
Department of

Computer Science

Program Understanding {

A Survey

A. von Mayrhauser and A. M. Vans

Technical Report CS-94-120

August 23, 1994

Colorado State University

Program Understanding { A Survey

A. von Mayrhauser

A. M. Vans

Department of Computer Science

Fort Collins, CO 80523

email: avm@cs.colostate.edu
vans@cs.colostate.edu

1 Introduction

Program Understanding or Code Cognition is a central activity during software maintenance, evolution, and

reuse. Some estimate that up to 50% of the maintenance e�ort is spent in trying to understand code. Thus

a better grasp of how programmers understand code and what is most e�cient and e�ective can lead to a

variety of improvements: better tools, better maintenance guidelines and processes, and documentation that

supports the cognitive process.

Maintenance, evolution, and reuse encompass many di�erent tasks. Table 1 lists the most common. Each

task consists of a variety of activities. Table 1 also lists the cognitive needs for each activity. Since these

activities all have their own speci�c objective, one would assume they also have their own most e�ective

method of understanding code.

For years, researchers have tried to understand how programmers comprehend programs [5, 6], [21],

[24, 25], [28], and [31, 32]. Table 2 summarizes these major cognition models by type of maintenance task

and type of model. Comparing them to Table 1 shows that not all maintenance tasks have been investigated

for their cognitive processes. On the other hand, we �nd models that describe general understanding. The

objective in those is usually to understand all of the code rather than to understand for a particular purpose

like debugging. While models of the general understanding process play a very important part in furthering

insight into complete understanding of a piece of code, they may not always be on the mark for special tasks

which may more e�ciently employ strategies geared towards partial understanding. For example, existing

literature about general understanding reports that cognitive results are best when code is systematically

understood [20]. This requires that all code is understood in detail. For large-size software or speci�c tasks

like \�nd the interface error in X", this does not seem feasible nor desirable. Preferably, one would like

specialized cognition processes that, because they have more focus, are more e�cient. The next question

becomes, (how) does special task cognition di�er from general cognition? And, what do all models have in

common?

Section 2 describes common elements of cognition models. In all of them existing knowledge is used to

build new knowledge about the software (the mental model). People employ various strategies and use cues in

code or documentation as guidance. We also know that the level of expertise greatly a�ects e�ectiveness and

e�ciency of code understanding. Section 3 describes the cognition models of Table 2 in more detail. Many of

the models are based on exploratory experiments. Some have been validated with subsequent experiments.

Thus experimentation plays a major role in the de�nition and validation of code cognition models. Section 4

describes the experimental paradigm of code cognition experiments. Major phases of all experiments include

de�nition, planning, operation, and interpretation. Section 4 also explains the role of various experimental

techniques in code cognition experiments and reports on the experimental design of existing code cognition

experiments. This makes it easier to determine whether existing results can be applied to a new situation.

1

Maintenance Activities Explanation
Task

Adaptive Understand system Understand existing system

De�ne adaptation requirements Requirements are extended from original requirements

Develop prelim & detailed adaptation design More design constraints due to existing system

Code Changes Merge adaptation code into existing code

Debug Focus on correct behavior of recently added code

Regression tests Develop tests for new code, run old tests to ensure

other code not a�ected

Perfective Understand system Understand existing system

Diagnosis & requirements de�nition Identify exact nature of need for improvement

for improvements e.g. performance improvements

Develop prelim & detailed perfective design Requirements are extended from original requirements

Code changes/additions Merge perfective code into existing code

Debug Focus on correct behavior of recently perfected code

Regression tests Develop tests for perfected code, run old tests to

ensure other code not a�ected

Corrective Understand system Understand existing system

Generate/Evaluate hypotheses Hypotheses about nature of problem generated using

concerning problem symbolic code execution, watching system behavior

Repair code Rewrite defective code or add omitted code

Regression tests Test for system stability after change

Reuse [18] Understand the problem, �nd solution based Reuse code AS IS, Design is open-ended, not initially

on close �t with prede�ned constrained but de�ned by plugging some con�guration

components of reusable components

Obtain prede�ned components Find reusable components

Integrate prede�ned components Similar to integrating new code developed by several

engineers

Code Understand problem, �nd solution based Design �xed or constrained by problem, design exists &

Leverage on prede�ned components close to desired solution, may

components use new code

Recon�gure solution to increase likelihood Find all possible solutions, use solution with highest

of using prede�ned components leverageable code

Obtain & modify prede�ned components Find leverageable components

Integrate modi�ed components Similar to integrating new code developed by several

engineers

Table 1: Tasks and activities requiring code understanding

Section 5 discusses important open issues in program understanding, particularly considering maintenance

and evolution of large scale code. They relate to scalability of existing results with small programs, validity

and credibility of results based on experimental procedure, and challenges of availability of data. Section

6 summarizes the current status of program comprehension results as they apply to relevant programming

tasks during maintenance and evolution.

2 Common Elements of Cognition Models

Program comprehension is a process that uses existing knowledge to acquire new knowledge that ultimately

meets the goals of a code cognition task. In the process we reference both existing and newly acquired

knowledge to build a mental model of how the software works. How we go about understanding depends

on strategies. While cognition strategies vary, they share the process of formulating hypotheses and then

resolving, revising, or abandoning them.

Knowledge

Programmers possess two types of knowledge, general knowledge that is independent of the speci�c software

application they are trying to understand, and software speci�c knowledge that represents their current level

of understanding of the software application. During the understanding process they acquire more software

speci�c knowledge, but may also need more general knowledge (e. g. how a round-robin algorithm works).

Existing knowledge includes knowledge of the programming languages and the computing environment,

2

programming principles, application domain speci�c architecture choices, algorithms, and possible solution

approaches. When the programmer has worked with the code before and knows something about it, existing

knowledge includes any (partial) mental model of the software.

New knowledge is primarily knowledge about the software product. It is acquired throughout the code

understanding process as the mental model is built. This knowledge relates to functionality, software ar-

chitecture, how algorithms and objects are implemented, control, and data ow,etc. Obviously it spans a

variety of levels of abstraction from "this is an operating system" to "variable q is incremented in this loop".

The understanding process matches existing knowledge with software knowledge until there are enough

matches to satisfy the programmer that he understands the code. The set of matches is the mental model.

It can be complete or incomplete.

Mental Model

The mental model is a current internal (working) representation of the software under consideration. It

contains various static entities including text structures, chunks, plans, and hypotheses. The mental model

can be described in terms of a hierarchy of plans, chunks, and text structures. Top level plans re�ne into

more detailed plans or chunks. Each chunk in turn, represents a higher level abstraction of other chunks or

text structures. It may be constructed using a combination of several dynamic behaviors including strategies,

actions, and processes.

Static Elements of the Mental Model

Text Structure knowledge includes the program text and its structure. Text-structure knowledge [19] for

understanding is built through experience and is stored in long-term memory. Pennington [24] uses text-

structure knowledge to explain control-ow knowledge for program understanding. Structured programming

units form text structure and are the knowledge organization in her comprehension model.

Examples of text structure knowledge units are: Control-Primes { Iteration (loop constructs), sequence,

and conditional constructs (eg. if-then-else); Variable de�nitions; Module calling hierarchy; and Module

parameter de�nitions. This Micro-structure of the program text consists of the actual program statements

and their relationships. For example, the statement BEGIN signi�es the start of a block of code, while a

subsequent IF indicates a conditional control structure for some purpose. The relationship between these

two propositions is that the IF is part of the block initiated by the BEGIN.

Chunks are knowledge structures consisting of various levels of abstractions of text structures. Text-

structure chunks are called Macro-structures which are identi�ed by a label and correspond to control-ow

organization of the program text [24]. For example, the micro-structure for a sort consists of all its statements.

The macro-structure is an abstraction of the block of code and consists only of the label sort. Lower level

chunks can form higher level chunks. Higher level chunks consist of several labels and the control-ow

relationships between them.

Plans are elements of knowledge that support the development and validation of expectations, interpre-

tations, inferencing, and keep the attention of the comprehender during the program understanding task.

These plans also include causal knowledge about the information ow and relationships between parts of

programs. Plans are schemas or frames with two parts: slot-types (or templates) and slot �llers. Slot-types

describe generic objects while slot �llers are customizations that �t a particular feature. Data structures like

lists or trees are examples of slot-types and speci�c program fragments are examples of slot-�llers. These

structures are linked by either a Kind-of or an Is-A relationship.

Programming plans can be high-level, low level, or intermediate level programming concepts. For example,

searching, sorting, and summing algorithms as well as data-structure knowledge including arrays, linked-lists,

trees, and stacks are intermediate level. Iteration and conditional code segments are low-level concepts that

can be plans or components of plans as a chunk of text structure. Programming plan knowledge includes

roles for data objects, operations, tests, other plans, and constraints on what can �ll the roles.

Domain plans incorporate all knowledge about the problem area except for code and low-level algorithms.

Domain plans apply to objects in the real world. Useful plans when developing a software tool for designing

3

automobiles include schemas related to the function and appearance of a generic car. Slots for problem

domain objects such as steering wheels, engines, doors, and tires are necessary components of an appropriate

plan. For program understanding, these plans are crucial for understanding program functionality. Control-

ow plans alone are not enough to understand aspects such as causal relationships among variables and

functions. Domain plans are also concerned with the environment surrounding the software application, the

domain speci�c architecture and solution alternatives.

