19.01 Some cos-
metic changes on recent chapters.

17 August 06: Version 19.00 Agent
chapter finished.

16 August 06: Version 18.60 Agents
not quite finished, but definitely to-
morrow.

15 August 06: Version 18.50 Furthered
agent chapter. I hope to finish tomor-
row.

12 August 06: Version 18.00 Split
agent and event chapters. Finished
event chapter. Split control structure
chapter (new chapter: routines). Split
interface chapter (new chapter: pro-
gram structure). Removed some
empty chapters. Made numerous oth-
er corrections. (15 July-16 August).

2 April 06: Version 16.03.00 Continu-
ing agent-event chapter

6 March 06: Version 16.02.02 Continu-
ing agent-event chapter

6 March 06: Version 16.02.01 Restart-
ing on agent-event chapter

18 February 06: Version 16.00.05 Up-
dating prefaces

27 December 05: Version 16.00.05
Corrected a number of details
throughout text

28 September 05: Version 16.00.06 Re-
starting with work on event-driven
design chapter.

16.00.05, 23 November 04: Fixed a few
points in topological sort chapter
(thanks to comments by Olivier
Jeger).

16.00.04, 21 November 04: Continuing
on assignment

16.00.03, 20 November 04: Updating
assignment chapter to explain refer-
ence assignment and associated is-
sues.

16.00.02, 12 November 04: Update to
topological sort chapter, on the basis
of comments by Olivier Jeger who
implemented the solution, on the ba-
sis of this chapter, as a new cluster
that will be added to EiffelBase.

16.00.01, 10 November 04: Small addi-
tion to topological sort chapter
(where I still have to correct a few er-
rors reported by Olivier Jeger). Most
importantly, I have reverted to
FrameMaker 5.5.6 (1998!), since 7.1
is hopelessly buggy -- this is sad.
Thanks to Ognian Pishev for point-
ing out that the generated PDF was
basically junk.

16.00.00, 9 November 04: Finished
syntax chapter.

15.00.00, 7 November 04: Significant
extensions to chapters on data struc-
tures (basically finished) and on syn-
tax (added lexical grammars).

14.11.01, 13 July 04: Started queues
14.11.00, 10 July 04: Finished stacks,

can see the end of the data structures
chapter.

14.10.00, 9 July 04: Working on stack
section, about 2/3rds done.

14.09.00, 4 July 04: Worked on topo-
logical sort and data structures. Add-
ed comments about bracket notation,
and used it for hash tables in topolog-
ical sort discussion.

14.08.05, 8 May 04: Advancing on
linked lists

14.08.05, 2 May 04: Working on lists
14.08.04, 11 April 04: Finished arrays

and hash tables. Working on lists.
14.08.03, 10 April 04: Progressing on

data structures, arrays etc. chapter
14.08.02, 26 March 04: More on arrays

etc.
14.08.01, 21 March 04: Some advance

on data structures
14.08.00, 19 March 04: Fixed problems

in recursion chapters (a week ago in
SB).

19.02.01, 9 March 04: Advanced signif-
icantly the data structures chapter,
now covering genericity as well as
algorithm complexity. The Recur-
sion chapter is temporarily in a mess;
I’ll fix this tomorrow.

19.01.01, 9 March 04: Working on data
structures chapter

19.01.00, 7 March 04: Working on var-
ious chapters: recursion, fundamen-
tal data structures

19.00.01, 2 March 04: Minor updates
15.00.00, 1 March 04: The chapter on
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topological sort is ready (with the ex-
ception of a couple of figures, “key
concepts” etc.) I did perform a spell
check but no systematic proofread-
ing. There was intensive rewriting in
the past few days, hence the delay.
Next is recursion.

14.11.00, 26 February 04: Advanced
well today. I should definitely have a
first full version of the chapter to-
morrow.

14.10.00, 25 February 04: Advanced
topological sort chapter, although I
have to stop now to take care of some
other matters. Perhaps I will finish
tomorrow. Also cleaned up recursion
chapter somewhat.

14.09.01, 24 February 04: I am now
back to where I was two days ago,
but the presentation is much cleaner
mathematically and pedagogically.

14.08.04, 23 February 04: Ended up re-
writing most of the existing material
(finding out that the mathematical
framework that everyone uses to talk
about topological sorts, partial orders
etc. is just inadequate). I just realized
that the result is not right yet, so there
will be more work on this. Hence the
regression in version numbers.