Letovsky [21] refers to Hypotheses as conjectures and de�nes them as comprehension activities (actions)

that take on the order of seconds or minutes to occur. Letovsky identi�ed three major types of hypotheses:

Why conjectures which hypothesize the purpose of some function or design choice, How conjectures hypoth-

esize about the method for accomplishing a program goal, and What conjectures which hypothesize about

what something is, for example a variable or function. Additionally, there are degrees of certainty associated

with a conjecture and these vary from uncertain guesses to almost certain conclusions.

Brooks [6] theorizes that hypotheses are the only drivers of cognition. This theory states that under-

standing is complete when the mental model consists entirely of a complete hierarchy of hypotheses. At the

top of this hierarchy is the primary hypothesis which is a high-level description of the program structure. It

is necessarily global and non-speci�c. Once the primary hypothesis is generated, subsidiary hypotheses that

support the primary hypothesis are generated. This process is continued until the mental model is built.

Brooks also considers three reasons hypotheses sometimes fail: code to verify a hypothesis can't be found;

confusion due to a single piece of code that satis�es di�erent hypotheses; and code that can not be explained.

Hypotheses are important drivers of cognition. They help to de�ne the direction of further investigation.

Generating hypotheses about code and investigating whether they hold or must be rejected is an important

facet of code understanding.

In short, the mental model is one plan composed of many subplans representing di�erent levels of ab-

straction. Each plan represents software speci�c or software independent information with slots and �llers

for other plans or chunks of text structure.

Dynamic Elements of the Mental Model

A Strategy guides the sequence of actions while following a plan to reach a particular goal. For example, if

the goal is to understand a block of code, the strategy may be to go about it systematically by reading and

understanding every single line of code while building a mental representation at higher and higher levels of

abstraction. An opportunistic strategy studies code in a more haphazard fashion. Littman et al [22] found

that programmers who used a systematic approach to comprehension were more successful at modifying code

(once they understood it) than programmers who took the opportunistic approach. On the other hand, for

large programs systematic understanding may not be possible.

Strategies also di�er in how to match programming plans to code. Shallow reasoning [31, 32] does so

without in-dept analysis. Many experts do this when they recognize familiar plans. Deep reasoning [31, 32]

looks for causal relationships among procedures or objects and performs detailed analyses.

Strategies guide understanding mechanisms that produce information. Two such mechanisms are chunk-

ing and cross-referencing. Chunking creates new higher-level-abstraction structures from chunks of lower-level

structures. As groups of structures are recognized, labels replace the detail of the lower-level chunks. In

this way, lower-level structures can be chunked into larger structures at a higher level of abstraction. For

example, a piece of code may represent a linked-list de�nition as pointers and data. In an operating system

de�nition this may be abstracted as a \ready-queue".The section of code that takes a job from the ready

queue, puts it into the running state, monitors elapsed time, and removes the job after the time quantum has

expired may be abstracted as a \round-robin scheduler". The fragments of code for the queue, the timer, and

the scheduling are micro-structures. Continued abstraction of round-robin scheduler, dead-lock resolution,

interprocess communication, process creation/deletion, and process synchronization eventually leads to the

higher level structure de�nition: \process management of the operation system".

Cross-referencing relates di�erent levels of abstraction, e. g. a control-ow view and a functional view

by mapping program parts to functional descriptions. For instance, once we know that a segment of code

4

performs process management and know why the code exists, we have made a statement about functionality.

Cross-referencing is thus an integral part of building a complete mental representation across all levels of

abstraction.

If we look at code cognition as a process that formulates hypotheses and then checks whether they are

true or false and revises them where necessary, then hypotheses are programmer-de�ned goals. Programmers

are trying to match these goals. Goals exist at all levels of abstraction, like plans and schemas. The essence

of an e�ective and e�cient strategy is to keep the number of open hypotheses manageable while increasing

understanding incrementally.

Actions classify programmer activities, both implicit and explicit during a speci�c maintenance task.

Examples of action types include \asking a question" and \generating a hypothesis". Actions are important

because they de�ne episodes. Episodes are composed of sequences of actions. Then, episodes aggregate to

form higher-level Processes. Thus, processes, episodes, actions, and strategies are the dynamic components

of mental model construction.

Facilitating Knowledge Acquisition

Beacons are cues that index into knowledge. Beacons can be text or a component of other knowledge. For

example, a swap statement inside a loop or a procedure can act as a beacon for a sorting function; so can

the procedure name Sort. Wiedenbeck [39] used short Pascal programs in a recall experiment designed to

study whether programmers actually use beacons during program comprehension activities. Experienced

programmers were able to recall beacon lines much better than novices. Beacons are useful for gaining a

high level understanding in processes such as top-down comprehension.

Gellenbeck & Cook [14] investigated the role of mnemonic procedure and variable names as beacons in

understanding code. While the study con�rmed the usefulness of beacons in general, no useful conclusions

regarding the strength of variable names versus procedure names could be shown.

Rules of discourse are conventions in programming, similar to dialogue rules in conversation. Examples are

coding standards, common forms of algorithm implementations, expected use of data structures, mnemonic

naming, etc. Rules of discourse set expectations of programmers. Programming plans are retrieved from

long term memory using these expectations. Soloway and Ehrlich [31] showed that rules of discourse had

a signi�cant e�ect on the ability of expert programmers to comprehend code. The experiment required

programmers to understand one program that was written using plan-like code and a second program that

used unplan-like code. Plan-like code is de�ned as code fragments that match expert programming plans.

They were able to show that the programmers performed signi�cantly better on the plan-like code than on

the unplan-like code. The performance of experts dropped to that of novices when attempting to understand

the unplan-like code since they were unable to match this code to any programming plans stored in long-term

memory. In practice, this means that unconventional algorithms and programming styles are much harder

to understand, even for experts.

Table 3 summarizes the static and dynamic components for the mental model.

Expert Characteristics

The level of expertise in a given domain greatly a�ects the e�ciency and the success of a programmer during

program understanding. Experts tend to show the following characteristics:

� Experts organize knowledge structures by functional characteristics of the domain in which they are

experts. Knowledge possessed by novices is typically organized by surface features of the problem. For

instance, novices may have knowledge about a particular program organized according to the program

syntax. An example of a functional category is algorithms. Experts may organize knowledge about

programs in terms of the algorithms applied rather than the syntax used to implement the program,

[17].

� Experts have e�ciently organized specialized schemas developed through experience. A high-level

design study conducted by Guindon, [17], indicated that experts not only used general problem solving

5

strategies such as divide-and-conquer, but also more specialized design schemas. These schemas di�ered

in granularity and seemed to be abstracted from previously designed software systems. The schemas

had comparable structures, but di�erent problem domains.

� Specialized schemas contribute to e�cient problem decomposition and comprehension, [17]. For prob-

lems that match specialized schemas, top-down comprehension becomes feasible.

� Vessey [34], conducted several debugging experiments and found that experts are exible in approaches

to problem comprehension. In addition, experts are able to let go of questionable hypotheses and

assumptions more easily. Experts tend to generate a breadth-�rst view of the program and then re�ne

hypotheses as more information becomes available.

The common elements of program cognition models occur in a variety of existing theories. The next

section presents the most important of these code cognition models.

6

Model Maintenance Task Reference

Top-Down Understand E.Soloway & K.Ehrlich, Empirical Studies of Programming Knowledge
In: IEEE Transactions on Software Engineering, Vol.SE-10, No. 5, 1984.

R.Rist, Plans in Programming:De�nition, Demonstration, and Development
In: Empirical Studies of Programmers, Eds. Soloway & Iyengar,
c1986, Ablex Publishing Corp.

Control-Flow Understand N.Pennington, Stimulus Structures and Mental Representations in
Expert Comprehension of Computer Programs, In: Cognitive Psychology,
19, 1987.

Functional Understand N.Pennington, Stimulus Structures and Mental Representations in
Expert Comprehension of Computer Programs, In: Cognitive Psychology,
19, 1987.

Integrated Understand, A.von Mayrhauser & A.Vans, From Program Comprehension to Tool
Corrective, Requirements for an Industrial Environment, In: Proceedings of the 2nd Workshop on

Adaptation, Program Comprehension, Capri, Italy, July 1993, pp. 78 -86.

& Perfective

Other Enhancement S.Letovsky,Cognitive Processes in Program Comprehension,
In: Empirical Studies of Programmers, Eds. Soloway and Iyengar,
c1986, Ablex Publishing Corporation

Corrective Iris Vessey, Expertise in debugging computer programs:A process analysis,

In: International Journal of Man-Machine Studies, (1985)23.

Understand R.Brooks,Towards a theory of the comprehension of computer programs,
In: International Journal of Man-Machine Studies, 18(1983).

B.Shneiderman,Exploratory Experiments in Programmer Behavior,
In: International Journal of Computer and Information Sciences, Vol. 5, No.2, 1976

Table 2: Code Cognition Models

Dynamic Behaviors Static Entities

Strategies Text Structure

Actions Chunks

Episodes Plans

Processes Hypotheses

Beacons

Rules of Discourse

Table 3: Common Elements of Cognition

7

3 Cognition Models

3.1 Letovsky Model

Letovsky's comprehension model, [21], has three main components { a knowledge base, a mental model

(internal representation), and an assimilation process . This model is a very high level cognitive model of

program understanding. The knowledge base consists of programming expertise, problem domain knowledge,

rules of discourse, plans (similar to Pennington's text-structure knowledge and plan knowledge), and goals.

The mental model consists of three layers { a speci�cation, an implementation, and an annotation layer.

The speci�cation layer contains a complete characterization of the program goals. This is also the highest

level of abstraction of the program. The implementation layer contains the lowest level abstraction with

data structures and functions as entities. The annotation layer ties each goal in the speci�cation layer to it's

realization in the implementation layer. Understanding and thus the links between speci�cation layer and

implementation layer can be incomplete. The dangling purpose unit models such unresolved links.

The assimilation process can occur in either a top-down or bottom-up fashion. It is opportunistic in

that the understander proceeds in a way she feels yields the highest return in the form of knowledge gain.

Understanding proceeds by matching code, documents, etc. with elements from the knowledge base with the

sole purpose of contributing to one of the three layers constructed in the mental representation. Figure 1

represents Letovsky's model.

3.2 Shneiderman Model

The Shneiderman comprehension model is shown in �gure 2 [28]. Program comprehension involves recoding

the program in short-term memory via a chunking process into an internal semantic representation using

working memory. These internal semantics consist of di�erent levels of abstraction of the program. At the

top are high-level concepts like program goals. At the lowest levels are details such as the algorithms used

to achieve program goals.

Long-term memory helps during internal semantics construction. Long-term memory is a knowledge base

with semantic and syntactic knowledge. Syntactic knowledge is programming language dependent while

semantic knowledge consists of general programming knowledge independent of any speci�c programming

language. Like working memory, semantic knowledge in long-term memory is multi-leveled and incorporates

high-level concepts and low-level details. Design works forward from the problem statement to the program

while program understanding starts with the program and works to the problem statement.

3.3 Brooks Model

Brooks, [6], de�nes program comprehension as the reconstruction of the domain knowledge used by the

initial developer. Domain knowledge is knowledge about a particular domain such as operating systems or

UNIX systems. In this theory, understanding proceeds by recreating the mappings from the problem domain

through several intermediate domains into the programming domain. The problem domain or application

domain consists of problems in the real world.

An example of a problem in the application domain might be the maintaining of appropriate levels of

inventory in order to keep back-orders to a minimum and at the same time minimizing exposure to loss

due to obsolete inventory. The objects are inventories whose levels must be closely monitored to meet the

constraints of the problem. These are physical entities that have properties such as size, cost, and quantity.

In order to construct a program to solve this problem, these objects and their properties must be encoded

for use by a computer. Once the physical objects are characterized, intermediate knowledge domains are

required. The inventory can be assigned part numbers. Perhaps cost is determined not only by actual

cost but also overhead like storage. We need knowledge of accounting practices to recognize the appropriate

overhead calculations. Once the equations are identi�ed, we need knowledge of program syntax to implement

the equations in a programming language. This example used at least four di�erent knowledge domains to

reach the programming domain: inventories, accounting, mathematics, and programming languages.

8

M
o
d
el o

f C
o
m

p
reh

en
sio

n
 –– L

eto
v
sk

y

K
n

ow
led

ge B
a
se

P
rogra

m
m

in
g

E
xp

ertise

G
oa

ls

p
la

n
s

P
rob

lem
 D

om
a
in

R
u

les of D
iscou

rse

A
ssim

u
la

tion
P
rocess

(T
op

 D
ow

n
 or

B
ottom

 u
p
)

E
xtern

a
l

R
ep

resen
ta

tion
s

D
ocu

m
en

ta
tion

C
od

e
M

a
n

u
a
ls

D
a
n

glin
g

P
u

rp
ose

U
n

it

In
tern

a
l R

ep
resen

ta
tion

 –– M
en

ta
l R

ep
resen

ta
tion

L
a
yers

1
. S

p
ecifica

tion
 (G

oa
ls)

2
. Im

p
lem

en
ta

tion
3
. A

n
n

ota
tion

 (In
d
ica

tion
 of h

ow
 ea

ch
 goa

l in
 S

p
ecifica

tion
 la

yer is
A

ccom
p
lish

ed
 a

n
d
 b

y w
h

ich
 p

a
rts of th

e Im
p
lem

en
ta

tion
 la

yer.)

L
etovsk

y [8
6
]

L
ittm

a
n

, et a
l [8

6
]

Figure 1: Letovsky { Comprehension Model

9

M
o
d
el o

f C
o
m

p
reh

en
sio

n
 –– S

h
n

eid
erm

an

D
esignA

ctivity

C
om

p
reh

en
sion

A
ctivity

P
rogra

m

P
rob

lem
S

ta
tem

en
t

S
h

ort–term
M

em
oryH

igh
–L

evel C
on

cep
ts

L
ow

–L
evel D

eta
ils

F
ortra

n

C

P
a
sca

l
O

th
er

L
on

g–T
erm

 M
em

ory

Knowledge Base

H
igh

–L
evel

C
on

cep
ts

L
ow

–L
evel

D
eta

ils

P
rob

lem
S

ta
tem

en
t

S
em

a
n

tic K
n

ow
led

ge
S

yn
ta

ctic K
n

ow
led

ge

S
h

n
eid

er
m

a
n

 [8
0
]

P
rogra

m
In

tern
a
l S

em
a
n

tics
W

ork
in

g M
em

ory

Figure 2: Shneiderman { Comprehension Model

10

Knowledge within each domain consists of details about the objects in the domain, the set of operations

allowed on the objects, and the order in which the operations are allowed. There is also inter-domain

knowledge that describes the relationships between objects in di�erent, but closely related domains such as

operating systems in general and UNIX in particular.

The mental model is built through a top-down process that successively re�nes hypotheses and auxil-

iary hypotheses. Hypotheses pertain to speci�c domains or connections between knowledge domains. For

instance, an hypothesis may state that a particular equation (math domain) expresses cost (accounting do-

main). Hypotheses can be generated through the recognition of beacons. For example, a procedure name

FCFS may generate the hypothesis that a �rst-come-�rst-serve algorithm is used for process scheduling. Hy-

pothesis generation drives domain knowledge retrieval. Hypotheses are iteratively re�ned, passing through

several knowledge domains, until they can be matched to speci�c code in the program or some related

document.

Figure 3 illustrates this model. Knowledge, shown as triangles, can be used directly for hypothesis gener-

ation in the mental model or it can be matched (mapped) from one domain into another. Another cognitive

process veri�es that internal representations reect knowledge contained in external representations such as

code, design documents, or requirements speci�cations. Beacons are the main vehicle for this veri�cation and

can be used to look at either the internal or external representations for expected information. Veri�cation

is also hypothesis driven in that once an hypothesis is generated the external (internal) representations can

be searched to support the hypothesis.

11

3.4 Top-Down Model { Soloway & Ehrlich

Top Down program understanding model [31, 32] typically applies when the code or type of code is familiar.

Suppose an expert whose specialty is operating systems, is asked to maintain an operating system she has

never before seen. As an expert, she can immediately decompose the new system into elements she knows

must be implemented in the code: a process manager, a �le manager, an I/O manager, and a memory

manager. Each of these can be decomposed e.g, process management includes interprocess communication

and process scheduling. Process scheduling can be implemented through one of several scheduling algorithms:

e.g. round robin, shortest job �rst, or priority scheduling. The programmer may continue in this top down

fashion until she recognizes a block of code, in this case, the precise process scheduling algorithm. During

understanding, it is not necessary to re-learn this algorithm line by line. Instead, the engineer needs only

recognize that the appropriate code exists. Theoretically, new code could be understood entirely in a top

down manner if the comprehender had already mastered code that performed the same task and the code

was structured in exactly the same way. Figure 4 represents this model.

The model uses three types of plans: Strategic, Tactical, and Implementation plans. Strategic Plans

describe a global strategy used in a program or an algorithm and specify actions that are language indepen-

dent. These are the highest-level plans available during comprehension. An example of a strategic plan is

the process state model for operating systems. These plans say nothing about the actual constructs used for

implementation and contain no lower level detail. Strategic plans can be further decomposed into language

independent tactical plans.

Tactical plans are local strategies for solving a problem. These plans contain language independent

speci�cations of algorithms. For an operating system, tactical plans might include cpu scheduling algorithms

for the process state model, such as FCFS (First-Come First-Served), Shortest-Job-First, Priority scheduling,

or Round-Robin. These knowledge structures may include abstract data-structures, such as queues to keep

track of which process to schedule next. The tactical plans composed of these algorithm descriptions are

linked to the process state model strategic plan. Tactical plans can not be used directly for understanding

speci�c code since they are not tied to particular languages. Tactical plans can include the abstract data

types or objects. For instance, a queue may be used in the FCFS algorithm.

Implementation plans are language dependent and are used to implement tactical plans. These plans

contain actual code fragments acquired through experience. A First-Come First-Served function written in

C is an example of an implementation plan. A queue for FCFS can be implemented as a linked list or array

structure. These represent two di�erent implementation plans for the same tactical plan.

A mental model is constructed during top down comprehension and consists of a hierarchy of goals and

plans. Rules of discourse and beacons facilitate decomposition of goals into plans and plans into lower-level

plans. Typically, shallow reasoning is used to build the connections between the hierarchical components.

Figure 4 shows the model's three major components: 1) The triangles represent knowledge (programming

plans or rules of discourse). 2) The diamond represents the understanding process. 3) The rectangles illus-

trate internal or external representations of the program. Understanding matches external representations

to programming plans using rules of discourse for help in selecting plans (by setting expectations). Once a

match is complete, the internal representation is updated to reect the newly acquired knowledge. These

updated mental representations are subsequently stored as new plans.

Comprehension begins with a high-level goal and proceeds with the generation of detailed sub-goals

necessary to achieve the higher level goals. The comprehender draws on previously stored knowledge (plans)

and programming rules of discourse in an attempt to satisfy the goals. Program documentation and code

serve as the tools for invocation of implementation, strategic, or tactical plans, depending on the focus of

the current mental representation. In addition to building the mental representation of the current program,

top down comprehension also facilitates the building of new programming plans which are in turn stored in

long term memory for future use.