[Note added later: I started doing the
update, but didn’t finish, so the chap-
ter is in a mess

14.09.00, 22 February 04: Finished
mathematical background for topo-
logical sort. I hope to complete the
chapter in one or two days.

14.08.03, 21 February 04: Advanced
further on topological sort. The next
few days should be good.

14.08.02, 20 February 04: Advanced
just a little.

14.08.01, 19 February 04: PLEASE
NOTE NEW URL Corrected all ty-
pos reported by Philippe Cordel.
Working on topological sort chapter

14.08.00, 18 February 04: Advanced on
topological sort chapter

14.07.00, 3 January 04: Again good
progress on recursion. Unfortunately
there probably won’t be any further
updates for a week.

14.06.02, 2 January 04: Some more ad-
vance on recursion. Didn’t proofread
much.

14.06.01, 1 January 04: Advanced sig-
nificantly on recursion, but there is
still a lot to do. Tomorrow should be
another good writing day.

14.05.01, 27 December 03: Continuing
on recursion: binary trees

14.05.00, 26 December 03: NOTE
NEW URL (Santa Barbara) Continu-
ing work on recursion chapter.

14.04.02, 24 December 03: Advanced
work on recursion chapter

14.04.01, 21 December 03: Minor
changes

14.04.00, 7 December 03: Advanced
significantly on assignment, al-
though I still have to write the discus-
sion of dynamic aliasing.

The text refers to qualified vs unquali-
fied calls, and to Current. Neither no-
tion has actually been introduced.
Obviously I need to correct this defi-
ciency.

14.03.02, 6 December 03: Continuing
on assignment

14.03.01, 3 December 03: Intermediate
version, not released

14.03.00, 30 November 03: Advanced
the attributes chapter: covered as-
signment. I had a lot of trouble figur-
ing out how to explain the concepts,
although once I got it it was written
in a few hours. I wish there were an-
other week-end day to write about
references and dynamic aliasing.

14.02.02, 29 November 03: Started on
the attributes chapter, but actually
spent most of my time today correct-
ing typos in earlier chapters. I have
now processed all received com-
ments. Many thanks to those who
pointed out errors.

14.02.01, 16 November 03: Extended
the syntax chapter. There is actually
more material than included, but I
parked some of it since there was a
conceptual problem to which I didn’t
have a solution in time for this re-
lease.

14.02.00, 15 November 03: Reworked

the beginning of the syntax chapter,
simplifying the presentation and
clarifying the terminology (the no-
tions of terminal and token were
somewhat mixed up). Updated ac-
cordingly section 2.5 (the early intro
to language description) in the Ob-
jects chapter. All that doesn’t ad-
vance the description of assignment
and references, but seems necessary.

14.01.01, 12 November 03: Started to
correct the chapter on syntax

14.01.00, 11 November 03: Extended
discussion of the halting problem
with a historical note, added com-
ments to the presentation of routines,
and included a proof of undecidabil-
ity of the halting problem based on
Eiffel.

14.00.02, 11 November 03: Fixed a set
of typos in the control structure chap-
ter, pointed out (like the one listed
next) by Jörg Derungs

14.00.01, 11 November 03: Fixed typo
in defintion of undecidability (6.5)

14.00.00, 9 November 03: Essentially
finished the control structures chap-
ter; I will return later to the missing
sections.

13.08.04, 9 November 03: Continuing
on routines. Reorganized the chapter
to move the notion of algorithm to
the beginning.

13.08.03, 8 November 03: Working on
routines; changed names of classes
from LINE to METRO_LINE and
STATION to METRO_STATION in
conformance with the software.

13.08.02, 7 November 03: Corrected a
mistake in exercise 4-E.8

13.08.01, 4 November 03: Corrected
several typos, in particular for
“non-strict implication” (3.4, cur-
rently page 58, `count’ instead of
`Line8.count’ and a few similar over-
sights in that chapter; 4.3, currently
page 93, methodological rule, mixup
between `or else’ and `and then’; 4.3,
currently page 94, comment about
`implies’, False -> True.)

13.08.00, 26 October 03: Significantly
advanced the control structures chap-
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ter; a token of self-recognition I am
awarding myself a second-level sec-
tion increase. (Can I then call this an
“Award-Winning Book”?) Unfortu-
nately an essential section is still
missing: routines and functional ab-
straction. Once it’s done, the rest of
the chapter can wait for a while and I
will move on to the next one, on as-
signment & references.