12

M
o
d
el o

f C
o
m

p
reh

en
sio

n
 –– B

ro
o
k
s

In
tern

a
l R

ep
resen

ta
tion

 –– M
en

ta
l M

od
el

H
yp

oth
esis &

 S
u

b
goa

ls

P
rob

lem

D
om

a
in

S
ch

em
a
sV
erify

in
tern

a
l sch

em
a
s

a
ga

in
st E

xtern
a
l

R
ep

resen
ta

tion
s R

eq
u

irem
en

ts D
ocu

m
en

ta
tion

M
A

T
C

H

In
term

ed
ia

te

D
om

a
in

 S
ch

em
a
s

V
erify

in
tern

a
l sch

em
a
s

a
ga

in
st E

xtern
a
l

R
ep

resen
ta

tion
s

V
erify

in
tern

a
l sch

em
a
s

a
ga

in
st E

xtern
a
l

R
ep

resen
ta

tion
s

P
rogra

m
 C

od
e

U
ser’s M

a
n

u
a
ls

M
a
in

ten
a
n

ce M
a
n

u
a
ls

P
rogra

m
m

in
g

D
om

a
in

K
n

ow
led

ge

P
relim

in
a
ry &

 D
eta

iled
D

esign
 D

ocu
m

en
ts

M
iscella

n
eou

s D
ocu

m
en

ts
 in

 P
rob

lem
 D

om
a
in

H
yp

oth
esis D

riven
H

yp
oth

esis
D

riven

H
yp

oth
esis

D
riven

B
rook

s [7
7
,8

3
]

E
xtern

a
l R

ep
resen

ta
tion

E
xtern

a
l R

ep
resen

ta
tion

E
xtern

a
l R

ep
resen

ta
tion

Figure 3: Brooks { Comprehension Model

13

M
o
d
el o

f C
o
m

p
reh

en
sio

n
 –– S

o
lo

w
ay

 &
 E

h
rlich

P
rogra

m
m

in
g

P
la

n
s

(S
ch

em
a
s)

C
h

u
n

k

C
h

u
n

k

C
h

u
n

k

C
h

u
n

k

U
n

d
ersta

n
d
in

g
P
rocess

M
a
tch

in
g

D
ocu

m
en

ts
to

P
la

n
s

E
xtern

a
l

R
ep

resen
ta

tion
s

D
ocu

m
en

ts

R
u

les
of D

iscou
rse

In
tern

a
l R

ep
resen

ta
tion

C
u

rren
t M

en
ta

l R
ep

resen
ta

tion
of P

rogra
m

(P
la

n
s/

S
ch

em
a
s)

A

A
.

P
la

n
s:

– S
tra

tegic: G
lob

a
l S

tra
tegies

– T
a
ctica

l: L
oca

l S
tra

tegies

– Im
p
lem

en
ta

tion
: L

a
n

gu
a
ge

B

B
: R

u
les of D

iscou
rse: (su

b
set)

– V
a
rs u

p
d
a
ted

 sa
m

e w
a
y a

s
in

itia
lized

– N
o d

ea
d
 cod

e
– A

 test for a
 con

d
ition

 m
ea

n
s

th
e con

d
ition

 m
u

st b
e

p
oten

tia
lly tru

e
– D

on
’t d

o d
ou

b
le d

u
ty w

ith
cod

e in
 a

 n
on

–ob
viou

s w
a
y

– A
n

IF
is u

sed
 w

h
en

 a

sta
tem

en
t b

od
y is gu

a
ra

n
teed

to execu
te on

ly on
ce; a

w
h

ile
is u

sed
 w

h
en

 th
e

sta
tem

en
t m

a
y n

eed
 to b

e
execu

ted
 rep

ea
ted

ly.

D
esign

 D
ocu

m
en

t
R

eq
u

irem
en

s D
oc.

C
od

e
U

ser M
a
n

u
a
ls

R
eferen

ce M
a
n

u
a
ls

M
a
in

ten
a
n

ce
M

a
n

u
a
ls

M
isc. R

ela
ted

d
ocu

m
en

ts

D
ep

en
d
en

t

Figure 4: Soloway & Ehrlich { Comprehension Model

14

3.5 Pennington's Model { Bottom-Up Comprehension

3.5.1 The Program Model

When code to be understood is completely new to the programmer, Pennington [24, 25] found that the �rst

mental representation programmers build is a control ow abstraction of the program called the program

model . This representation is built from the bottom up using beacons to identify elementary blocks of

code (control primes) in the program. Pennington uses text structure and programming plan knowledge to

explain the development of a program model. This text-structure knowledge consists of the control primes

used to build the program model. Programming plan knowledge, consisting of programming concepts, is

used to exploit existing knowledge during the understanding task and to infer new plans for storage in

long-term memory. Examples of plan knowledge structures from the Operating Systems domain are memory

management page replacement algorithms including LRU (Least Recently Used) and NRU (Not Recently

Used). Data structure knowledge may contain the implementation of a FIFO queue.

The mental representation is a current internal (working) description of program text and represents

current understanding. Two di�erent representations are developed during comprehension { a Program

Model and a Situation Model. The program model is usually developed before the situation model. Text-

structure and programming plan knowledge play a critical role in the development of the program model.

The program model is created by chunkingmicro-structures into macro-structures and by cross-referencing.

3.5.2 The Situation Model

Once the program model representation exists, Pennington, [24], showed that a situation model is developed.

This representation, also built from the bottom up, uses the program model to create a data-ow/functional

abstraction. Knowledge of real-world domains is required. For the operating systems example this knowledge

includes facts about generic operating system structure and functionality. Construction of the situationmodel

is complete once the program goal is reached.

Domain Plan Knowledge is used to derive a mental representation of the code in terms of real-world

objects, organized as a functional hierarchy in the problem domain language. For example, the situation

model describes the actual code \pcboards = pcboards - sold;" as \reducing the inventory by the number

of pc boards sold. This is done to keep an accurate count of inventory". In the same way that the program

model consists of a hierarchy of chunked components, the situation model represents chunked plan knowledge.

Lower-order plan knowledge can be chunked into higher-order plan knowledge. \The memory manager, the

process manager, the secondary storage manager, the I/O system, the �le manager, the protection system,

networking, and the shell together de�ne the operating system". This is the highest-order plan and it is

comprised of lower-order plans containing knowledge about each component.

The mechanisms used for situation model building are the same as those used for programmodel building:

cross-referencing and chunking. The only di�erence is that the knowledge involved is domain plan knowledge,

as opposed to program model text-structure and plan knowledge.

Again, beacons can play an important part in determining which plans are used. The matching process

takes information from the program model and builds hypothesized higher-order plans These new plans are

stored in long-term memory and chunked to create additional higher-order plans. The situation model as a

mental representation contains a functional and data-ow abstraction of the program.

Figure 5 is a graphical representation of Pennington's model. The right half illustrates the process of

program model building while the left half describes situation model construction. Text-structure knowledge

and any external representations (code, design documents, etc.) are inputs to the comprehension process.

Beacons can inuence invocation of a particular schema (e.g. a swap operation causes the programmer

to recall sorting functions). Code statements and the interrelationships among them are organized into a

micro-structure. Micro-structures are chunked into macro-structures. These chunks are stored in long-term

memory and subsequently used in the comprehension process to build even larger chunks. Once a control-ow

mental representation exists, the program model is established.

Information ows between the program model and the situation model illustrate that the program model

15

M
o
d
el o

f C
o
m

p
reh

en
sio

n
 –– P

en
n

in
gto

n

E
xtern

a
l R

ep
resen

ta
tion

s

D
ocu

m
en

ts
P
rogra

m
 C

od
e

M
a
tch

C
om

p
reh

en
sion

P
rocess

M
en

ta
l

R
ep

resen
ta

tion

M
a
cro–S

tru
ctu

re

M
icro–S

tru
ctu

re AB

P
rogra

m
M

od
el

(F
in

a
l M

en
ta

l
R

ep
resen

ta
tion

)

P
roced

u
ra

l/
C

on
trol–F

low

T
E

X
T

–B
A

S
E

M
a
tch

C
om

p
reh

en
sion

P
rocess

S
itu

atio
n

M
o
d
el

(F
in

a
l M

en
ta

l
R

ep
resen

ta
tion

)
F

u
n

ction
a
l &

D
a
ta

–F
low

V
iew

M
en

ta
l

R
ep

resen
ta

tion

H
igh

er–O
rd

er p
la

n
s

H
yp

oth
esis/

P
la

n
 K

n
ow

led
ge

P
rob

lem
 D

om
a
in

 K
n

ow
led

ge
(S

crip
ts)

E
xtern

a
l R

ep
resen

ta
tion

D
ocu

m
en

ts C
od

e
T
ext–S

tru
ctu

re
K

n
ow

led
ge

S
yn

ta
ctic K

n
ow

led
ge

C

B
ea

con
s

E
vok

ed
S

ch
em

a

A
ctiva

ted
C

a
n

d
id

a
te

P
la

n

B
ea

con
s

X
ref

M
a
p

S
u

b
goa

ls

A
. M

a
cro–S

tru
ctu

re : C
h

u
n

k
ed

 lin
es of

text orga
n

ized
 b

y C
on

trol P
rim

es

C
on

trol S
eq

u
en

ce k
n

ow
led

ge (seq
u

en
ce, itera

tion
, con

d
ition

)

B
. M

icro–S
tru

ctu
re: P

rop
osition

s &
 in

terrela
tion

s a
m

on
g p

rop
osition

s.

DD
. P

la
n

 K
n

ow
led

ge

–– D
esign

 C
om

p
on

en
ts

–– P
rob

lem
 D

om
a
in

K
n

ow
led

ge

C
. T

ext–S
tru

ctu
re K

n
ow

led
ge: C

on
trol P

rim
es, p

rogra
m

 stru
ctu

re, syn
ta

x,
p
rogra

m
m

in
g con

ven
tion

s,

O
th

er

Figure 5: Pennington { Comprehension Model

16

is modi�able after situation model construction begins. A cross reference map allows a direct mapping from

procedural, statement level representations to a functional, abstract view of the program. Higher-order plans

can cause a switch to program model building, either directly modifying the text-base or as input to the

program model comprehension process.

3.6 Integrated Meta-Model

The integrated code comprehension model [37, 38] consists of four major components, (1.) Top-Down model,

(2.) Situation model, (3.) Program model, and (4.) Knowledge base. The �rst three reect comprehension

processes. The fourth is necessary for successfully building the other three. Each component represents both

the internal representation of the program being understood (or short-term memory) as well as a strategy

used to build this internal representation. The knowledge base either furnishes the process with information

related to the comprehension task or stores any new and inferred knowledge.

The integrated model combines the top-down understanding of [32] with the bottom-up understanding of

[24], recognizing that for large systems a combination of approaches to understanding becomes necessary.

Experiments showed that programmers switch between all three comprehension models [37, 38].

As Figure 6 illustrates, any of the three sub-models may become active at any time during the compre-

hension process. For example, during program model construction a programmer may recognize a beacon

indicating a common task such as sorting. This leads to the hypothesis that the code sorts something, causing

a jump to the top down model. The programmer then generates sub-goals (e.g. I need to �nd out whether

the sort is in ascending or descending order) and searches the code for clues to support these sub-goals. If,

during the search, he �nds a section of unrecognized code, he may jump back to program model building.

Structures built by any of the three model components are accessible by any other, however, each model

component has its own preferred types of knowledge.

3.7 Evaluation of Models

At the highest level of generality, all �ve models accommodate 1) a mental representation of the code, 2)

a body of knowledge (knowledge base) stored in long-term memory, and 3) a process for combining the

knowledge in long-term memory with new external information (such as code) into a mental representation.

Each di�ers in the amount of detail for these three main components.

Letovsky's model is the most general cognition model. It focuses on the form of the mental representation

. There are no details on how the knowledge assimilation process works or how knowledge is incorporated into

the mental representation beyond the statement that it occurs. The types of knowledge coincide with Soloway

& Ehrlich's model. Shneiderman's model is more detailed because it includes a hierarchical organization of

knowledge and a separation between semantic and syntactic knowledge. Similar to Letovsky, the focus is on

the form of the mental representation, but it lacks details on knowledge construction.

Brooks' model is di�erent from the other models in that all changes to the current mental representation

occur as the result of a hypothesis. The mental model is constructed in one direction only, from the problem

domain to the program domain. The knowledge structures are kept unde�ned. Although hypotheses are

important drivers of cognition, there are other ways of updating the current mental representations, for

example strategy-driven (using a cross-referencing strategy or using a systematic or opportunistic strategy).

Also, if understanding occurred only from problem to program domain, it would not be possible to switch

from one level of abstraction to another going in an opposite direction: suppose an engineer was trying to

understand a piece of code she has never seen. This implies she will start building her mental representation

from the right-hand side of �gure 3 (in the program domain). If at some point she makes a connection to

the domain, there is no way to jump back to the left-hand side of the �gure (problem domain). At the same

17

P
rogram
M

odel

C
h

u
n

kin
g

M
icro–

S
tru

ctu
re

M
acro–

S
tru

ctu
re

S
h

ort–T
erm

B
eacon

s

S
itu

ation
M

odel

L
ow

–L
evel

M
appin

gs

M
appin

gs

H
igh

L
evel

C
h

u
n

kin
g

S
ch

em
a

(P
lan

)
C

u
rren

t
M

en
tal

R
epresen

tation
of

P
rogram

U
n

derstan
din

g
P

rocess

O
pportu

n
istic

C
. R

u
les of D

iscou
rse

A
. S

trategic P
lan

s
B

. T
actical P

lan
s

C
. Im

plem
en

tation
 P

lan
s

1. C
on

trol P
rim

es

P
rogram

A
. Text–S

tru
ctu

re
P

roblem
 D

om
ain

(R
eal W

orld K
n

ow
ledge)

B
. P

lan
 K

n
ow

ledge
A

. F
u

n
ction

al

Stru
c

tu
re

s
Stru

c
tu

re
s

P
ro

g
ra

m
M

o
d

e
l

To
p

–D
o

w
n

Stru
c

tu
re

s

Situ
a

tio
n

M
o

d
e

l

C
om

pre–
h

en
sion

S
h

ort–term
M

em
ory

M
atch

C
om

pre–
h

en
sion

D
ocu

m
en

ts &
 C

ode
D

ocu
m

en
ts &

C
ode

R
ead

M
em

ory

D
ocu

m
en

ts

B
eacon

s

B
ottom

–u
p

O
pportu

n
istic or R

ead

P
rocess

R
u

les of D
iscou

rse

P
rogram

m
in

g P
lan

s

(P
lan

 K
n

ow
ledge)

K
n

ow
ledge

1. A
lgorith

m
s

2. C
on

trol S
equ

en
ce

3. D
ata–S

tru
ctu

res
4. D

ata–F
low

 (slices)
5. S

yn
tax

D
om

ain

K
n

ow
ledge

K
n

ow
ledge

K
n

ow
ledge

M
atch

P
rocess

S
ystem

atic

Top–D
ow

n

S
ystem

atic
B

ottom
–u

p

F
rom

 P
rogram

M
odel

F
rom

Top–D
ow

n
M

odel

Figure 6: Integrated Meta-Model

18

time, such cognition behavior has been observed [38]. Brooks' model is similar to the Soloway and Ehrlich

model in that the mental representation is constructed top-down through �ner levels of details.

Pennington's model is more detailed and includes speci�c descriptions of the cognition processes and

knowledge. It accounts for the types and composition of knowledge to construct most of the mental repre-

sentation as well as their form. It also contains mechanisms for abstraction. The major drawback of this

model is the lack of higher level knowledge structures such as design or application domain knowledge. It is

also uni-directional in that comprehension is only built bottom-up.

Soloway and Ehrlich's model (also known as the domain model) emphasizes the highest level abstractions

in the mental model. One aspect that sets this model apart from the others is the top-down development of

the mental model with the assumption that the knowledge it uses has been previously acquired. By itself,

this model does not take into account situations when code is novel and the programmer has no experience

to use as a \backplane" in which to plug in new code.

Each of these models represent important aspects of code comprehension and many overlap in charac-

teristics. For example, Brooks, Letovsky, and Shneiderman all focus on hierarchical layers in the mental

representations. Brooks and Soloway & Ehrlich use a form of top-down program comprehension while Pen-

nington use a bottom-up approach to code understanding. Letovsky and Shneiderman use both top-down

and bottom-up comprehension. All �ve models use a matching process between what is already known

(knowledge structures) and the artifact under study. No one model accounts for all behavior as program-

mers understand unfamiliar code. However, we can take the best of these models, connect them and create an

Integrated Meta-model that not only represents relevant portions of the individual models but also behaviors

not found in them, e.g. when a programmer switches between top-down and bottom-up code comprehension.

Cognition models and the theories on which they are based must be grounded in experiments that either

collected the information upon which a theory is based or validates it. The next section describes types of

experiments commonly found in program cognition and important components of experimental design.

4 Experimental Paradigm

4.1 Components of Experimental Design

Program comprehension experiments have four major phases: De�nition, Planning, Operation, and Inter-

pretation. Several components further de�ne each phase. Table 4 lists phases and components with a short

explanation of each component.

Phase Components Explanation

De�nition Motivation/Purpose Why is the experiment done.

Object What is being studied, e.g. corrective maintenance.

Task Speci�c task, e.g. debug module

Planning Subjects Expertise & quantity

Language Procedural/Declarative

Code Size Measured in Lines of Code

Independent Variables Manipulated factors

Type Hypothesis/Correlational/Naturalistic

Measurement What is being measured and how

Operation Procedure What was actually done during the experiment

Interpretation Analysis ANOVA, frequencies, etc.

Validity Where there any threats to validity?

Table 4: Components of Experimental Design

The De�nition phase is the �rst part of any experiment. It de�nes why the experiment is important and

what is being tested. We distinguish between Motivation and Purpose. An experiment's motivation is a

high level description of the basis or justi�cation for the study. The purpose of an experiment is a speci�c

statement of goals and a hypothesis. A hypothesis is a precise statement of the question the experiment is

19

to answer. The Object is the principal entity under study such as comprehension models and dynamic or

static components of comprehension models (strategies and knowledge structures, respectively). The Task

description speci�es the precise activities of the subjects during the experiment. Task should be directly

related to the object, for example if the object is to study the design process, the task may involve developing

code during an experiment.

The Planning phase of an experiment involves design of the details of experimental procedure and how

to measure the object under study. In program cognition, experimental design speci�es subjects, (who is

doing the task), programming language and number of lines of code (task descriptors), independent variables

(measurable aspects of the task that relate to the hypothesis statement and can be measured with the

procedures de�ned), and type of experiment.