13.07.10, 25 October 03: Discussing
gotos and structured programming.

13.07.09, 21 October 03: It’s safe to ig-
nore this version; just some progress
on slowly completing the control
structures chapter.

13.07.08, 20 October 03: Changed the
first example on request of the
TRAFFIC team: Metro.highlight -->
Lin8.highlight I do prefer the origi-
nal, so I hope the change can be un-
done once the software is brought up
to par with the text. Added a few pic-
tures to chapter 1.

13.07.07, 19 October 03: Wrote the dis-
cussion of algorithms, but not yet of
routines (a most important concept
of course).

13.07.06, 15 October 03: Intermediate;
finished conditionals, trying to finish
control structures chapter.

13.07.05, 14 October 03: Updated
EiffelStudio appendix (A) to reflect
that there is a single system, rather
than one system per example or exer-
cise. Appendix is still very incom-
plete.

13.07.04, 13 October 03: Improved the
discussion of constructs and speci-
mens in chapter 2 following remarks
by Michela.

13.07.03, 10 October 03: Added chap-
ter, empty so far, on program correct-
ness.

13.07.02, 9 October 03: Continuing on
conditionals. Cleaned up many other
elements and changed the style of
boxes. I was promised a nice comb to
photograph for page 162.

13.07.01, 8 October 03: Advanced a bit
on conditionals (almost done). Cor-
rected errors in other places.

13.07.00, 7 October 03: Working on the
description of conditional instruc-
tions. Revisions on previous material
too.

13.06.08, 5 October 03: NOTE NEW
URL (shouldn’t change again for a
good while). Not much visible
progress but cleaned up the discus-
sion of loops. Added two exercises
on exclusive or (4-E.9 and 4-E.10,
the latter possibly more of a sur-
prise).

13.06.06, 23 September 03: Proofread
and improved the discussion of
loops, fixed many typos.

I need to drive to Germany and risk my
life (or a fine) taking picture at the
entrance and exit of a tunnel, prefer-
ably in a picturesque setting (see
page 29). Any suggestion?

13.06.05, 22 September 03: Almost fin-
ished loops; worked on the instruc-
tor’s preface to integrate changes
from the PSI article.

13.06.04, 21 September 03: NOTE
NEW URL Improved discussion of
loops. It now starts with a sketch of a
significant example, taken from
TRAFFIC. I had previously avoided
this to make sure that the notion of
invariant appeared uat the very be-
ginning; now it comes up a little later
but the new organization should be
more in line with the rest of the book.

13.06.03, 20 September 03: Please note
new URL

13.06.02, 14 September 03: Continuing
on loops (section 6.4)

13.06.01, 8 September 03: It seems yes-
terday’s delivery encountered a
problem; I hope this one corrects it.

13.06.00, 7 September 03: Added a dis-
cussion of the notion of loop termi-
nation and loop variant. There won’t
be much more until this Friday.

13.05.00, 30 August 03: Added to cre-
ation chapter a section on correct-
ness.

13.04.00, 28 August 03: Traveling last
week, but advanced description of
control structures; loop section in
particular is almost done. Note new

URL.
13.00.00, 18 August 03: I moved the

description of BNF to a separate
chapter because it was too long an in-
terlude in the discussion of control
structures. The chapter may not be at
the right place since it comes in the
middle of a discussion of software
design issues; I will reassess its prop-
er place later.

Sorry for the large number of typos in
yesterday’s delivery. I hope no one
wasted his time correcting them.
There are probably still quite a few.

In the next 10 days I will be working on
the text but probably won’t be able to
post new versions since I will have
no direct Unix access.

12.03.01, 18 August 03: Cleaning up
the text before leaving for conferenc-
es in Japan and Austria tonight.

12.03.00, 17 August 03: Almost fin-
ished the discussion of syntax de-
scription. Somewhere along the way
I also added an appendix summariz-
ing the syntax (only those constructs
introduced in the book).

12.02.02, 15 August 03: Minor
progress only, you needn’t bother
with this update (continuing on ex-
planations of BNF). I do hope for a
productive week-end, though.

12.02.01, 13 August 03: Minor exten-
sions to control structures chapter.

12.02.00, 10 August 03: A bit more on
sequences, also dabbled into recur-
sion.