All program comprehension experiments use and observe subjects. Subjects range from novice program-

mers to professional programmers. Important considerations include size of participant sample and level

of expertise. The most commonly used languages in program comprehension experiments are Pascal and

Fortran, with Cobol the next most frequently used. Di�erentiating between programming languages is im-

portant because comprehension may di�er depending on the programming language used. Lines of code is

another important descriptor of an experimental program comprehension task. Experiments try to determine

qualitatively or quantitatively whether or to which degree speci�c factors (independent variables) a�ect an

outcome (dependent variable).

Operation describes experimental procedure and events during experimentation. For example, if many

of the subjects drop out of the experiment before it is completed, the results may be very di�erent than if

all subjects had stayed. This can a�ect interpretation.

Interpretation evaluates how well the experiment answered the original hypothesis. Analysis examines

the measurement data of the dependent variables and draws conclusions on the results. Validity determines

whether the results are sound. Validity is concerned with whether we measured the right thing in the right

way. Internal validity refers to whether the independent variables actually caused changes in the dependent

variables. External validity concerns the degree to which the conditions under which the data were collected

are representative of those in the real world. It determines generality of the results.

As an example, Gellenbeck & Cook [15] conducted an experiment for which the Motivation was to

understand what factors make one program easier to understand than another. The Purpose was to determine

if typographic signalling makes programs easier to read and understand. The Hypothesis was that it does.

The Object was the program understanding process while the Task was to understand a piece of code.

8 professional programmers were used as subjects. They tried to understand 913 LOC written in the C lan-

guage. The Independent Variables consisted of the presence of a typographic signal (2 levels:Present/None),

the type of module name (2 levels:Mnemonic/Neutral), and the presence of a header comment (2 lev-

els:Present/None). The type of experiment was hypothesis testing. Measurements were taken on the accu-

racy of subject responses to questions (hypothesis questions) regarding the function of a particular routine

(yes/no), subject con�dence rating in accuracy to the hypothesis questions, time to respond to questions

regarding the location of a routine that performed a speci�c function, and subject con�dence in accuracy

time to the location questions.

The procedure had the professional programmers study a 913-line hard copy of the program for 10 minutes.

8 versions contained the 8 possible combinations of typographic signaling, header comments, and mnemonic

module names. This was followed by requiring the subjects to answer 24 hypothesis questions displayed on

a computer terminal. After each question they had to rate, on a scale of 1:::100, their own con�dence in the

answer they had just provided. Following the 24 hypothesis questions, the subjects answered 24 location

questions. If the answer was not correct, the computer signalled an error and the subject was required to

try again. The time to answer correctly was collected for each question.

The analysis showed that typographic signaling, header comments, and mnemonic names all helped in

understanding code and that typographic signalling did not aid in locating information.

Figure 7 illustrates how phases are related to each other. The hypothesis is a re�nement of the goals

for the experiment. Hypotheses drive the remaining phases. Subjects, language, and code size are inde-

pendent variables found in all program comprehension experiments. Independent and dependent variables

20

are re�nements of the hypothesis. Variables and the hypothesis prescribe the metrics and the measurement

procedure necessary. For example, if the hypothesis is that experts recall critical lines of code faster than

novices, then our independent variable is expertise, the metric is recall time in seconds or minutes, and the

measurement procedure is to use a stopwatch and measure recall times for novices and experts. The actual

operation of the experiment may not occur exactly as planned, so the analysis method can be a�ected by the

procedure. For example, if subjects drop out of the experiment the analysis method must take into account

missing data. The hypothesis is a precise statement of what is to be measured, and therefore also inuences

the analysis method. For example, hypotheses about whether two variables are related require correlational

analyses of data collected during experimental operation.

Experimental design is an iterative process. If a hypothesis is not testable, the experiment needs re-

designing starting with a restatement of the hypothesis. The next section describes in more detail each type

of experiment and when it is appropriate.

Goals

Hypothesis

Independent
Variables

Dependent
Variables

Measure–

Procedure

Analysis Method

ment
Method

Definition

Phase

Planning

Phase

Operation

Phase

Interpretation

Phase

Figure 7: Interactions between Experimental Phases

21

4.2 Experimental Techniques

Objectives

Several types of experiments have been used for program comprehension experiments. The appropriate type

depends on the purpose of the study and the amount of existing research. The objectives range from theory

building to validation of detailed portions of a theory. Studies to build a theory are typically observational.

Behaviors are observed as they occur in the real world. Once a theory is built from observations, correlational

studies can be designed. Here, more is known about the behavior in question, enough to explore relationships

among variables. At the other end of the spectrum we �nd hypothesis testing experiments that investigate

cause and e�ect between variables. Hypothesis testing are carefully controlled experiments whose purpose is

to validate an existing theory. They can be designed once a theory exists and correlational studies indicate

possible relationships between variables.

Field Studies { Naturalistic Observations, Interviews, Questionnaires

Field studies are exploratory data gathering techniques used in realistic settings. Naturalistic observations

study behaviors as they occur, for example observing maintenance engineers as they try to understand code

written by someone else. Observation is unobtrusive so that normal behaviors and events are not changed

due to the presence of the observer. For example, Adelson & Soloway [2] conducted a �eld study of expert

software designers in order to build a model of software design problem-solving skills. Three experts designed

an Email system while observers watched and audio-taped think-aloud reports of the engineers during the

design task. These reports were transcribed and analyzed. Analysis resulted in a model of problem solving

skills for program design.

Interviews and questionnaires also collect information in a �eld setting. Both involve questions designed

to elicit speci�c types of information. Interviews and questionnaires are retrospective because they report

(after the fact) on information acquired some time before the interview or questionnaire.

Correlational Studies

Correlational observations try to determine if there is a relationship between variables. They are similar to

hypothesis testing but do not explain cause and e�ect relationships. For example, Koenemann and Robertson

[20] designed and executed an experiment to show that program comprehension is a hypothesis-driven,

problem-solving process by determination of programmer preferred strategies. 12 professional programmers

were assigned randomly to four di�erent program modi�cation tasks. Two types of strategies, opportunistic

and systematic, were recognized for this experiment. The experimental hypothesis was that the relationship

between the amount of time to �nish a modi�cation task and the number of pieces of information looked

at determines the strategy used. Time to complete the modi�cation task was correlated to the number of

pieces of information programmers looked at. Results indicate a moderate relationship between modi�cation

time and number of pieces of information.

Hypothesis Testing

Hypothesis testing requires the formulation of a hypothesis which is then tested through observation and

measurement. All dependent and independent variables are measurable and their levels controllable. Then,

observed behavior can be explained in terms of the e�ect of dependent variable variations on levels of the

independent variables. These tightly controlled experiments have high internal validity, but the need for

such control may a�ect external validity. Since experiments are based on the statement of a hypothesis,

this requires either an existing theory or prior observations that lead to a hypothesis. Most early program

cognition experiments using hypothesis testing borrowed theoretical frameworks from psychology. Quasi-

experiments (also known as ex post facto studies) are hypothesis testing experiments with the exception that

subjects are not randomly assigned to levels of the independent variable. This is the case when preexisting

22

di�erences de�ne membership in di�erent groups and the dependent variable is directly related to these

groups.

For example, Adelson [1] designed a study in which she was interested in �nding di�erences between

expert and novice programmers in terms of behaviors and skills during code comprehension. Two groups

of subjects consisted of novice and expert programmers. They studied the same code. The experiment

measured the ability to recall lines of code verbatim and compared results between novices and experts. The

experiment is an ex post facto study because there is no direct control over who belongs to each group, i.e.

there is no random assignment of subjects.

By contrast, in the Gellenbeck & Cook study, all subjects were professional programmers with approxi-

mately the same amount of experience. Subjects were randomly assigned to one of eight di�erent versions

of code. Each routine within a version contained a randomly assigned condition (i.e. Mnemonic Name,

no header comment, typographic signaling). This design compensates for e�ects caused by the individual

di�erences between subjects by random assignment of subject to version and is therefore a hypothesis testing

experiment.

4.3 Program Understanding Experiments

Tables 5, 6, and 7 present a list of program understanding experiments by experimental technique. Depending

on the type of experiment, the results of each support some portion of the associated comprehension model.

While this is not an exhaustive list, it is intended to show the variety of experimental procedures, tasks, par-

ticipants, and programming languages that have been used to develop knowledge of program understanding

for maintenance and general code understanding.

Maintenance Task columns describe the overall task focus for each experiment. In all cases, program

understanding behavior is being measured in the context of a larger task, for example corrective maintenance.

Understanding is a maintenance task in and of itself when responsibility for maintaining code is �rst assigned.

The person assuming the responsibility will want to understand (at least at a high level) the code before

performing any other maintenance on it.

The LOC columns describe the size of the code used during the task in terms of number of lines of code.

The Subjects/Expertise columns report the number and type of subjects. Novice participants are typically

�rst year programming students. Intermediate subjects are also usually students who have had slightly

more experience than novice, i.e. second or third year computer science students. Experts come from either

a professional or computer science graduate student population. Experimental Design or Analysis briey

describes the object and analysis method of the study. Purpose states the purpose of the experiment.

23

Maintenance LOC Subjects/ Language Experiment Purpose Cite
Task Expertise Design or

Analysis

Under- 17 22 Grad Pascal Protocol Analysis Collect data on [12]

stand [Strategies] strategies used by experts

67 42 Novice Cobol Protocol Analysis Investigate nature of [35]

58 Experts [Knowledge Structures] expert chunks

Enhance 250 6 Expert Fortran Protocol Analysis Study question asking [21]

[Hypotheses] & hypotheses

250 10 Expert Fortran Protocol Analysis Show success/failure [22]

[Strategies] of task related to strategies

1057 12 Grad C Protocol Analysis Book-paradigm using beacons [23]

[Behaviors] better than source listings

200 40 Expert Cobol & Protocol Analysis Study role of knowledge [25]

Fortran [Strategies] in programming

250 20+ Expert Fortran Protocol Analysis Determine types of [33]

[Strategies] representations help programmers

Code N/A 1 Expert Fortran Protocol Analysis Build model of expert [2]

[Design Behavior] information processing

15 83 Novice Pascal Protocol Analysis Do novices have plans [29]

[Plans]

Design N/A 2 Expert Pseudocode Protocol Analysis Build model of expert [2]

[Design Behavior] problem solving skills

22 49 Expert Pascal Protocol Analysis Impact of looping [30]

90 Interm [Looping strategies on use of looping

64 Novice Strategies] constructs

Debug 350 8 Expert Cobol Protocol Analysis Determine di�erences [34]

8 Novice [Debugging Behavior] in debugging between novice

& experts

Understand, C, C-shell, Protocol Analysis Build a theory

Corrective, 50-80,000+ 11 Expert Make [Strategies], of program comprehension [36]

Adaptation, [Processes],[Actions] on large-scale code

& Perfective [Episodes]

Table 5: Observational Studies { Comprehension Experiments

24

Table 5 lists observational studies. Protocol analysis refers to an audio- and/or video-taped session that

is transcribed and analyzed. Protocols are typically think-aloud reports of subjects working on a task.

Languages are Pascal, Cobol, and Fortran. We �nd a large range of number of subjects. As the number of

subjects increases, the LOC decreases. This is understandable because the amount of time for 90 subjects

to understand a large piece of code makes such experiments prohibitively large.

Maintenance LOC Subjects/ Language Experiment Purpose Cite
Task Expertise Design or

Analysis

Under- 16 5 Novice PPL Expertise vs. Are experts' chunks [1]

stand 5 Expert chunks recalled di�erent from novices'

42 10 Novice Pascal Cluster Are experts' plans [26]

7 Grad Analysis di�erent from novices'

Adapt & 600 12 Expert Pascal Pieces of info What strategies do [20]

Enhance examined vs. modify time experts use.

Table 6: Correlational Studies { Comprehension Experiments

Table 6 lists correlational experiments. The list is small. The experiments concentrate on di�erences

between novice and expert programmer behavior. LOC and number of subjects is small. Two used Pascal.

One used PPL (Polymorphic Programming Language), a language developed to have properties in common

with APL and PL/I.

Table 7 lists hypothesis testing and quasi- experiments. Experimental design or analysis consists of several

di�erent techniques. Recall experiments have subjects study code for a given period of time and then ask

them to recall it from memory. Verbatim recall recalls code exactly as it appeared while Free recall requires

subjects to describe what appeared in less speci�c terms. Cloze tests have subjects study code containing a

missing line or word and require them to \�ll in the blank". Most experiments measure time. For example,

eye �xation time is the time spent looking at one code entity; Time between plan jumps is time spent within

a single plan and between di�erent plans; and Response time to questions tracks the time it takes to press a

\Y" or \N" key on the keyboard in response to a question.

A majority of these experiments have been done using general understanding tasks and languages such

as Pascal, Cobol, Fortran, or Basic. Most of these experiments use very small-scale code. Comparing the

typical number of subjects in these experiments to those in the observational or correlational categories shows

that hypothesis testing experiments use many more subjects. The combination of these factors demonstrate

several aspects of tightly controlled experiments. The function of a hypothesis testing experiment is to verify

a detailed hypothesis, the basis of which is grounded in previous research. Observational and correlational

studies may have been done to construct the hypothesis. Therefore, more subjects are needed for veri�cation

if the results are going to generalize to a larger population. Concrete measurements such as time and counts

are also necessary since better statistical methods exist for �nding cause and e�ect on these types of data.

5 Issues

Let us now analyze what aspects of code cognition have been covered by existing experiments and how

much we really know about how programmers understand code. Table 8 reorganizes the experiments from

tables 5, 6, and 7 in terms of models, common elements of cognition, and code size, programming language,

and subjects. For code size, small applies to programs of less than 900 lines of code (LOC). Medium size

code refers to code between 900 and 40,000 LOC. Large scale code contains more than 40,000 LOC. The

language columns distinguish between languages such as Cobol, Fortran, Basic, and Pascal and state of

the art development environments such as C/Unix with tools like Make or lint. Subjects are categorized

as novice, grad students, or professional programmers. Each cell in the table represents experiments that

investigated the row component with the column attribute.

25

Maintenance LOC Subjects/ Language Experiment Purpose Cite
Task Expertise Design or

Analysis

Under- 10 10 Novice Pascal Eye Fixation Does experience a�ect [7]

stand 9 Grads Time code examination time

66 23 Novice Pascal Reaction time Di�erence between [8]

to questions re:code graphical & textual

novice representations

25 96 Grads Pascal Correct ID Do meaningful [14]

of procedure function identi�er names

act as beacons.

913 8 Expert C Response time Does typographic [15]

to questions signalling make programs

easier to understand.

15 80 Expert Cobol & Response time Do programmers [25]

Fortran to questions have text structure &

plan knowledge.

15 94 Novice Pascal Cloze Test Do experts have [31]

45 Interm Fill in line plans & rules

of discourse.

23 12 Novice Pascal Verbatim Are code lines that [39]

12 Grads Recall swap values beacons

for sorting.

Debug 101 48 Interm Fortran Time to locate Assess debugging [3]

bug framework

11 72 Novice Basic Error Count Are plans related [11]

to design method

30 48 Novice Basic Recall on Are plans related [11]

critical lines to design method

350 8 Novice Cobol Time to �nd Expert & novice [34]

8 Expert error, counts di�erences in

debugging.

Modify 373 18 Novice Pascal Free Recall Does program structure [4]

18 Expert a�ect mental model

Design 40 12 Novice Pascal & Time between E�ects of language [10]

Code 12 Interm Basic Plan jumps on strategy

12 Expert Development

Enhance 1000 53 Grads Pascal Time to Book-Paradigm [23]

�nish task using beacons helps

understanding

Table 7: Hypothesis Testing & Quasi-Experimental Comprehension Experiments

Table 8 clearly points to the \white areas" on the map of code comprehension: only one experiment

investigating cognition elements used large-scale code. Just two experiments used medium-sized code. A

C/Unix environment, probably the most commonly used state-of-the art environment today, appears in only

three experiments. When we look at the object of the study, most investigate strategies, beacons, or plans.

Few studies exist of processes, rules of discourse, actions, program comprehension episodes, and of entire

cognition models. In light of this information, program cognition must concentrate on three issues:

1. Scalability of experiments

We must investigate whether the many well designed experiments using small-scale code scale up for

production code. For example, Vessey's study of expert programmer's knowledge [35] and Penning-

ton's study of mental representations of code [24] used programs of lengths varying between 67 LOC

and 200 LOC. These studies are appropriate for answering questions about understanding small pro-

gram segments or very small programs. However, we cannot say anything about the interactions of

these isolated components of understanding nor whether these results will play an important role in

understanding large programs.

2. Static versus Dynamic Behavior

Current results mainly focus on the static properties of programming skills [9]. For example, experi-

ments identi�ed persistent knowledge such as searching or sorting routines, but they do not investigate

26

knowledge use and application.

3. Theory Building

Many experiments are designed to measure speci�c conditions (e.g. do programmers use plans?)

but the experimental hypotheses (programmers use plans when understanding code they have never

seen before) are not based on a well-de�ned theory of program comprehension. Sheil [27] concludes

that \Our primary need at the moment is for a theory of programming skill that can provide both

general guidance for system designers and speci�c guidance to psychologists selecting topics for detailed

studies. The experimental investigation of such factors as the style of conditional notation is premature

without some theory which gives some account of why they might be signi�cant factors in programmer

behavior." Although this paper was written in 1981, in the past 12 years very few theories concerning

program comprehension have been advanced. Theories regarding large scale program comprehension

for specialized maintenance tasks are in their infancy.

6 Conclusion

Program understanding is a key factor in software maintenance and evolution. This paper summarized major

elements of cognition, how they are represented in several di�erent models of program cognition, and the

importance of experimentation in developing model theories and in validating them. Several conclusions can

be drawn from this survey:

1. While a great deal of important work exists, most of it centers around general understanding and

small-scale code.

2. Existing results from related areas need further investigation. For example, Pennington's model bor-

rows from work in understanding stories. Perception and problem solving are two areas that are

strongly related to program comprehension.

3. Some of the results generalize or appear as components of larger results. For example, elements of

Pennington's and Soloway & Erhlich's models appear in the integrated Meta-Model.

4. Availability of data is a challenge. Obtaining expert software engineers working on production code

is di�cult unless the companies that maintain large-scale code encourage their maintenance engineers

to participate in program comprehension experiments. Yet these work situations are inadequately

addressed by current experiments.

5. The literature fails to provide a clear picture of comprehension processes based on specialized main-

tenance tasks like adaptive or perfective maintenance. While models of the general understanding

process play a very important part in furthering insight into complete understanding of a piece of

code, they may not always be representative for narrow tasks like reuse or enhancements which may

more e�ciently employ strategies geared towards partial understanding.

We still have much to learn about how programmers understand code and how much understanding is

necessary. A better grasp of how programmers understand code and what is most e�cient and e�ective

can lead to a variety of improvements: better tools, better maintenance guidelines and processes, and

documentation that supports the cognitive process.

References

[1] Beth Adelson, Problem solving and the development of abstract categories in programming

languages, In: Memory and Cognition, 1981,Vol. 9(4), pp. 422-433.