12.01.00, 9 August 03: Wrote and al-
most finished the section on se-
quences. I still have to talk about
sequence correctness (preconditions
and all). Then it will be on to condi-
tionals and loops.

Sorry for the spurious message from
the ETH address yesterday -- a case
of fiddling with the files there, faith-
fully watched by the Cron job.

12.00.03, 8 August 03: NOTE NEW
URL (at Monash)

Progressed just a bit on control struc-
tures.

The change log now appears in the text
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itself (at the end, with a link on the
copyright page after the title).

sendmail now works on my Monash
machine.

12.00.01, 7 August 03: Continuing on
control structures, which I am trying
to present as problem-solving tech-
niques.

12.00.00, 5 August 03: Finished cre-
ation chapter (currently 5); probably
many errors. On to control structures
chapter anyway.

NOTE: the version indication will say
“Zurich” although I am currently in
Melbourne. This is because sendmail
is broken on my machine here, so I
have to run the script through my
Sparc at ETH.

11.12.01, 27 July 03: This is an interim
version, not worth anyone spending
his time looking at the details, but en-
suring that the record on the site will
be up to date. I haven’t finished the
creation chapter yet although it’s
slowly taking shape. I spent some
time taking into account comments
by Karine, which were (I hate to ad-
mit it) quite justified. I realized that I
need the notions of procedure, func-
tion and attribute, but don’t know yet
where to introduce them.

11.12.00, 24 July 03: Progressed on
creation chapters but only a little as I
found it necessary to add stuff to the
logic chapter. It turned out that the
part about non-strict operators, add-
ed somewhat on a whim yesterday, is
really indispensable to the rest of the
discussion. Added a few exercises in
diferent places.

11.11.00, 23 July 03: Due to a mistake
on my part there was no dispatch yes-
terday.

Still didn’t extend the creation chapter,
but added to the Logic chapter the
missing section about non-strict op-
erators. Added a Tintin example to
the discussion of implication in that
chapter. (Permissions will have to be
requested.)

Added some empty chapters: concur-
rency, event-driven design.

11.10.01, 22 July 03: Added an impor-
tant exercise to the first chapter.

I was distracted from the groundwork
by my promise to provide for this
week a paper to the National Japa-
nese O-O conference where I am
speaking in August. Actually all I
was really asked was an extended ab-
stract, but I decided to use material
from the book’s preface to produce a
stand-alone article on our project
(even though at the conference I will
be talking about something else,
about which a paper has already been
published elsewhere). That article is
now available at

http://www.inf.ethz.ch/~meyer/publi-
cations/teaching-ispj.pdf

In the process of adapting the material,
I ended up rewriting it significantly;
I have now reflected most of the
changes back to the preface, with the
exception of the section comparing
our approaches with others such as
Abelson/Sussman, which I haven’t
decided about yet.

11.10.00, 21 July 03: Continuing on
creation chapter. I didn’t go as far as
I wanted because of various interrup-
tions but the chapter is taking shape
-- it’s certainly much better orga-
nized than yesterday.

11.09.00, 20 July 03: - Corrected typos
found by Karine Arnout - Added ap-
pendix on the use of EifelStudio
(currently appendix A). As a result,
removed all the placeholders in earli-
er chapters for explanations on how
to start the examples, replacing them
by links to sections in that appendix.
The sections are still placeholders
but at least there are almost no more
“To be completed” mentions in the
text, and the description of EiffelStu-
dio use doesn’t pollute the presenta-
tion of the concepts. - Continued
working on creation chapter (cur-
rently chapter 5), which actually in-
troduces many other important
concepts besides creation: system
execution, root class, root creation
procedure, entity.

11.06.01, 18 July 03: Started working
on creation chapter. Also, I just real-
ized I was sending the update mes-
sages to the `traffic’ list rather than to
`touch’; if you are just on the latter
you didn’t receive recent versions.
Sorry for the confusion.

12.00.00, 16 July 03: Mostly finished
the Interface chapter. Please note that
the URL of the current version is dif-
ferent.

11.05.04, 15 July 03: Typo correction
11.05.03, 15 July 03: During Lon-

don-LA flight, improved Instructor’s
preface, corrected many typos, start-
ed description of invariants in Inter-
face chapter.

11.05.02, 6 July 2003: Prepared overall
book structure Started writing Intro-
duction for the instructor (moved it
ahead of introduction for the stu-
dent).
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