27

[2] Beth Adelson and Elliot Soloway, A Model of Software Design, In: The Nature of Expertise, M.Chi,

R. Glaser, and M.Farr (Eds), c1988, Lawrence Erlbaum Associates, Publishers, pp. 185-208.

[3] Michael E. Atwood and H. Rudy Ramsey, Cognitive Structures in the Comprehension and Memory

of Computer Programs: An Investigation of Computer Program Debugging, In: Technical

Report # TR-78-A21, August 1978, Science Applications, Inc.

[4] Deborah A. Boehm-Davis, Robert W. Holt, and Alan C. Schultz, The role of program structure in

software maintenance, In: International Journal of Man-Machine Studies, 36(1992), pp. 21-63.

[5] Ruven Brooks,, Towards a theory of the cognitive processes in computer programming, In:

International Journal of Man-Machine Studies, 9(1977), pp. 737-751.

[6] Ruven Brooks, Towards a theory of the comprehension of computer programs, In: International

Journal of Man-Machine Studies, 18(1983), pp. 543-554.

[7] Martha E. Crosby and Jan Stelovsky, How Do We Read Algorithms? A Case Study, In: IEEE

Computer, January 1990, pp. 24 - 35.

[8] Nancy Cunni� and Robert P. Taylor, Graphical vs. Textual Representation: An Empirical Study

of Novices' Program Comprehension, In: Empirical Studies of Programmers:Second Workshop, Eds.
Olson, Sheppard, and Soloway, c1987, Ablex Publishing Corporation, pp. 114 - 131.

[9] Simon P. Davies, Models and theories of programming strategy, In: International Journal of Man-

Machine Studies, 39(1993), pp. 237 - 267.

[10] Simon P. Davies, The Role of Notation and Knowledge Representation in the Determination

of Programming Strategy: A Framework for Integrating Models of Programming Behavior,

In: Cognitive Science, Vol.15 No. 4, October - December, 1991, pp. 547 - 572.

[11] Simon P. Davies, The nature and development of programming plans, In: International Journal of

Man-Machine Studies, 32(1990), pp. 461 - 481.

[12] Francoise Detienne and Elliot Soloway, An empirically-derived control structure for the process of

program understanding, In: International Journal of Man-Machine Studies, 33(1990), pp. 323-342.

[13] Francoise Detienne, Program Understanding and Knowledge Organization: The Inuence of Ac-

quired Schemata, In: Cognitive Ergonomics: Understanding, Learning, and Designing Human-Computer
Interaction, c1990, Academic Press, pp. 245-256.

[14] Edward M. Gellenbeck and Curtis R. Cook, An Investigation of Procedure and Variable Names as

Beacons during Program Comprehension, Tech Report 91-60-2, Oregon State University, 1991.

[15] Edward M. Gellenbeck and Curtis R. Cook, Does Signaling Help Professional Programmers Read

and Understand Computer Programs?, Tech Report 91-60-3, Oregon State University, 1991.

[16] Raymonde Guindon, Herb Krasner, and Bill Curtis, Breakdowns and Processes During the Early

Activities of Software Design by Professionals, In: Empirical Studies of Programmers:Second Work-

shop, Eds. Olson, Sheppard, and Soloway, c1987, Ablex Publishing Corporation, pp. 65 - 82.

[17] Raymonde Guindon, Knowledge exploited by experts during software systems design, In: Inter-

national Journal of Man-Machine Studies, 33(1990), pp. 279-182.

[18] K. C. Kang, A Reuse-Based Software Development Methodology, In: Proceedings of the Workshop

on Software Reuse, G. Booch and L. Williams, eds., Rocky Mountain Inst. of Software Engineering, SEI,

MCC, Software Productivity Consortium, Boulder Colorado, October 1987.

[19] Walter Kintsch and Teun A. van Dijk, Toward a Model of Text Comprehension and Production,

In: Psychological Review, 85(5), 1978, pp. 363 - 394.

28

[20] Jurgen Koenemann and Scott P. Robertson, Expert Problem Solving Strategies for Program Com-

prehension, In: ACM? March 1991, pp. 125-130.

[21] Stanley Letovsky, Cognitive Processes in Program Comprehension, In: Empirical Studies of Pro-

grammers, Eds. Soloway and Iyengar, c1986, Ablex Publishing Corporation, pp. 58 - 79.

[22] David C. Littman, Jeannine Pinto, Stanley Letovsky, and Elliot Soloway, Mental Models and Software

Maintenance, In: Empirical Studies of Programmers, Eds. Soloway and Iyengar, c1986, Ablex Publishing
Corporation, pp. 80 - 98.

[23] Paul W. Oman and Curtis R. Cook, The Book Paradigm for Improved Maintenance, In: IEEE

Software, January 1990, pp. 39-45.

[24] Nancy Pennington, Stimulus Structures and Mental Representations in Expert Comprehension

of Computer Programs, In: Cognitive Psychology, 19(1987), pp.295-341.

[25] Nancy Pennington, Comprehension Strategies in Programming, In: Empirical Studies of Program-
mers:Second Workshop, Eds. Olson, Sheppard, and Soloway, c1987, Ablex Publishing Corporation, pp.

100 - 112.

[26] Robert S. Rist, Plans in Programming: De�nition, Demonstration, and Development, In: Em-
pirical Studies of Programmers: 1st Workshop, 1986, Washington, D.C., pp. 28-47.

[27] B.A. Sheil, The Psychological Study of programming, In: ACM Computing Surveys, March 1981,

Vol13, pp. 101 - 120.

[28] Ben Shneiderman and Richard Mayer, Syntactic/Semantic Interactions in Programmer Behavior:

A Model and Experimental Results, In: International Journal of Computer and Information Sciences,

1979, Vol.8, No.3, pg. 219-238.

[29] Elliot Soloway, Kate Ehrlich, Je�rey Bonar, and Judith Greenspan, What Do Novices Know About

Programming?, In: Directions in Human/Computer Interaction, Albert Badre and Ben Shneiderman

(Eds), c1982, ALBEX Publishing Corp., pp. 27-54.

[30] Elliot Soloway, Je�rey Bonar, and Kate Ehrlich, Cognitive Strategies and Looping Constructs: An

Empirical Study, In: Communications of the ACM, November 1983, 26(11), pp. 853-860.

[31] Elliot Soloway and Kate Ehrlich, Empirical Studies of Programming Knowledge, In: IEEE Trans-

actions on Software Engineering, September 1984, Vol. SE-10, No. 5, pp. 595-609.

[32] Elliot Soloway, Beth Adelson, and Kate Ehrlich, Knowledge and Processes in the Comprehension

of Computer Programs, In: The Nature of Expertise , Eds. M. Chi, R. Glaser, and M.Farr, c1988,

ALawrence Erlbaum Associates, Publishers, pp. 129-152.

[33] Elliot Soloway, Jeannine Pinto, Stan Letovsky, David Littman, and Robin Lampert, Designing Docu-

mentation To Compensate For Delocalized Plans, In: Communications of The ACM, Vol. 31, No.

11, November 1988, pp. 1259-1267.

[34] Iris Vessey, Expertise in debugging computer programs:A process analysis, In: International

Journal of Man-Machine Studies, (1985)23, pp.459-494.

[35] Iris Vessey, On matching programmers' chunks with program structures: An empirical inves-

tigation, In: International Journal of Man-Machine Studies, (1987)27, pp.65-89.

[36] A. von Mayrhauser and A. Vans, Comprehension Processes During Large Scale Maintenance,

In: Proceedings of the 16th International Conference on Software Engineering, Sorrento, Italy, May 1994,

pp.39-48.

[37] A. von Mayrhauser and A. Vans, From Code Understanding Needs to Reverse Engineering Tool

Capabilities, In: Proceedings of the 6th International Workshop on Computer-Aided Software Engineering

(CASE93), Singapore, July 1993, pp. 230 - 239.

29

[38] A. von Mayrhauser and A. Vans, From Program Comprehension to Tool Requirements for an

Industrial Environment, In: Proceedings of the 2nd Workshop on Program Comprehension, Capri,
Italy, July 1993, pp. 78 -86.

[39] Susan Wiedenbeck, Processes in Computer Program Comprehension, In: Empirical Studies of

Programmers, Eds. Soloway and Iyengar, c1986, Ablex Publishing Corporation, pp. 48 - 57.

30

Component Code Size: Code Size: Code Size: Lang.=Pascal, Lang.=C, Subject = Subject = Subject =
Small Medium Large Fortran,Cobol Environ. Novice Grad Student Professional

Top-Down [37] [37] [2],[37]

Situation [24] [37] [24] [37] [24],[37]

Program [24] [37] [24] [37] [24],[37]

Other [34],[21] [34],[5],[21] [34] [34],[5],[21]

Processes [36] [36] [36]

Hypotheses [21],[34] [21],[34] [34] [21],[34]

Strategies [12],[20], [12],[20],[22], [30] [12],[30] [20],[22],[25],

[22], [25], [25],[30],[33] [30], [33]

[30],[33]

Plans [10],[11], [10],[11],[26], [10],[26], [10],[11],[26], [10],[13]

[26],[29], [29],[31] [29],[31] [31]

[31]

Rules of [31] [31] [31] [31]

Discourse

Chunks [1],[4], [1],[4],[35] [1] [1],[4],[35]

[35]

Episodes [34] [36] [34] [36] [34] [34],[36]

Beacons [14], [39] [15],[23] [14],[23],[39] [15],[23] [39] [14],[23],[39] [15]

Text [24] [24] [24]

Structures

Actions [21] [36] [21] [36] [21],[36]

Table 8: Component � Experimental Attribute Table

31

